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Abstract—The literature reports a large number of approaches for 

measuring the similarity between protein sequences. Most of these 
approaches estimate this similarity using alignment-based techniques 
that do not necessarily yield biologically plausible results, for two 
reasons. 

First, for the case of non-alignable (i.e., not yet definitively aligned 
and biologically approved) sequences such as multi-domain, circular 
permutation and tandem repeat protein sequences, alignment-based 
approaches do not succeed in producing biologically plausible results. 
This is due to the nature of the alignment, which is based on the 
matching of subsequences in equivalent positions, while non-alignable 
proteins often have similar and conserved domains in non-equivalent 
positions. 

Second, the alignment-based approaches lead to similarity measures 
that depend heavily on the parameters set by the user for the alignment 
(e.g., gap penalties and substitution matrices). For easily alignable 
protein sequences, it's possible to supply a suitable combination of 
input parameters that allows such an approach to yield biologically 
plausible results. However, for difficult-to-align protein sequences, 
supplying different combinations of input parameters yields different 
results. Such variable results create ambiguities and complicate the 
similarity measurement task. 

To overcome these drawbacks, this paper describes a novel and 
effective approach for measuring the similarity between protein 
sequences, called SAF for Substitution and Alignment Free. Without 
resorting either to the alignment of protein sequences or to substitution 
relations between amino acids, SAF is able to efficiently detect the 
significant subsequences that best represent the intrinsic properties of 
protein sequences, those underlying the chronological dependencies of 
structural features and biochemical activities of protein sequences. 
Moreover, by using a new efficient subsequence matching scheme, 
SAF more efficiently handles protein sequences that contain similar 
structural features with significant meaning in chronologically 
non-equivalent positions. To show the effectiveness of SAF, extensive 
experiments were performed on protein datasets from different 
databases, and the results were compared with those obtained by 
several mainstream algorithms. 
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I. INTRODUCTION 
HE literature reports a large number of approaches 
developed for measuring the similarity between protein 

sequences. Prominent among these are alignment-based 
approaches, which, for a pair of protein sequences, find the best 
matching by inserting “gaps” in the appropriate positions, so 
that the positions from both sequences with identical or similar 
amino acids are aligned. The alignment-based approaches have 
a major drawback due to the fact that they are based on the 
matching of subsequences in chronological order. These 
approaches breakdown when applied to protein sequences 
comprising similar structural features (i.e., subsequences 
characterizing the intrinsic sequential nature of related protein 
sequences) that do not occur in the same chronological order, 
such as multi-domain, circular permutation, and tandem repeat 
proteins. In fact, protein sequences often have similar and 
conserved domains in non-equivalent positions when viewed in 
terms of primary structure, which makes them difficult to align 
and match in chronological order. However, these domains 
might well be in equivalent positions when viewed in terms of 
three-dimensional structure. Moreover, these approaches yield 
similarity measures that depend heavily on the “substitution 
matrix” used as well as the costs assigned by the user to the 
“opening gap” and the “extension gap”. This creates 
ambiguities and complicates the similarity measurement task, 
especially for sequences of significantly different length, and 
even more so when it comes to hard-to-align protein sequences. 

The literature also reports another type of approach that does 
not rely on alignment (for a review see [1]). Most of these 
approaches map protein sequences to vectors, for which Linear 
Algebra and Statistical Theory had useful analytical tools 
already available. These produced vectors are defined by the 
frequencies of the N-grams within the corresponding protein 
sequences. The N-grams are the set of all possible subsequences 
of a fixed length ܰ. However, the N-grams approach has a 
major drawback, because the value of the fixed length ܰ for 
collecting the subsequences from the protein sequences is set 
independently of the intrinsic structure of the sequences, such as 
their length and the distribution of the amino acids within them. 
Depending on the value of ܰ, this results in either the collection 
of subsequences constituting noise or the exclusion of 
significant subsequences. Moreover, all subsequences of length 
ܰ are collected without distinguishing between significant and 
non-significant subsequences, which increases the probability 
of collecting a number of noise motifs. 
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In the aim of overcoming the drawbacks cited above, a novel 
and original approach for measuring the similarity between 
protein sequences named SAF is proposed. 

Without resorting either to the alignment of protein 
sequences or to substitution relations between amino acids, 
SAF allows us to extract hidden relations between protein 
sequences, by capturing structural and chronological 
dependencies using global information extracted from a large 
number of sequences rather than merely comparing pairs of 
sequences. SAF detects and makes use of the significant 
subsequences underlying the chronological dependencies of the 
structural features that can reveal biochemical properties shared 
between protein sequences, by filtering out noise through the 
collection of the significant patterns (i.e., subsequences) that 
best represent the intrinsic structural properties of protein 
sequences and by discarding those patterns that occur by chance 
and merely noise. 

In addition, SAF allows us to measure similarity in a way that 
more adequately reflects the structural and biochemical 
relationships between the protein sequences, and yields a linear 
worst-case computational cost with respect to sequence length. 
Moreover, by taking advantage of an efficient subsequence 
matching scheme, SAF simultaneously addresses the “within” 
chronological order and the “between” non-chronological order 
of the structural features. This makes it possible to handle 
protein sequences containing similar structural features with 
significant meaning in non-equivalent positions, such as 
multi-domain, circular permutation, and tandem repeat protein 
sequences.  

SAF constitutes an effective method for measuring the 
similarity between protein sequences. To show this, extensive 
experiments on different types of proteins from different 
databases were performed. Furthermore, the obtained results 
were compared with those obtained by different mainstream 
approaches. Experiments on these types of sequences have 
shown that the patterns used in SAF are more significant in 
terms of representing the biochemical properties of protein 
sequences. 

