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Abstract—The prediction of scour depth around bridge piers is
frequently considered in river engineering. One of the key aspects in
efficient and optimum bridge structure design is considered to be scour
depth estimation around bridge piers. In this study, scour depth around
bridge piers is estimated using two methods, namely the Adaptive
Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural
Network (ANN). Therefore, the effective parameters in scour depth
prediction are determined using the ANN and ANFIS methods via
dimensional analysis, and subsequently, the parameters are predicted.
In the current study, the methods’ performances are compared with the
nonlinear regression (NLR) method. The results show that both
methods presented in this study outperform existing methods.
Moreover, using the ratio of pier length to flow depth, ratio of median
diameter of particles to flow depth, ratio of pier width to flow depth,
the Froude number and standard deviation of bed grain size parameters
leads to optimal performance in scour depth estimation.

Keywords—Adaptive neuro-fuzzy inference system, ANFIS,
artificial neural network, ANN, bridge pier, scour depth, nonlinear
regression, NLR.

1. INTRODUCTION

RIDGES are the most important and applicable river
structures. Every year, with river flood events, a large
number of bridges are destroyed. In addition to loss of life,
bridge destruction directly and indirectly imposes vast costs
worldwide. One of the most influential factors on bridge
destruction is local scour around bridge piers. Scour causes
holes around bridge piers and undermines bridge stability and
perhaps with great floods, it could lead to destruction. Dealing
water flow to bridge piers and flow separation from piers are
known as the main local scour factors. As water deal to a bridge
pier due to the pressure decrease from the free flow surface to
the bed, a downward flow is created. These flows are in contact
with the bed at the beginning and then at the mainstream they
create a horseshoe vortex. These vortices are mostly active in
front of the pier. Flow separation from the bridge pier behind
the vortex base increases. The reason for higher vortex
formation is the increase in shear stress behind the bridge pier.
Studies have shown that horseshoe vortices have a major role
in scour formation around bridge piers [1]. Numerous studies
were conducted to evaluate the horseshoe vortices
characteristics and their effects on the pier width [2], [3].
Until now, many researchers have studied bridge pier scour.
However, due to the complexity of the three-dimensional and
three-phase flow (air, water and sediment) and major factors on
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the phenomenon, providing a unique solution for scour depth
calculation or reduction has still not been successful [4]-[6].
Factors such as sediment, bridge geometry, flow, and sediment
characteristics can be considered the most important factors
affecting scour depth. Thus, due to the significant parameters
and the absence of a clear procedure with good accuracy, there
is a need for a method that overcomes the problems posed by
existing methods.

In recent years, artificial intelligence methods have been
effective and strong techniques to solve the non-linear and
complex issues in various fields including water and hydraulic
engineering [7]-[12]. Neural networks can be good and
effective methods to overcome the linear and NLR -based
method problems with scour [13]-[15]. ANFIS using ANN
features can approximate Fuzzy Inference Systems (FIS). In
fact, this method, which is a combination of ANN and FIS, has
demonstrated good performance in hydraulic modelling and
environmental aspects [16]-[18].

The main objective of this study is to use ANFIS to predict
scour depth around bridge piers. The factors affecting scour
depth are first determined, after which dimensional analysis is
applied to determine the dimensionless parameters for
modeling. Moreover, sensitivity analysis is employed to
evaluate the effect of each dimensionless parameter on scour
depth modeling using ANFIS. The ANFIS results are compared
with ANN and NLR method results.

