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Abstract—Shifted polynomial basis (SPB) is a variation of
polynomial basis representation. SPB has potential for efficient
bit level and digi -level implementations of multiplication over
binary extension fields with subquadratic space complexity. For
efficient implementation of pairing computation with large finite
fields, this paper presents a new SPB multiplication algorithm based
on Karatsuba schemes, and used that to derive a novel scalable
multiplier architecture. Analytical results show that the proposed
multiplier provides a trade-off between space and time complexities.
Our proposed multiplier is modular, regular, and suitable for very
large scale integration (VLSI) implementations. It involves less
area complexity compared to the multipliers based on traditional
decomposition methods. It is therefore, more suitable for efficient
hardware implementation of pairing based cryptography and elliptic
curve cryptography (ECC) in constraint driven applications.

Keywords—Digit-serial systolic multiplier, elliptic curve
cryptography (ECC), Karatsuba algorithm (KA), shifted polynomial
basis (SPB), pairing computation.

I. INTRODUCTION

Several applications, such as Diffie-Hellman key exchange

[1], Digital Signature [2], elliptic curve cryptography (ECC)

[3], [4], and pairing-based cryptography [5] use finite

field multiplication. The shifted polynomial basis (SPB)

[6] provides several advantages for the implementation of

finite field multiplications [7]. For pairing-based cryptographic

applications, the Weil and Tate pairings based on elliptic curve

arithmetic require extensive computations involving operands

in large finite fields. For example, 128-bit symmetric-key

security could be achieved by computing Tate pairing [8]

on a supersingular elliptic curve defined over composite field

GF (24×1223). Therefore, it is important to explore efficient

designs for hardware implementation of pairing computation

which is a great challenge, particularly, for the implementation

in resource-constrained environments.

Several systolic architectures for multiplication over

GF (2m) are proposed, which could be categorized into

bit-parallel and bit-serial architectures. Bit-parallel systolic

multipliers perform fast computations, and they are suitable for

high-throughout implementations [9], [10]. Nonetheless, such

architectures require space-complexity of O(m2) and typically

involve latency of O(m). Bit-serial systolic array multipliers

require only O(m) space-complexity [11], [12], but require
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longer computation time which is not preferable for high-

speed applications. To achieve the trade-off between the time

and space complexities, digit-serial systolic multipliers with

digit-in-digit-out and digit-in-parallel-out structures have been

proposed [13], [14]. Moreover, scalable multipliers have also

been proposed to achieve a trade-off between time and space

complexities. Scalable multipliers [15] are based on fixed

d×d Hankel matrix-vector product (HMVP) approach, which

perform the multiplication through
⌈
m
d

⌉2
partial products

using classical decomposition method. Such kind of scalable

feature is used by reconfigurable hardware to decide on the

number of partial products to obtain the full multiplication

results. Selection of appropriate HMVP structure can lead

to less area-delay product compared to classical digit-serial

systolic multipliers.

In this paper, we have used SPB for the representation of

operands in the proposed algorithm for scalable multiplication

over GF (2m). The proposed multiplication algorithm utilizes

two-level KA algorithm, where the outer-level KA performs

multi-term decomposition of input polynomials; and the inner-

level KA builds parallel systolic multiplier using the products

of decomposed input words. The proposed parallel systolic

multiplier is realized through n2+n
2 partial products of d-bit

words, where n =
⌈
m
d

⌉
. In this paper, we propose a

reconfigurable approach to generate necessary operands of

those partial products to be used in the proposed scalable

systolic SPB multiplier over GF(2m). Through detail analytical

results we have shown that the proposed approach results in

a novel scalable systolic array multiplier for fields of large

order, which provides a trade-off between space and time

complexities.

II. MATHEMATICAL BACKGROUND

In this Section, we briefly review the classical SPB

multiplication over GF (2m) and the Karatsuba algorithm.