II. SAF OVERVIEW 
By applying a new pairwise sequence matching scheme, FAS 

extracts from a set of protein sequences a set of patterns with 
significant meaning, and filters out noise patterns. This is done 
by looking at each pair of sequences for shared identical 
patterns, as well as those that are slightly different, known as 
“Paronyms” and “Cognates”. In natural language text, 
paronyms such as “affect” and “effect” are words that are related 
and derive from the same root, while cognates such as “shirt” 
and “skirt” are words that have a common origin. Taking into 
account identical patterns, paronyms and cognates makes it 
possible to improve the extraction of significant patterns. 

Following the extraction of significant patterns, the N-grams 
algorithm is applied on the set of collected patterns obtained 
from the pairwise sequence matching, instead of on the original 
input protein sequences. Then, by performing spectral 
decomposition, the sequences are mapped onto a new vector 
space of reduced dimension, in which each sequence is 

represented by a vector. Finally, the similarity between different 
sequences is computed by applying the cosine distance between 
the corresponding vectors. The development of this idea is 
shown in the next sections. 

III. THE MAIN IDEA OF FAS 
Very often, in natural language text processing [2], methods 

such as Latent Semantic Analysis are used to extract hidden 
relations between documents by capturing semantic relations, 
using global information extracted from a large number of 
documents, rather than merely comparing pairs of documents. 
These methods usually make use of a word-document matrix 
ܶሺܹ ൈ  ሻ, in which rows correspond to words and columnsܮ
correspond to documents, where ܹ is the number of possible 
words and ܮ  is the number of documents. The term ௜ܶ,௝ 
represents the occurrence of word ݅ in document ݆. Although 
protein sequences do not contain distinctive patterns like words 
in natural language text, protein sequence analysis is in many 
respects similar to natural language text analysis. However, the 
challenge is to be able to identify those patterns that map to a 
specific meaning in terms of sequence structure and distinguish 
significant patterns from patterns resulting from random 
phenomena. 

Similar to the use of a word-document matrix to extract the 
hidden relations between documents in natural language text, a 
pattern-sequence matrix is used on protein sequences to extract 
the hidden relations between these sequences. This will be done 
by capturing structural relations, using global information 
extracted from a large number of sequences, rather than merely 
comparing pairs of sequences. Henceforth, the pattern-sequence 
matrix ܶሺܹ ൈ  ሻ is used, in which the term ௜ܶ,௝ represents theܮ
frequency of pattern ݅ in sequence ݆, while ܹ is the number of 
possible patterns, and ܮ  is the number of sequences. The 
significant patterns used to construct ܶ  are detected and 
collected using the matching approach described in the next 
section. 

IV. SIGNIFICANT PATTERNS 
In the work described here, a significant pattern is obtained 

from the matching of a pair of sequences. Let ܨ be a set of 
protein sequences, from which ܺ and ܻ are a pair of sequences. 
Let ݔ and ݕ be a pair of subsequences belonging respectively to 
ܺ  and ܻ . Here, the symbols ݔ  and ݕ  are simply used as 
variables: they represent any subsequence belonging to the 
sequences ܺ and ܻ, respectively. 

Now, the set of significant patterns are detected and collected 
by building a matching set ܧ௑,௒. This is performed by collecting 
all the possible pairs of subsequences ݔ and ݕ that satisfy the 
following conditions: 
 

௑,௒ܧ ൌ

ە
ۖ
۔

ۖ
ۓ

,ݔ ݕ ተተ

|ݔ| ൌ |ݕ|
ݔ| ת |ݕ ൒ ௑ܰ,௒
ݔ| ך |ݕ ൑ ௑ܰ,௒

,ᇱݔ׊ ᇱݕ א ௑,௒ܧ ֜ ሺݔ ف ݕሺڀᇱሻݔ ف ᇱሻۙݕ
ۖ
ۘ

ۖ
ۗ

           ሺ1ሻ 

 
The symbols ݔԢ and ݕԢ in (1) are simply used as variables, in 

the same way as ݔ and ݕ. The expression ሺ. .ف ሻ means that the 
element to the left of the symbol ف is not included in the one to 
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the right, either in terms of the composition of the patterns or in 
terms of their respective positions in their sequence. The 
parameter ௑ܰ,௒  is used to represent the minimum number of 
matched positions with similar amino acids between ݔ and ݕ, at 
the same time, ௑ܰ,௒  is also used to represent the maximum 
number of matched positions with different amino acids 
allowed. A detailed discussion on the choice of ௑ܰ,௒ is provided 
in the next section. Here are a few explanations about the 
previous formula: 

|ݔ| .1 ൌ  .have the same length ݕ and ݔ means that :|ݕ|
ݔ| .2 ת |ݕ ൒ ௑ܰ,௒: means that ݔ and ݕ include at least ௑ܰ,௒ 

matched positions with similar amino acids. 
ݔ| .3 ך |ݕ ൑ ௑ܰ,௒: means that ݔ and ݕ include at most ௑ܰ,௒ 

matched positions with different amino acids. 
,Ԣݔ׊ .4 Ԣݕ א ௑,௒ܧ ֜ ሺݔ ف ݕሺڀԢሻݔ ف Ԣሻݕ : means that, for 

any pair of matched subsequences ݔԢ and ݕԢ belonging 
to ܧ௑,௒, at least one of ݔ or ݕ is not included in ݔԢ or ݕԢ, 
respectively, either in terms of their compositions or in 
terms of their respective positions in their corresponding 
sequences according to the partial order induced by set 
inclusion. 