II. ARTIFICIAL NEURAL NETWORK

ANN is among the computational models capable of
mapping the input and output of a system. However, the
determination of complex and nonlinear systems by a network
of nodes are connected together. ANN architecture usually
consists of three layers: “input layer”, which communicates to
one or more “hidden layers” where the actual processing is done
via a system of weighted connections. The hidden layers then
link to an “output layer” where the answer is output. It is worth
noting that there can be different hidden layers, but previous
studies have shown that one hidden layer can estimate a
complex and non-linear function [19]-[21]. The neural network
used in this study is a Feed-Forward Neural Network (FFNN),
whose output can be expressed as:
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where p; is the output of neuron M;, wj;; is the connection weight
between the neurons of the current layer (M;) and the previous
layer (M), bj is the bias weight of neuron M; and f is the
nonlinear transfer function. Regarding the good performance of
the sigmoid transfer function in recent studies [15], [22], this
activation function is used in the current study and is defined as
follows:

1
)= 1+exp(-x) @

The target function determined for ANN training is defined
as follows:

1 — actual redic
Fw) =22 O =y o)
k=1

actual

where ye predict

and Y,

(respectively). To train the neural network, a back-propagation
(BP) algorithm is used. This algorithm returns the calculated
error from the output layer to the hidden layer and then the input
layer as well.

are the actual and predicted output

III. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)

The FIS recognizes IF-Then rules so that the interaction
between the number of input and output variables can be
obtained. The system can be used as a predictive model for a
condition in which the input or output data has high uncertainty.
The fuzzy modeling process concludes the membership
function determination by determining the inference system
based on the data, writing the inference rules and rule
combinations, obtaining the results and finally, defuzzification.
To mitigate this uncertainty problem, Jang [23] proposed one
of the most common neuro-fuzzy hybrid models, ANFIS. This
model implements the Sugeno model system in a neural
structure and sets the membership functions through the back-
propagation (BP) algorithm or a hybrid of BP and least squares.
Considering an ANFIS model with two inputs x and y and one
output z, the If-Then rules can be stated as follows:

Rulel : if xis A and yis B, Then fi=px+qy+n (4)
Rule2: if x is A, and y is B,, Then f,=p,x+q,y+r (5)

where A, Az, B1 and B, are membership functions of the x and
y inputs and p1, Qi, r1, P2, J2 and r, are the parameters of the
output functions. The ANFIS model contains 5 different layers,
which can be defined as follows:

First layer: each node in this layer indicates the input
parameter membership degree as follows:

0i1 = UA(X), i=12 (6)

0 =uBi_,(y), =34 (7
where X and y are the inputs of node i; Aj and Bi.; are the fuzzy
set of node i, and Oy is the membership degree of the fuzzy set.
As the Gaussian function has the advantages of being smooth
and nonzero and also has fewer parameters than other
membership functions, such as the bell and trapezoidal
functions, in this study the function defined below is used.

| Ix=el
KA, (x) = €XP 3 (3)
26i

where Cj and o; are the parameter set which is between 0 and 1.
Second layer: in this layer, the membership degree of each rule
is calculated as follows:

Oy =W = up (X )ug (X) i=12 €

Third layer: in this layer, the input data is processed as
follows:

W

Oy, =W = i=12 (10)

b
W +W,

Fourth layer: in this layer, each node’s output is calculated as
follows:

Oy =W fj =Wy (piX +¢jy +1;) (1)

The fifth layer: in this layer, all nodes are summed and the
total output is calculated as follows:

_ w; f;
Oy =2 W f; = %w
I

In this study, for FIS generation and model training, grid
partitioning and a hybrid of back-propagation and least squares
algorithm are used, respectively.

(12)

IV. DATA PRESENTATION FOR SCOUR DEPTH PREDICTION

Scour depth around bridge piers (ds) for equilibrium state and
when there is constant flow on the bed with uniform and no
cohesive sediments, is related to different variables. The
variables dependent on scour depth include sediment
characteristics, fluid, flow and pier specifications. Thus, the
variables dependent on local scour depth (ds) estimation can be
expressed as the following function:

ds = f(g,d50,b,¥,LV ,0) (13)

where g is the gravitational acceleration, dso is the median
diameter of particles, b is the pier width, y is the flow depth, L
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is the pier length, V is the mean approach velocity and o is the
standard deviation of grain size distribution. Using dimensional
analysis and the IT Buckingham theory, the dimensionless
parameters affecting local scour depth estimation are provided
as follows:

ds/y=f(Fr,ds,/y,b/y,L/y,0) (14)

where Fr is the Froude number.