A. SPB Multiplication over GF (2m)

The ordered set N = {1, x, x2, · · · , xm−1} is called the

polynomial basis of binary extension field GF (2m), where

x is the root of the irreducible polynomial F (x) of degree

m. The field element A in GF (2m) can be represented as

A = a0 + a1x + · · · + am−1x
m−1 where ai ∈ {0, 1} for

all i. Let A,B, and C be three elements in GF (2m), where

C = AB mod F (x). Generally, the computation of the product

C is a two-step operation: (1) the grade-school multiplication
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D = AB of at most degree 2m − 2, and (2) the polynomial

reduction to compute C = D mod F (x).
To represent the elements over GF (2m), Fan and Dai [6]

have defined the SPB of GF (2m) to derive efficient bit-parallel

multiplier for all trinomials as follows:

Definition 1. Let v be an integer, and let the
set N = {1, x, x2, · · · , xm−1} be the polynomial
basis of GF (2m). Then the ordered set Nx−v =
{x−v, x1−v, x2−v, · · · , xm−1−v} is called the shifted
polynomial basis of GF (2m) with respect to N .

Using the SPB, an element A =
∑m−1

i=0 aix
i ∈ GF (2m)

can be represented as A = x−vA =
∑m−1

i=0 aix
i−v . It

is interesting that there is no hardware cost for the inter-

conversion of elements A and A. For any two elements

A = x−vA and B = x−vB in the SPB representation of

GF (2m), the SPB product C = x−vC of A and B can directly

be obtained as

C = x−vAB mod F (x) (1)

The two-step computation of SPB multiplication of (1) is

described as follows:

Step-1:Grade-school multiplication step

T = AB = t0 + t1x+ · · ·+ t2m−2x
2m−2 (2)

where

ti =

{ ∑i
k=0 akbi−k, 0 ≤ i ≤ m− 1∑m−1

k=i+1−m akbm−1−k, m ≤ i ≤ 2m− 2
.

Step-2:Polynomial reduction step

C = Tx−v mod F (x) (3)

According to (3), the complexity of SPB multiplier depends on

the chosen value of v. The complexity of SPB multipliers for

the field generated by certain types of irreducible polynomials,

such as trinomials and pentanomials, is discussed in [6].

B. Multi-term Karatsuba Algorithm

Karatsuba algorithm [16] provides divide-and-conquer

technique to multiply long polynomials. It uses three

subproducts of half-length operands to replace the original

grade-school multiplication. For example, let A = A0+x
m
2 A1

and B = B0+x
m
2 B1 be two polynomials of degree m, where

A0, A1, B0, and B1 are four polynomials of degree m
2 . The

product of A and B can be represented as

AB = A0B0 + [(A0 +A1)(B0 +B1).

+A0B0 +A1B1]x
m
2 +A1B1x

m. (4)

Based on Karatsuba algorithm, multiplication can be

performed in three stages as follows.

1) Evaluation Point (EP) Generation Stage : The

polynomial A = (A0, A1) is split into the evaluation

point vector EP (A) = (A0, A0 + A1, A1). Similarly,

the polynomial B = (B0, B1) is also split into

EP (B) = (B0, B0 +B1, B1).
2) Point-Wise Multiplication (PWM) Stage: PWM stage

performs point-wise multiplication of EP (A) and

EP (B). The PWM is performed after EP generation

to produce three products: D0= A0B0, D1 =(A0 +
A1)(B0 + B1), and D2 = A1B1. Thus, we can define

that

D = PWM(EP (A), EP (B)) = (D0, D1, D2). (5)

3) Reconstruction (R) Stage: In this step, the result of

the PWM stage is used to construct the desired

multiplication result, given by

C = (C0, C1, C2)

= R(D) = (D0, D0 +D1 +D2, D2). (6)

By applying this strategy recursively, each polynomial

is transformed into three polynomials with their degrees

reduced to about half of its previous polynomial. The

decomposition algorithm could be terminated after the

polynomials degenerate into single-bit coefficients. The

multiplication based on recursive KA scheme is shown in the

functional block architecture of Fig. 1. The complexity of KA

multiplier is discussed in [17].