By looking for similar patterns in ܺ and ܻ, the aim of the 
matching set ܧ௑,௒ is to capture shared information between ܺ 
and ܻ related to their intrinsic structural features that manifest 
certain chronological dependencies. At the same time, by taking 
into account multiple occurrences of patterns in non-equivalent 
positions, the matching set ܧ௑,௒ seeks to capture the structural 
features in non-chronological order. In fact, with this formula, 
௑,௒ܧ  captures pairs of patterns ݔ  and ݕ  that show a “within” 
chronological similarity, even if they are in non-chronological 
order according to their respective positions within the 
sequences ܺ and ܻ. The choice of the length ௑ܰ,௒ is described 
in the next section. 

V. LENGTH OF SIGNIFICANT PATTERNS 
Our aim is to detect and make use of the significant patterns 

best representing the natural structure of protein sequences and 
to minimize the influence of those patterns that occur by chance 
and represent only noise. This motivates one of the major 
statistical features of our similarity measure, the inclusion of all 
long similar patterns (i.e., multiple occurrences) in the 
matching, since it is well known that the longer the patterns, the 
smaller the chance of their being identical by chance, and vice 
versa. For each pair of compared sequences ܺ  and ܻ , the 
statistical theory developed by Karlin et al. [3] is used. This 
very useful theory makes possible calculating the expected 
length of the longest common pattern (i.e., subsequence) 
present by chance at least a number of times out of a set of 
sequences made up of a given number of categories (i.e., 
݉-letters alphabet). 

This theory is used in this paper to calculate the minimum 
length of matched significant patterns, which is the value to be 
assigned to ௑ܰ,௒. 

According to the theorem 1 developed by Karlin et al. [3], the 
expected length ܭ௑,௒ of the longest common pattern present by 
chance at least 2 times out of 2 ݉-letters ܺ and ܻ (i.e., here 
݉=20), is calculated as follows: 
 

௑,௒ܭ ൌ
ሺ|ܺ|ଶ݃݋݈ ൅ |ܻ|ଶሻ ൅ ݃݋݈ ௑,௒൫1ߣ െ ௑,௒൯ߣ ൅ 0.57

െ ݃݋݈ ௑,௒ߣ
           ሺ2ሻ 

 

௑,௒ߣ ൌ ݔܽ݉ ൭෍൫݌௜
௑൯ଶ

௠

௜ୀଵ

, ෍൫݌௜
௒൯ଶ

௠

௜ୀଵ

൱                            ሺ3ሻ 

 
௑,௒ߪ ൎ

1.28
ห݈݃݋ ௑,௒หߣ

                                              ሺ4ሻ 

 
Here, ݌௜

௑ and ݌௜
௒ are generally the ݅௧௛ amino acid frequency 

of the observed ܺ and ܻ sequences respectively, while ߪ௑,௒ is 
the asymptotic standard deviation of ܭ௑,௒. 

According to the conservative criterion proposed by Karlin et 
al. [3], for a pair of sequences ܺ and ܻ, a pattern observed 2 
times is designated statistically significant if it has a length that 
exceeds ܭ௑,௒  by at least two standard deviations. Thus, in 
building the matching set ܧ௑,௒, all the common patterns that 
satisfy this criterion are extracted. This means that, for the pair 
of sequences ܺ and ܻ, a specific and appropriate value of ௑ܰ,௒ 
is calculated such that ௑ܰ,௒ ൌ ௑,௒ܭ ൅ ௑,௒ߪ2 . This criterion 
guarantees that a matched pattern designated as statistically 
significant has probability less than a 1/100 probability of 
occurring by chance. 

VI. THE PATTERN SEQUENCE MATRIX 
Let ܨ be a set of protein sequences, among which ܺ and ܻ 

are two different sequences for which ௑ܰ,௒  is the minimum 
length of the significant patterns, and ܧ௑,௒ is the set of collected 
pairs of significant patterns. Let ܧ  be the set of all possible 
matching sets, such that: 
 

ܧ ൌ ራ ௑,௒ܧ
௑,௒ؿி

                                             ሺ5ሻ 

 
And 

 
ܰ௠௜௡ ൌ ݉݅݊

௑,௒ؿி ௑ܰ,௒                                           ሺ6ሻ 

 
Now, to compute the pattern-sequence matrix ܶ , all the 

Nmin-grams from each significant pattern included in ܧ  are 
collected. Thus, for a set of sequences made up of ݉ possible 
amino acids, a maximum of ݉ே೘೔೙  possible Nmin-grams (i.e., 
݉=20 amino acids) could be obtained. 

Let ܧ௑ be the subset of all possible matching sets involving 
the protein sequence ܺ, such that: 
 

௑ܧ ൌ ራ ௑,௒ܧ
௒ؿி

                                            ሺ7ሻ 

 
The value of the term ௜ܶ,௑  (initially set to zero) representing 

the intersection of row ݅௧௛ with the column corresponding to the 
sequence ܺ, is simply augmented by the occurrence of the ݅௧௛ 
collected Nmin-grams belonging to the subset ܧ௑. 

After building the matrix ܶ, all the rows corresponding to 
Nmin-grams that exist at most in only one sequence are removed. 
In our experiments, the number of remaining rows ܹ is found 
to be much smaller than ݉ே೘೔೙ (i.e., ا ݉ே೘೔೙  ). This property 
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is very important for the next section. 
The most important advantage of this new sophisticated 

approach is that each member of the set of protein sequences 
contributes to the capture of structural features and 
chronological dependencies of all other sequences in the set. 
And the more often a pattern is present in the sequences, the 
more heavily it is represented in the pattern-sequence matrix ܶ. 
Moreover, the matrix ܶ is filled by using only the Nmin-grams 
corresponding to the collected significant patterns, not all the 
N-grams as in the classical approach. 