The parameters given in the above relationship and field data
are used to develop ANN and ANFIS models. For ANN and
ANFIS modeling, 467 different field data collected by Landers
and Mueller [24] and Mohammed et al. [25] are used. These
data are related to 4 pier shapes, including cylindrical, round,
square and sharp. Among all data, by using random selection,
25% (117 data) were selected and the remaining 75% served to
train the ANN and ANFIS models. The data ranges used in this
study are as follows: 0.027<Fr<0.816; 2.25E-5<dso/y<0.144;
0<L/y<110; 1.2< 6<20.3; 0.025<ds/y <3.33

V.RESULTS AND DISCUSSION

In this section, the local scour depth results are expressed
using ANFIS and compared with the ANN and NLR results.
For this purpose, three different statistical indices, viz root
mean squared error (RMSE), mean absolute relative error
(MARE) and BIAS are used.

RMSE = \/%Z((dsl}/)observedi _(ds/y)Modeli)2 (15)

i=1

n d./ —(d,/

MARE _ z ( s y)Observedl ( s y)Modell (16)
i=1 (d s /y )Observed i

BIAS = lzz;((ds/y)rwoden - (ds/y)obsefvedi) a7

Fig. 1 presents the performance of ANFIS in local scour
depth prediction. This figure indicates that most of the values
estimated by ANFIS are accurate and the model performance
for almost all ds/y is constant. By increasing or decreasing this
parameter, no significant change is observed in ANFIS dyy
prediction performance. An evaluation of quantitative model
performance also signifies good accuracy (MARE = 0.226;
RMSE = 0.003). The BIAS index also shows that these models
performed with overestimation. The index (BIAS = 0.004) has
a negligible value, which has no significant impact on a plan’s
economic viability.

Table I represents an evaluation of the effect of each input
parameter on ANFIS model prediction of local scour depth. Not
using the standard deviation of the bed grain size (o) parameter
led to a significant reduction in local scour depth prediction
accuracy using ANFIS, as all three index values presented
significantly increased.
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Fig. 1 ANFIS model performance evaluation for local scour depth
prediction: a)series data b) scatter plot

The average relative error (MARE) value increased by
approximately 5 times, which is correct for the RMSE model,
and the RMSE value increased by about 6 times for ANFIS (2)
compared to ANFIS (1). The estimation process by ANFIS (2)
compared to ANFIS (1) was unchanged and both models
performed with overestimation, whereby the BIAS (0.085)
value for ANFIS (2) was significantly different from ANFIS
(1). ANFIS (3) outperformed ANFIS (2), but the model results
indicate that not using dimensionless parameter L/y as a model
input can lead to a significant reduction in local scour depth
prediction accuracy. The average relative error and root mean
square error were respectively 2 and 4 times the values provided
for these indices for the ANFIS (1) model (MARE = 0.549;
RMSE = 0.019). This model performed with underestimation,
but due to the low BIAS (-0.003) index value, this process did
not cause problems. The ANFIS (4) model only considers four
parameters Fr, dy,/y, L/y and o among five dimensionless

parameters provided in (14) as effective parameters in local
scour depth determination. This model’s accuracy is similar to
the ANFIS (3) model and their statistical index values are not
significantly different from each other. In fact, not using of one
of parameters 1/y or b/y as effective parameters leads to
relatively similar results, with the difference being that ANFIS

837



International Journal of Architectural, Civil and Construction Sciences
ISSN: 2415-1734
Vol:11, No:6, 2017

(3) performed with underestimation and ANFIS (4) with
overestimation. Not using parameters dso/y (ANFIS (5) and Fr
(ANFIS (6)), which are sediment and flow characteristics
respectively, led to reduced model accuracy. Moreover, the
average relative error value was about 3 times that of ANFIS
(1) in which all parameters provided in (14) are considered
effective parameters. The RMSE index value for ANFIS (5)
(RMSE = 0.215) is almost three times higher than for ANFIS
(6). This suggests that for higher and lower ds/y values, ANFIS
(6) and ANFIS (5) performed better, respectively. According to
this explanation, not using each of the variables presented in
(14) led to significant accuracy reduction in local scour depth
prediction using ANFIS.