For reducing the number of sub-multiplications in the PWM

stage, let us define the following identities

Di = AiBi, (7)

Dij = (Ai +Aj)(Bi +Bj). (8)

We can compute the product of a pair of three-term

polynomials corresponding to 3-term KA scheme. Let A and

B be represented by A = A0 + A1x
m/3 + A2x

2m/3 and

B = B0 + B1x
m/3 + B2x

2m/3, respectively, where Ai and

Bi are (m3 )-bit polynomials. The product of A and B can be

rewritten

C = AB = C0+C1x
m/3+C2x

2m/3+C3x
m+C4x

4m/3, (9)

where

D0 = A0B0, D1 = A1B1, D2 = A2B2,

D01 = (A0 +A1)(B0 +B1),

D12 = (A2 +A1)(B2 +B1),

D02 = (A0 +A2)(B0 +B2),

C0 = D0, C1 = D01 +D0 +D1,

C2 = D02 +D0 +D1 +D2,

C3 = D12 +D1 +D2, C4 = D2.

In the above example, three-term KA requires 6

multiplications of decomposed operands to generate the

partial products and 13 additions of decomposed operands

and of partial products. Generalizing the above multi-term

KA decomposition, we can obtain the following properties.

Lemma 1. Suppose A and B are two m-bit polynomials.
Based on n-term KA scheme with one-step approach, both
polynomials A and B are split into (mn )-bit subword
polynomials. In this case, to compute C = AB, we require
n2+n

2 partial products.
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Fig. 1. The functional block of the KA architecture.

In the structure of Fig. 1, it is shown that three stages are

performed sequentially and based on that we can have Lemma

2 in the following.

Lemma 2. Assume that C = C1 + C2, where
C1 = A1B1 and C2 = A2B2. In the three stage
computation of Fig.1, C1 and C2 can be represented
by C1 = R(PWM(EP (A1), EP (B1))) and C2 =
R(PWM(EP (A2), EP (B2))), respectively. C = C1 + C2

is then directly obtained by the following recombination
structure:

C = R(PWM(EP (A1), EP (B1))

+PWM(EP (A2), EP (B2)). (10)

III. PROPOSED SCALABLE SYSTOLIC SPB MULTIPLIER

In this Section, we utilize the multi-way KA scheme to

derive a novel scalable multiplier over GF (2m), where the

field element is represented by the SPB.

A. Parallel Systolic Array for Computing Partial Product
Multiplication

Assume that A =
∑n−1

i=0 āix
i and B =

∑n−1
i=0 b̄ix

i are

two subword polynomials, and C be their product prior to the

reduction operation, such that

C = AB = b̄0A+ b̄1xA+ · · ·+ b̄n−1x
n−1A. (11)

For digit-size d , operand B could be decomposed into p
number of d-bit sub-words with p =

⌈
n
d

⌉
, such that

B =

p−1∑
i=0

Bix
id, (12)

where

Bi =
d−1∑
j=0

b̄id+jx
j .

Thus, the product C can be represented as

C =

p−1∑
i=0

ABix
id. (13)

Next, according to multi-term KA algorithm (Sec. II-B),

we can use d-term KA to derive the partial product C in

(9). According to the structure of Fig. 1, the product of

two d-bit polynomials can be constructed in three stages,

such as evaluation stage, point-wise multiplication stage, and

reconstruction stage. We have the following complexities for

each of these stages.

Lemma 3. Assume that A and B are two d-bit polynomials,
and the product of A and B is based on 1-step d-term KA
scheme. The components in Fig. 1 then have the following
time and space complexities:

• Each EP circuit requires d2−d
2 XOR gates and involves

one XOR gate delay.

• The PWM circuit requires d2+d
2 XOR gates and involves

one AND gate delay.

• The R circuit requires (d2 − d) XOR gates and involves

[log2(1.5d)] XOR gate delays.