VII. SPECTRAL DECOMPOSITION 
In the pattern-sequence matrix ܶ, each sequence is expressed 

as a column vector and each pattern as a row vector. This 
representation is known as a vector space model. The sequences 
represented in this way are seen as points in the 
multidimensional space spanned by patterns. However, this 
representation does not recognize related patterns or sequences 
and the dimensions are too large [4]. To take advantage of this 
representation, the theorem of spectral decomposition in linear 
algebra will be utilized, which states that any ܹ ൈ  ܶ matrix ܮ
with total rank ܴ, whose number of rows ܹ is greater than or 
equal to its number of columns ܮ can be written as the product 
of an ܴ ൈ ܮ  column orthogonal matrix ܷ , an ܮ ൈ ܮ  diagonal 
matrix ߑ with non-negative elements, which are the singular 
values, and the transpose of an ܮ ൈ  .ܸ row orthogonal matrix ܮ
This decomposition is named the singular value decomposition 
(SVD). The matrix ܶ can be written as follows: 
 

ܶ ൌ ܷ ൈ ߑ ൈ ்ܸ                                              ሺ8ሻ 
 

VIII. SIMILARITY MEASURE 
According to the singular value decomposition theory [2], 

the sequences expressed as column vectors in the matrix ܶ are 
projected via the spectral decomposition onto a new 
multidimensional space of reduced dimension ܮ spanned by the 
column vectors of the matrix ்ܸ . The representation of the 
sequences in the new ܮ-dimension space corresponds to the 
column vectors of the ܮ ൈ ߑ matrix ܮ ൈ ்ܸ. Now, the similarity 
measure ܵ௑,௒ between the pair of sequences ܺ and ܻ, is simply 
computed by using the cosine product of their corresponding 
column vectors in the matrix ߑ ൈ ்ܸ. 

IX. TIME COMPLEXITY 
At the stage of collecting the significant patterns, the fast 

string matching approach developed by Amir et al. [5] is used, 
which allows us to find all the locations of any pattern from a 
protein sequence ܺ  in a protein sequence ܻ  in time 
ܱ൫|ܻ|ඥ ௑ܰ,௒ log ௑ܰ,௒൯. 

For the singular value decomposition, the fast, incremental, 
low-memory and large-matrix SVD algorithm recently 
developed by Brand [6] is used, which allows performance of 
the SVD for a ܴ rank matrix ܹ ൈ  the SVD can be performed ,ܮ
in ܱሺܹܴܮሻ time with ܴ ൑ ඥ݉݅݊ሺܹ,  .ሻܮ

X. EXPERIMENTS 
To evaluate the performance of our new similarity measure 

approach on both easy-to-align and hard-to-align protein 
sequences, SAF was tested on a variety of protein datasets from 
different databases, in the aim to assess its discrimination power 
between proteins with different biochemical activities. 
Furthermore, the obtained results were compared with those 
obtained by various mainstream algorithms from two types of 
approaches. 

The first type are the alignment-based approaches, for 
instance the widely used algorithms BLAST [7], which detects 
isolated regions of similarity by making use of high-scoring 
segment pairs; FASTA [8], which employs exact matches as 
seeds, known as ݇ -tuples, which are used to build local 
alignments to capture the similarities; and CLUSTAL [9], 
which calculates the global best match between protein 
sequences and lines them up so that the similarities can be 
captured. Also the recent algorithm Scoredist introduced by 
Sonnhammer et al. [10] was used in our experiments, which 
makes use a logarithmic correction of observed divergence 
based on the alignment score according to substitution scores. 

The second type are the alignment-free approaches; for 
instance SMS, introduced by Kelil et al. [11], based on a strict 
matching scheme that captures the most significant patterns in 
chronological and non-chronological order; tSMS introduced 
by Kelil et al. [12]; which is an improved version of SMS that 
allows mismatches; and the approach introduced by Wu et al. 
[13], based on short patterns used analogously to the index 
terms in information retrieval; and the one introduced by 
Bogan-Marta et al. [14], based on the cross-entropy measure 
applied over the collected N-grams patterns with a fixed length 
value ܰ. 

To evaluate the quality of the results obtained, the 
well-known Receiver Operating Characteristic method was 
used, known also as the ROC Curve. This method allows us to 
evaluate the discriminative power of each of the similarity 
measure approaches studied in our experiments. The ROC 

 
Fig. 1 ROC Curve 
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Curve makes it possible to quantify the Quality Index of the 
similarity measures obtained between a sequence ܺ and all the 
sequences in a set ܨ, by making use of the known classification 
of ܺ in ܨ. Below, a brief description of how the Quality Index is 
computed. 

After sorting the sequences belonging to ܨ according to the 
decreasing order of their similarities with the sequence ܺ, and 
by considering the subset of sequences belonging to ܨ that have 
the same biochemical activity of ܺ as “true positives”, and the 
remaining sequence as “false positives”, the ROC Curve can be 
represented by plotting the fraction of true positives rate vs. the 
fraction of false positives rate. A plotted point in this curve with 
the coordinates (ݍ,݌) (i.e., see Fig. 1) means that the subset of 
sequences from the sorted set ܨ that includes the first ݌ percent 
of true positives, includes also ݍ percent of false positives. The 
best possible similarity measures of ܺ with the sequences in ܨ, 
would yield a point near the upper left corner of the ROC space, 
representing 100% sensitivity, corresponding to 1.0=݌ (i.e., all 
sequences from the same class of ܺ have the highest similarity 
measures) and 100% specificity, corresponding to 0.0=ݍ (i.e., 
all sequences from different classes of ܺ  have the lowest 
similarity measures). In our experiments the value of the area 
under the ROC curve is defined as the Quality Index of the 
similarity measures obtained with a given protein sequence ܺ, 
since the larger this area is, the greater the discriminative power 
of the similarity measure. 