ANFIS (1): dg/y=f(Fr,ds,/y,b/y,L/y,0)
ANFIS (2): d,/y = f(Fr,ds,/y,b/y,L/y)
ANFIS (3): dy/y = f(Fr,ds/y,b/y,0)
ANFIS (4): dy/y=f(Fr,ds,/y,L/y,0)
ANFIS (5): d,/y=f(Fr,b/y,L/y,0)

ANFIS (6): d,/y=f(dsy/y,b/y,L/y,0)

TABLEI
INPUT PARAMETER SENSITIVITY ANALYSIS FOR THE ANFIS MODELS
Model MARE RMSE BIAS

ANFIS (1) 0.226 0.003 0.004
ANFIS (2) 1.163 0.019 0.085
ANFIS (3) 0.549 0.012 -0.003
ANFIS (4) 0.513 0.069 0.036
ANFIS (5) 0.627 0.215 0.062
ANFIS (6) 0.652 0.076 0.050

Due to the necessity to use all five parameters
Fr,ds,/y,b/y, L/y and o, it is recommended to use NLR

in the following equation to calculate scour depth. Fig. 2
compares the ANFIS, ANN and NLR models in terms of local
scour depth estimation. The ANN models’ relative error was
overestimated, but with increasing the dy/y value, the model
performance changed to underestimation. ANFIS (MARE =
0.226; RMSE = 0.003; BIAS = 0.004) displayed better
performance in nearly all data ranges than ANN (MARE =
0.694; RMSE = 0.016; BIAS = 0.034). Both models performed
with overestimation, with a wide difference between the BIAS
index values of ANN and ANFIS. NLR (MARE = 0.777;
RMSE = 0.016; BIAS = 0.038) estimated local scour depth for
almost all data ranges with large relative error in both
underestimation and overestimation. A quantitative comparison
of'this model with two artificial intelligence methods (ANN and
ANFIS) showed that both artificial intelligence methods
outperformed the NLR model. Hence, it can be concluded that
that the ANFIS method presented in this study was more
accurate in ds/y estimation compared to the NLR and ANN

methods that are based on regression and artificial intelligence.

18
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Fig. 2 Comparison of ANFIS, ANN and NLR in local scour depth
prediction

TABLEII
PERFORMANCE EVALUATION OF ANFIS, ANN AND NLR IN LOCAL SCOUR
DEPTH PREDICTION
Method MARE RMSE BIAS
ANFIS 0.226 0.003 0.004
ANN 0.694 0.016 0.034
NLR 0.777 0.016 0.038

VI. CONCLUSION

Since one of the major reasons for bridge failure is local
scour depth, accurate scour depth prediction is essential and
inevitable. Therefore, the ANFIS and a large range of field data
were used in this study to predict scour depth around bridge
piers. Thus, by recognizing the effective parameters on scour
depth and using dimensional analysis to introduce the
dimensionless parameters, S5 different parameters were
introduced, including Froude number (Fr), ratio of median
diameter of particles to flow depth (dso/y), ratio of pier width to
flow depth (b/y), ratio of pier length to flow depth (L/y) and
standard deviation of grain size distribution (o). Scour depth
modeling indicated the relatively good performance of ANFIS
(MARE = 0.226; RMSE = 0.003; BIAS = 0.004). Also, the
effect of each dimensionless parameter on scour depth
modeling using ANFIS showed that not using any of the
parameters provided in (14) leads to significant reduction in
ANFIS performance. Not using the ¢ parameter in the ANFIS
(2) model (MARE = 1.163; RMSE = 0.019; BIAS = 0.085)
resulted in the greatest reduction in ANFIS performance and not
using parameter b/y in the ANFIS (4) model (MARE = 0.513;
RMSE = 0.069; BIAS = 0.036) resulted in minimum ANFIS
performance reduction. A comparison of ANFIS results with
ANN as an artificial intelligence method based on NLR showed
that the method proposed in this study performed the best.
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