For the selected digit-size d, the element A is represented

by A = A0 + A1x
d + · · · + Ap−1x

d(p−1), where Ai =∑d−1
j=0 aid+jx

j are the sub-words. Let us denote the evaluation

point of A given by PA = EP (A), which could be rewritten

as

PA = PA0
+ PA1

xd + · · ·+ PAp−1
xd(p−1) (14)

Utilizing the recombination property (stated in Lemma 2), the

partial product Ci in (9) can be obtained as

C = R(

p−1∑
i=0

PWM(PA, PBi
)xid), (15)

where

PWM(PA, PBi
) =

p−1∑
j=0

PWM(PAj
, PBi

)xdj

Fig. 2 shows the signal-flow graph (SFG) for the computation

of (15) based on one-step KA decomposition. In Fig.2, the

EP-A module is comprised of p number of EP circuits, the

PWM-A module is comprised of p PWM circuits to perform

PWM(PA, PBi
), and the final reconstruction (FR) requires

(2p − 1) R circuits. We can use Lemma 3 to evaluate the

time complexities of EP, PWM and R circuits as TX , TA

and log2(1.5d)TX gate delays, respectively. To achieve the

minimum critical path, we assume that k and l are two positive

integers which satisfy k =
⌈
p
l

⌉
, where l = 2�log2(1.5d)�−2. For

example, if the multiplier selects 5-bit digit-size to implement

the partial product, then we have l = 2. We can use cut-

set retiming with l = 2 (as shown in Fig.2) to reduce the

delay between PWM-EP-adder and FR. Thus, the product C is

selected by l PWM-A modules given by the following formula

C = R(
k−1∑
i=0

Cix
ild) (16)

where

Ci = PWM(PA, P ˜Bi
) =

l−1∑
j=0

PWM(PA, PBil+j
)xjd
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Fig. 2. Signal-flow graph (SFG) for computing partial products

=

l−1∑
j=0

p−1∑
t=0

PWM(PAt
, PBil+j

)x(t+j)d (17)

B̃i = Bil +Bil+1x
d + · · ·+Bil+l−1x

d(l−1). (18)

In order to reduce the latency, let us consider a pair of integers

t and w which satisfy w =
⌈
k
t

⌉
. The product C in (16) can

then be expressed as

C = R(
w−1∑
i=0

Cix
ildt) (19)

where

Ci =
t−1∑
i=0

Cix
ild. (20)

Fig.3 shows the proposed 2-D parallel systolic array for

computing the partial products based on (19). It consists of

one EP-A, w parallel systolic arrays (PSA), one pipelined

adder-tree (PAT), and one FR. Each PSA is composed of t
PEs to implement (20). Fig.4 shows the design of PE, which

is composed of one PWM multiplier core, one adder, and one

EP-B. Each PWM multiplier core performs the computation

of (17). It consists of pl PWMs. The EP-B is based on

(18) to compute the evaluation point P
˜Bi

. It consists of l

EPs. Let us define S⊗ = d(d+1)
2 . The EP-B module in

Fig.4 produces lS⊗ output bits, and the PWM multiplier core

produces (p+ l − 1)S⊗-bits of results.

B. Final Polynomial Reduction circuit

After the degree alignment operation, we get the result D
which is a (2m−1)-bit polynomial. The most significant m−1
terms of D are recursively reduced through polynomials of

degree less than m using the irreducible polynomial F (x) to

obtain C = x−vD mod F (x). In [18], it is shown that C =
x−vD mod F (x) can be represented by

C = [Im×m|Q][d0, d1, · · · , d2m−2]
T .

where Q is the reduction matrix associated with the irreducible

polynomial F (x). For any general reduction polynomial F (x),
the final polynomial reduction (FPR) module requires H(Q)
XOR gates and log2(θ+1)TX critical path, where H(Q) is the

Hamming weight of the reduction matrix Q, and θ is the the

maximum Hamming weight of the column vectors in matrix

Q. For the NIST recommended irreducible polynomials for

TABLE I. COMPLEXITY OF FINAL POLYNOMIAL

REDUCTION (FPR) FOR TRINOMIALS AND

PENTANOMIALS

polynomials #XOR(H(Q)) time delay

xm + xn + 1 2m− 2 2TX

xm + xk3 + xk2 + xk1 + 1
for 1 < k1 < k2 < k3 < m/2

4m− 4 4TX

xm + xk3 + xk2 + xk1 + 1
for 1 < k1 < k2 < k3 < m/2

and k3 − k2 = k1

3m+ k1 − 3 4TX
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Fig. 3. The proposed parallel systolic array architecture for

computing partial products

elliptic curve cryptosystems [2], Table I lists the complexity

of FPR module.