A. Easy-to-Align Protein Sequences 
To illustrate the effectiveness of our new approach in 

measuring the similarity between easy-to-align protein 
sequences according to their functional annotations and 
biological classifications, extensive tests were performed on the 
widely known databases including the well-aligned protein 
sequences COG [15], KOG [15] and PC [16]. The six randomly 
generated subsets [12] from each database were used: C1 to C6 
from the COG database, containing 509, 448, 546, 355, 508, 
and 509 protein sequences, respectively; K1 to K6 from the 
KOG database, containing 317, 419, 383, 458, 480, and 388 
sequences; and P1 to P6 from the PC database, containing 538, 
392, 442, 595, 561, and 427 sequences. Each generated subset 
includes non-orphan protein sequences (i.e., each sequence has 
at least one sequence from the same biochemical activity) with 
at least 20 biochemical activities. 

To evaluate our new similarity measure approach efficiently, 
all-against-all similarity measures of the protein sequences 
within each generated subset were computed. Then, the Quality 
Index for each protein sequence was evaluated. Finally, the 
“Mean” and the “Standard Deviation” of all the Quality Indexes 
obtained for each generated subset were computed. Below, the 
results obtained for the different generated subsets are reported 
with support from the literature and functional annotations. 

In TABLE I, TABLE II, and TABLE III the results obtained 
by each algorithm on each protein subset are summarize. Each 
table shows the Quality Index average (i.e., “Q” row) and the 
Standard Deviation (i.e., “S” row) obtained by each approach 
(i.e., column) for each subset of protein sequences (i.e., row). 
The last row in each table contains the Quality Index average 
and the Standard Deviation obtained by each approach with all 
the generated subsets. 

The results, illustrated in TABLE I, TABLE II, and TABLE 
III, show that tSMS obtained the best Quality Indexes on all 
generated subsets. The results with tSMS are closely followed 
by those obtained by SAF and SMS, and a bit farther behind 
those obtained by Scoredist and CLUSTAL followed by those 
of the approaches developed by Wu et al. [13] and Bogan-Marta 

TABLE I 
SIMILARITY MEASURE QUALITY ON COG DATABASE 

Set 
 

SAF 
Alignment-based Alignment-free 

BLAST FASTA CLUSTAL Scoredist tSMS SMS Wu Bogan

C1 
Q 0.96 0.70 0.72 0.91 0.93 0.97 0.93 0.78 0.84 
S 0.01 0.06 0.11 0.06 0.03 0.01 0.05 0.07 0.04 

C2 
Q 0.95 0.61 0.67 0.89 0.94 0.96 0.95 0.84 0.88 
S 0.01 0.06 0.22 0.03 0.04 0.02 0.04 0.13 0.09 

C3 
Q 0.91 0.77 0.78 0.87 0.88 0.98 0.95 0.88 0.82 
S 0.02 0.02 0.05 0.03 0.10 0.01 0.03 0.06 0.04 

C4 
Q 0.93 0.74 0.73 0.85 0.87 0.98 0.89 0.77 0.82 
S 0.04 0.05 0.13 0.12 0.03 0.01 0.06 0.04 0.04 

C5 
Q 0.92 0.60 0.68 0.90 0.95 0.95 0.93 0.81 0.84 
S 0.05 0.16 0.22 0.04 0.01 0.03 0.05 0.02 0.07 

C6 
Q 0.94 0.68 0.75 0.92 0.94 0.97 0.95 0.77 0.86 
S 0.04 0.28 0.09 0.02 0.05 0.01 0.03 0.04 0.03 

Av. 
Q 0.94 0.68 0.72 0.89 0.92 0.97 0.93 0.81 0.84 
S 0.03 0.11 0.14 0.05 0.04 0.02 0.04 0.06 0.05 

 
TABLE II 

SIMILARITY MEASURE QUALITY ON KOG DATABASE 

Set 
 

SAF 
Alignment-based Alignment-free 

BLAST FASTA CLUSTAL Scoredist tSMS SMS Wu Bogan

K1 
Q 0.91 0.65 0.69 0.85 0.88 0.92 0.91 0.68 0.66 
S 0.04 0.26 0.17 0.06 0.09 0.02 0.07 0.16 0.17 

K2 
Q 0.91 0.55 0.61 0.88 0.90 0.94 0.91 0.67 0.71 
S 0.04 0.19 0.23 0.02 0.04 0.02 0.08 0.11 0.12 

K3 
Q 0.92 0.58 0.67 0.91 0.92 0.96 0.93 0.74 0.69 
S 0.01 0.29 0.12 0.05 0.08 0.04 0.04 0.12 0.16 

K4 
Q 0.86 0.54 0.63 0.79 0.80 0.92 0.86 0.62 0.61 
S 0.06 0.41 0.16 0.04 0.08 0.05 0.04 0.21 0.13 

K5 
Q 0.88 0.70 0.71 0.72 0.76 0.94 0.84 0.68 0.71 
S 0.10 0.10 0.11 0.01 0.08 0.03 0.11 0.13 0.07 

K6 
Q 0.88 0.75 0.76 0.74 0.79 0.91 0.84 0.58 0.69 
S 0.10 0.03 0.20 0.10 0.03 0.04 0.10 0.13 0.08 

Av. 
Q 0.89 0.63 0.68 0.82 0.84 0.93 0.88 0.66 0.68 
S 0.06 0.21 0.17 0.05 0.07 0.03 0.07 0.14 0.12 