C. Proposed Scalable Architecture

Let the field element A = a0 + a1x + · · · + am−1x
m−1

in GF (2m) be represented by A = A0 + A1x
n + A2x

2n,

where n =
⌈
m
3

⌉
and Ai = ai,0 + ai,1x + · · · + ai,n−1x

n−1

for 0 ≤ i ≤ 2 and ai,j = ani+j , 0 ≤ j ≤ n − 1. Let the

field GF (2m) be constructed from an irreducible polynomial

F (x) of degree m. For A,B ∈ GF (2m), the SPB product

C = RAB mod F (x) can be represented as

C = R[A0B0 + (A0B0 +A1B1 +A01B01)x
n

+(A0B0 +A1B1 +A2B2 +A02B02)x
2n

+(A1B1 +A2B2 +A12B12)x
3n +A2B2x

4n] mod F (x)

= R[A0B0(1 + xn + x2n) +A1B1(x
n + x2n + x3n)
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+A2B2(x
2n + x3n + x4n) +A3B3x

n

+A4B4x
2n +A5B5x

3n] mod F (x) (21)

where

A3 = A0 +A1, A4 = A0 +A2, A5 = A1 +A2,

B3 = B0 +B1, B4 = B0 +B2, B5 = B1 +B2.

From (21), we can find that the product C includes six

partial products: C0 = A0B0, C1 = A1B1, C2 = A2B2, C3 =
A3B3, C4 = A4B4, and C5 = A5B5. We need to generate

the decomposed operands Ai and Bi from the operands A and

B, for i =0,1, .., 5, according to the following relations.

Ai = (si,00A0 + si,01A1 + si,02A2)

+(si,10A0 + si,11A1 + si,12A2). (22)

Bi = (si,00B0 + si,01B1 + si,02B2)

+(si,10B0 + si,11B1 + si,12B2). (23)

where Si,0 = (si,00, si,01, si,02) and Si,1 = (si,10, si,11, si,12)
are used to determine the decomposed operands Ai and Bi.

Each partial product Ci = AiBi is required to be multiplied

with a sparse polynomial Pi for i = 0, 1, · · ·, 5, given by

P0 = 1+xn+x2n, P1 = xn+x2n+x3n, P2 = x2n+x3n+x4n

, P3 = xn, P4 = x2n and P5 = x3n. We can define Pi =
si,20+si,21x

n+si,22x
2n+si,23x

3n+si,24x
4n to generate the

sparse polynomials. Table II lists three control vectors for per

cycles to determine the partial products. The partial products

are computed sequentially in the order C0, C1, C2, C3, C4,

C5, and multiplied with the corresponding sparse polynomials

and summed together to obtain the intermediate product to be

reduced thereafter.

According to Table II, Algorithm 1 can be used for

scalable SPB multiplication based on three-way KA scheme.

In this algorithm, steps 4 and 5 are performed to decompose

the subword polynomials Ai and Bi, respectively. Step 6

is based on Sec.III-A to carry out subword multiplication.

Step 7 performs the degree-alignment operation. Finally,

Step 9 does the final polynomial reduction. Fig. 5 shows

the proposed SPB/GPB multiplier with scalable hardware

implementation according to Algorithm 1, where the different

operands are generated in different configurations realized by

Algorithm 1 Proposed scalable SPB multiplication algorithm

based on three-way KA

Inputs: A = A0+A1x
n+A2x

2n and B = B0+B1x
n+B2x

2n

are two element in GF(2m), where n =
⌈
m
3

⌉
. R is a nonzero

polynomial.

Output: C = RAB mod F (x).
1. D = 0.