 
TABLE III 

SIMILARITY MEASURE QUALITY ON PC DATABASE 

Set 
 

SAF 
Alignment-based Alignment-free 

BLAST FASTA CLUSTAL Scoredist tSMS SMS Wu Bogan

P1 
Q 0.94 0.78 0.78 0.89 0.92 0.96 0.93 0.81 0.76 
S 0.04 0.14 0.04 0.10 0.06 0.02 0.02 0.09 0.07 

P2 
Q 0.95 0.76 0.81 0.84 0.89 0.98 0.92 0.90 0.79 
S 0.02 0.11 0.12 0.03 0.05 0.01 0.03 0.02 0.12 

P3 
Q 0.93 0.62 0.65 0.88 0.91 0.95 0.94 0.68 0.83 
S 0.03 0.16 0.10 0.05 0.02 0.04 0.05 0.03 0.11 

P4 
Q 0.94 0.79 0.80 0.81 0.87 0.95 0.91 0.80 0.80 
S 0.05 0.14 0.06 0.14 0.07 0.05 0.04 0.03 0.06 

P5 
Q 0.93 0.73 0.77 0.83 0.85 0.95 0.92 0.79 0.78 
S 0.04 0.13 0.12 0.09 0.12 0.01 0.03 0.10 0.17 

P6 
Q 0.91 0.80 0.81 0.90 0.94 0.98 0.94 0.87 0.93 
S 0.02 0.18 0.15 0.05 0.02 0.01 0.01 0.13 0.03 

Av. 
Q 0.93 0.75 0.77 0.86 0.90 0.96 0.93 0.81 0.82 
S 0.03 0.14 0.10 0.08 0.06 0.02 0.03 0.07 0.09 
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et al. [14], while BLAST and FASTA obtained the weakest 
results. These results warrant further comments. 

First, among alignment-based approaches, Scoredist and 
CLUSTAL obtained better Quality Indexes (slightly better with 
Scoredist, since in our experiments the alignment generated by 
CLUSTAL for each test is used as the input alignment for the 
Scoredist algorithm, which allowed Scoredist to improve on the 
results already obtained by CLUSTAL). FASTA and BLAST 
obtain less significant Quality Indexes, since both of them are 
approximate and simplified alignment approaches, which allow 
them to run much faster than a conventional alignment-based 
algorithm at the cost of some sensitivity. 

Second, among the alignment-free approaches, tSMS, FAS, 
and SMS obtained better results over all generated subsets, with 
a small relative advantage for tSMS. We believe strongly this is 
due to the fact that, apart from the approach proposed in this 
paper, tSMS and SMS are the only algorithms among those used 
here that significantly address the non-chronological order of 
structural features of protein sequences. However, tSMS and 
SMS need a substitution matrix as input parameter, to decide 
which amino acids should be matched and compute the weights 
of the significant patterns. In our experiments, the results 
obtained by tSMS and SMS were made possible by the use of 
the substitution matrix that maximizes the quality measure for 
each test. This means that one needs prior knowledge about the 
classes of the protein sequences in order to choose the 
appropriate matrix for tSMS and SMS. This is the very reason 
why SAF is proposed in this paper: SAF does not depend on the 
use of a substitution matrix or any other input parameter. 

B. Hard-to-Align Protein Sequences 
To show the performance of our new similarity measure with 

multi-domain protein sequences which are known to be 
hard-to-align and have not yet been definitively aligned, 
experimental tests were performed on the 33 (α/β)8-barrel 
proteins studied recently by Côté et al. [17] and Fukamizo et al. 
[18], which form a group in “Glycoside Hydrolases” family 2 
(GH2) from the “Carbohydrate Active Enzymes” database 
(CAZy) [19]. The periodic character of the catalytic module 
known as “(α/β)8-barrel” makes these sequences hard to align 
using classical alignment approaches. The difficulties in 
aligning these modules are comparable to the problems 
encountered with the alignment of tandem repeats. Another 
reason for the difficulty of aligning these proteins is that these 
sequences are multi-modular, with various types of modules. 
The problems encountered with aligning tandem repeat and 
multi-modular protein sequences have been exhaustively 
discussed by Higgins [20]. This group of 33 protein sequences 
includes ‘β-galactosidase’, ‘β-mannosidase’, ‘β-glucuronidase’ 
and ‘exo-β-D-glucosaminidase’ enzymatic activities, all 
extensively studied at the biochemical level. The database 
names and entries of the 33 (α/β)8-barrel group are indicated in 
[21]. 

To be able to evaluate efficiently our new similarity measure 
approach, all-against-all similarity measures of the 33 
(α/β)8-barrel proteins were computed, then the Quality Index for 
each protein sequence were evaluated. Below, the results 
obtained for the different protein sequences are reported with 
support from the literature and functional annotations. 

The TABLE IV shows the Quality Index obtained by each 

algorithm (i.e., column) for each protein sequence (i.e., row). 
The last row contains the Quality Index average obtained by 
each approach on the 33 proteins group. SAF and tSMS 
obtained the best Quality Indexes over all protein sequences. 
For all protein sequences, they obtained 100% sensitivity, 
meaning that they assigned all proteins from the same 
biochemical classification the highest similarity measures, and 
100% specificity, which means they assigned all proteins from 
different biochemical classifications the lowest similarity 
measures. The other approaches tested obtained less significant 
Quality Indexes. The results warrant further comments. 

As in the previous experiment, BLAST and FASTA obtained 
the less significant Quality Indexes. However, unlike the 
previous experiment, Scoredist and CLUSTAL obtained 
relatively close results comparable with those obtained by the 
alignment-free approaches developed by Wu et al. [13] and 
Bogan-Marta et al. [14], with a relatively small advantage to the 
latter. This can be explained by the fact that, in this experiment, 
the (α/β)8-barrel protein group used as benchmark contains 

TABLE IV 
SIMILARITY MEASURE QUALITY ON 33(ߚ/ߙ)8 BARREL GROUP 

Protein
 Alignment-based Alignment-free 

SAF BLAST FASTA CLUSTAL Scoredist tSMS SMS Wu Bogan

UnA 1.00 0.67 0.81 0.95 0.97 1.00 0.93 0.92 0.99 
UnBv 1.00 0.65 0.79 0.83 0.90 1.00 0.94 0.89 0.97 
UnBc 1.00 0.57 0.76 0.98 0.98 1.00 0.94 0.98 1.00 
UnBm 1.00 0.54 0.71 0.89 0.91 1.00 0.96 0.90 0.97 
UnBp 1.00 0.56 0.74 0.84 0.90 1.00 0.97 0.98 0.96 
UnR 1.00 0.63 0.63 0.98 0.98 1.00 0.98 0.97 0.91 
MaA 1.00 0.55 0.60 0.92 0.96 1.00 0.91 0.99 1.00 
MaB 1.00 0.77 0.75 0.89 0.95 1.00 0.83 0.94 1.00 
MaH 1.00 0.63 0.64 0.90 0.94 1.00 0.84 0.92 0.99 
MaM 1.00 0.65 0.66 0.93 0.95 1.00 1.00 0.96 0.93 
MaC 1.00 0.77 0.81 0.87 0.90 1.00 1.00 0.97 0.95 
MaT 1.00 0.66 0.61 0.98 0.98 1.00 1.00 0.95 0.98 
GIC 1.00 0.76 0.71 0.98 0.98 1.00 1.00 0.97 0.95 
GIE 1.00 0.63 0.77 0.99 0.99 1.00 1.00 0.92 0.93 
GIH 1.00 0.64 0.81 0.92 0.93 1.00 1.00 0.95 1.00 
GIL 1.00 0.78 0.71 0.97 0.99 1.00 1.00 0.90 1.00 
GIM 1.00 0.72 0.70 0.96 0.99 1.00 1.00 0.92 0.99 
GIF 1.00 0.62 0.74 0.90 0.97 1.00 1.00 0.92 0.96 
GIS 1.00 0.61 0.74 0.96 0.99 1.00 1.00 0.93 0.91 

GaEco 1.00 0.66 0.70 0.96 0.96 1.00 1.00 0.97 0.99 
GaA 1.00 0.77 0.78 0.99 1.00 1.00 1.00 0.94 0.90 
GaK 1.00 0.56 0.63 0.94 0.97 1.00 1.00 0.96 0.95 
GaC 1.00 0.55 0.76 0.91 0.96 1.00 1.00 0.89 0.92 

GaEcl 1.00 0.78 0.59 0.96 0.99 1.00 1.00 0.97 0.92 
GaL 1.00 0.63 0.80 0.92 0.99 1.00 1.00 0.97 0.94 
CsAo 1.00 0.55 0.62 0.99 0.99 1.00 1.00 0.91 0.93 
CsS 1.00 0.58 0.81 0.90 0.92 1.00 1.00 0.94 0.97 
CsG 1.00 0.62 0.80 0.93 0.96 1.00 1.00 0.93 0.99 
CsM 1.00 0.70 0.80 0.94 0.97 1.00 1.00 0.92 0.96 
CsN 1.00 0.68 0.72 0.86 0.87 1.00 1.00 0.92 0.99 
CsAn 1.00 0.76 0.64 0.93 0.98 1.00 1.00 0.96 0.95 
CsH 1.00 0.67 0.72 0.95 0.96 1.00 1.00 0.96 0.99 
CsE 1.00 0.76 0.77 0.94 0.99 1.00 1.00 0.90 0.91 
Av. 1.00 0.66 0.72 0.93 0.95 1.00 0.97 0.94 0.96 
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sequences for which the alignment causes difficulties for 
classical alignment-based approaches such as CLUSTAL. This 
shows the clear advantage of the alignment-free approaches 
compared to alignment-based approaches. 

The comment in the first experiment about the use of a 
substitution matrix by tSMS and SMS also applies for this 
experiment. 

C. Circular Permutation Protein Sequences 
In a protein’s structure, the positions of certain amino acids in 

the primary structure could be rearranged such that the ܰ 
terminal and ܥ  terminal regions are swapped. The 
three-dimensional structure remains almost unaffected by the 
permutation, and the native structure and biological function are 
usually retained. Protein sequences that have been subjected to 
this type of transformation may escape detection from 
biochemical activity prediction algorithms based on sequence 
alignment alone. Moreover, alignment-based approaches for 
measuring the similarity of protein sequences breakdown when 
handling sequences of this type. For more details see [22]. 

In this experiment, our new approach were evaluated on 
selected three pairs of well-characterized protein sequences 
previously identified as circular permuted: H1B_PLADU and 
H11_BOVIN, known as Histones; LEC_BOWMI and 
LECA_DIOGR, known as Lectins; and GUN2_THEFU and 
GUNA_CELFI, known as β-Glucanases. For more details see 
[23]. 

To evaluate the different approaches efficiently, the 
similarity measure between each of the selected circular 
permuted protein sequences were computed with all the 6 
863 213 proteins included in “nr database” version of august 9th 
2008, the non-redundant protein database maintained by NCBI 
[24] as a target for BLAST search services. Before performing 
this test, of course the selected protein sequences were verified 
if they really exist in this database. The quality of the results is 
evaluated using the method described below. 