2. Generate three control vector tables S0, S1, S2.

3. for i = 0 to 5
4. Ai = (si,00A0+si,01A1+si,02A2)+(si,10A0+si,11A1+
si,12A2).
5. Bi = (si,00B0+si,01B1+si,02B2)+(si,10B0+si,11B1+
si,12B2).
6. Ci = BiAi .

7. D = D + (si,20 + si,21x
n + si,22x

2n + si,23x
3n +

si,24x
4n)Ci .

8. endfor

9.C = DR mod F (x).

the control vectors S0, S1 and S2. The proposed architecture

consists of one control unit, three registers (A,B,D registers),

two decomposed operand generation circuits, one subword

polynomial multiplier (Fig.3), one degree-alignment circuit,

and one FPR.

According to (21), the KA for three-way decomposition

involves 6 partial products Ci for 0 ≤ i ≤ 5, and all partial

products involve the multiplication of different combinations

of input subwords. Three control vectors S0, S1 and S2 are

stored in the circular shift-register in the control unit. During

each iteration of partial product computations, the decomposed

operand generation circuit (using a pair of control vectors S0

and S1) produces the corresponding input polynomials for

the subword polynomial multiplier for computing the partial

products. The degree-alignment circuit selects one of the six

different terms for product reconstruction using the control

vector S2. For example, in Table II, we select the three

control vectors S3,0 = (100), S3,1 = (010), S3,2 = (01000)
to perform the computation of (A0 + A1)(B0 + B1)x

n in

(21), as shown in the path diagram by the red lines in Fig.

5. Based on this approach, we use three control vectors

S2,0 = (001), S2,1 = (000) and S2,2 = (00111) to calculate

A2B2(x
2n + x3n + x4n), and so on.

IV. TIME AND SPACE COMPLEXITIES

In Fig.5 we have used two-level KA decomposition

to implement the proposed scalable SPB multiplier. The

proposed architecture is composed of two decomposed

operand generation circuits, one parallel systolic multiplier,

one degree alignment circuit, one final reduction circuit, and

three registers. The decomposed operand generation circuit

(Fig.5) is based on the outer-level KA scheme to produce the

low-order polynomials. The parallel systolic multiplier is used

to compute product of low-order decomposed polynomials

obtained from the inner-level KA scheme. The degree-

alignment circuit is used to perform the reconstruction function

to obtain product word according to the outer-level KA
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Fig. 5. Proposed scalable multiplier using 3-way KA.

TABLE II. THREE CONTROL TABLES

(a) S0 CONTROL TABLE

i s00 s01 s02

0 1 0 0

1 0 1 0

2 0 0 1

3 1 0 0

4 1 0 0

5 0 1 0

(b) S1 CONTROL TABLE

i s10 s11 s12

0 0 0 0

1 0 0 0

2 0 0 0

3 0 1 0

4 0 0 1

5 0 0 1

(c) S2 CONTROL TABLE

i s20 s21 s22 s23 s24

0 1 1 1 0 0

1 0 1 1 1 0

2 0 0 1 1 1

3 0 1 0 0 0

4 0 0 1 0 0

5 0 0 0 1 0

scheme. Two-level KA is used in one-step d-term KA to

develop our proposed scalable multiplier. Tables III and IV

show space and time complexities, respectively. In Table IV,

it is shown that, if we choose the d-term KA scheme, the

proposed architecture needs d2+d
2 partial products, while the

corresponding scalar multipliers [19], [20] require d2 partial

products. As the number of terms in KAs increases, the partial

products used in Fig. 3 could be reduced and hence the

hardware complexity of implementation could be reduced.

Therefore, the proposed multiplier can efficiently make a

trade-off between space and time complexities.

For pairing computation with the 128-bit security level, the

field GF (21223) constructed by the trinomial x1223+x255+1 is

used. We, therefore, choose this field to estimate critical-path,

TABLE IV. COMPARISON OF TIME COMPLEXITIES OF

MULTIPLIERS

Multipliers Latency critical path

[22] 2
√

m
d

TA + (log 2(d+ 1))TX

[20], [19] d2 + 2n− 2 TA + TX

[23] 2
⌈
m
d

⌉
TA + (log2 d)TX + TM

Fig.5 d2+d
2

+ t+ 4 TA + (log2(l) + 2)TX

Note:(1)wt =
⌈

m
d2l

⌉
, and d is the selected digit-size.

(2) TA, TX , and TM denote the propagation delays of a 2-input AND gate,
a 2-input XOR gate, and a 2× 1 MUX gate, respectively.

area complexity, and area-delay product of digit-serial/scalable

systolic multipliers. To make a fair comparison, we have used

the NanGate’s Library Creator and the 45-nm FreePDK Base

Kit from North Carolina State University (NCSU) [21] to

synthesize the proposed and the corresponding existing digit-

serial multipliers and obtained time and area complexities. As

shown in Table V, for digit-size d = 10, the area×delay

product (ADP) of our proposed architecture is significantly

lower than those of the existing multipliers. Amongst all

the existing digit-serial/scalable systolic multipliers, Lee’s

multiplier [22] has the minimum time-complexity. But as

shown in Table V, the proposed multiplier involves less area-

complexity and area-delay product (ADP) compared with

those of [22]. When the number of terms in outer-level

decomposition is increases, our proposed scalable multiplier

involves the lowest area-complexity amongst the digit-wise

systolic multipliers [20], [13], [22]. Therefore, our proposed

architecture can achieve a tradeoff between space and time

complexities.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

822

TABLE III. COMPARISON OF SPACE COMPLEXITIES OF MULTIPLIERS

Multipliers Basis structure #AND #XOR #MUX #Latch

[22] PB digit-serial m
√
m

√
md(2 +m) + d

√
m
d
(2m+ d− 1) + 2m

[20] Montgomery scalable n2 n2 + 3n− 1 n+ 2 2n2 + 5dn− 2d+ n

[19] DB scalable n2 n2 + 2n dn+ n 2n2 + 2dn+ 2d
[23] PB digit-serial md md+ 2d 2m 4m+ 3d+ 1

Fig.5 SPB scalable 2m+ n2

d2
S⊗ − 1

≈ 2m+ 2n+ d+ 2n
d
S⊕

+S⊗( 4n
d

+ n2

d2
) +H(Q)

4m 2m+ 3n+ (n
2

d2
+ (n

d
)1.5)S⊗

Note:(1) d is the selected digit-size, and is also the number of splitting terms. (2) n =
⌈
m
d

⌉
, S⊕ = d2−d

2
, and S⊗ = d2+d

2
. (3) H(Q) is the Hamming

weight of the reduction matrix Q for an irreducible polynomial.

TABLE V. COMPARISON OF VARIOUS DIGIT-

SERIAL/SCALABLE MULTIPLIERS OVER GF (21223)
IN TERMS OF LATENCY, TOTAL CRITICAL DELAY

TTCD(ns), AREA (μm2), AREA×DELAY PRODUCT

(ADP)(μm2)ns FOR DIGIT-SIZE d = 10

multipliers Latency TTCD area ADP

[22] 24 6.24 406,855 2,538,778

[20] 344 48.16 206,166 9,928,952

[19] 344 48.16 191,196 9,208,012

[23] 246 73.8 59,379 4,382,242

Fig.5 62 16.12 100,713 1,623,496

V. CONCLUSIONS

In this paper, we propose a new scalable systolic

SPB multiplier over GF (2m). We have derived a SPB

multiplication algorithm and its architecture to realize the

proposed scalable systolic multiplier. To explore the area-

time trade-off for large field arithmetic architectures, we

have used two-level Karatsuba schemes to implement the

scalable systolic multiplier over GF (21223). As the number

of terms in the Karatsuba method increases, it involves

significantly less area and ADP. The analytical results provide

a valuable reference for implementing pairing algorithm and

elliptic curve digital signature algorithm (ECDSA) in resource-

constrained embedded systems and smart phones. Moreover,

our proposed multiplier has regularity and modularity which

make it suitable of VLSI realization.
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