Let ܺ and ܻ be a pair of circular permuted protein sequences 
with similar biochemical activities. The quality of the similarity 
measures ܳ௑

௒  obtained between the sequence ܺ  and all the 
sequences in the nr database, in terms of ܻ , is defined as 
follows: 
 

ܳ௑
௒ ൌ ௓ܰୀ௑,௒

௒

௓ܰୀ௑,௒
௒ ൅ ௓ܰஷ௑,௒

௒                                        ሺ9ሻ 

 
With, 

 

௓ܰୀ௑,௒
௒ ൌ หܼ׊ א หܵ௑,௓ݎ݊ ൐ ܵ௑,௒;  ܼ ൌ ܺ, ܻห                ሺ10ሻ 

 

௓ܰஷ௑,௒
௒ ൌ หܼ׊ א หܵ௑,௓ݎ݊ ൐ ܵ௑,௒;  ܼ ് ܺ, ܻห                ሺ11ሻ 

 
Here are a few explanations about the previous formulas: 
1. ܼ ൌ ܺ, ܻ : Means that the sequence ܼ  has similar 

biochemical activity of the sequences ܺ and ܻ. 
2. ܼ ് ܺ, ܻ : Means that the sequence ܼ  has different 

biochemical activity of the sequences ܺ and ܻ. 
3. ௜ܵ,௝: Defines merely the similarity measure between the 

sequences ݅ and ݆. 
4. ௓ܰୀ௑,௒

௒ : Defines the number of sequences from the nr 
database that have the same biochemical activities of ܺ 
and ܻ, and more similar to ܺ than is ܻ. 

5. ௓ܰஷ௑,௒
௒ : Defines the number of sequences from the nr 

database that have different biochemical activities of ܺ 
and ܻ, and more similar to ܺ than is ܻ. 

In the computing of the ܳ௑
௒ only well-characterized protein 

sequences were considered in the previous formulas. 
This quality measure aims to assess the discrimination power 

of the similarity measure by looking for the sequences that are 
more similar to ܺ than is ܻ, and have a different biochemical 
activities of ܺ and ܻ. In other words, Less the number of these 
sequences larger the quality of the similarity is, and vice-versa. 

In TABLE V, the quality of the similarity measures obtained 
by each algorithm tested (i.e., column) on each selected protein 
sequence (i.e., row) is shown. The last row contains the quality 
average obtained by each approach. The table shows that SAF 
and tSMS obtained the best quality results on all protein 
sequences, closely followed by SMS, and a bit farther behind 
the approaches developed by Wu et al. [13] and Bogan-Marta et 
al. [14]. The alignment-based approaches obtained less 
significant results. These results also warrant further comments. 

First, unlike the previous experiment, CLUSTAL obtained 
less significant results than the alignment-free approaches 
tested. Here, the results obtained by CLUSTAL are relatively 
comparable to those obtained by FASTA and BLAST, while 
Scoredist does not succeed in improving on the results obtained 
by CLUSTAL. We believe this is due to the circular permuted 
nature of the sequences used in this experiment. These 
sequences have similar and conserved domains in non 
equivalent positions when viewed in terms of primary structure, 
which makes them difficult to align and match in chronological 
order. However, these domains might well be in equivalent 
positions when viewed in terms of three-dimensional structure. 

Second, in the previous experiments, the approaches 
developed by Wu et al. [13] and Bogan-Marta et al. [14] obtain 
results poorer than or, at best, equivalent to those obtained by 
CLUSTAL. However, in this experiment, these approaches 
obtained significantly better results than CLUSTAL, FASTA, 
and BLAST. This is due to the efficiency of alignment-free 
approaches and their advantage over existing mainstream 
alignment-based approaches for measuring the similarity 
between hard-to-align protein sequences. 

Third, the comment about the use of a substitution matrix by 
tSMS and SMS again applies for this experiment. 

D. Biochemical Activity Prediction of Protein Sequences 
In this experimentation, our new similarity approach is used 

to predict biochemical activities of two sets of selected protein 

TABLE V 
SIMILARITY MEASURE QUALITY OF CIRCULAR PERMUTED PROTEINS 

Protein SAF 
Alignment based Alignment free 

BLAST FASTA CLUSTAL Scordist tSMS SMS Wu Bogan

H_PLADU 0.96 0.48 0.48 0.69 0.62 0.96 0.90 0.83 0.76 
H_BOVIN 0.98 0.56 0.51 0.54 0.59 0.97 0.93 0.85 0.72 
L_BOWMI 0.95 0.52 0.55 0.58 0.51 0.97 0.95 0.79 0.80 
L_DIOGR 0.97 0.59 0.50 0.51 0.57 0.99 0.94 0.81 0.79 
G_THEFU 0.99 0.43 0.57 0.63 0.55 0.95 0.93 0.87 0.81 
G_CELFI 0.96 0.40 0.54 0.50 0.54 0.98 0.95 0.83 0.83 

Av. 0.97 0.50 0.53 0.58 0.56 0.97 0.93 0.83 0.79 
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sequences, obtained from the NCBI website [24]. The first set 
includes well characterized proteins, all extensively studied at 
the biochemical level. The second set includes none yet 
characterized proteins that we aim to predict the biochemical 
activities. The database entries and the corresponding 
organisms of the selected protein sequences are indicated in the 
TABLE V. 

To be able to predict the biochemical activities of the selected 
protein sequences, our new approach is used to measure the 
similarity between each of these sequence with all the 6 863 213 
protein sequences included in the nr database. Then, the most 
significantly similar sequences, whose the choice is discussed 
below, are selected and used as input dataset for the alignment 
free clustering algorithm CLUSS [25], developed by Kelil et al. 
[11], given that it proves its accuracy to highlight the 
biochemical activities of proteins than do the alignment based 
algorithms, especially for sequences that are hard to align. 
Therefore, a biochemical activity can be attributed with high 
confidence to the uncharacterized protein sequence, if a 
well-characterized protein within the same cluster is already 
known. Below are provided more details about the systematic 
technique used to select the most significant similar sequences 
for each selected sequence. 

First, the sequences from the nr database are sorted in 
decreasing order of their similarities with the sequence to be 
predicted. Second, the maximum interclass inertia is computed, 
based on the Koenig-Huygens theorem, which gives the 
relationship between the total inertia and the inertia of each 
group relative to the centre of gravity. In this case, merely two 
groups are concerned, the high similarity group and the low 
similarity group. The procedure is described as follows: 

Let ܴ  be the uncharacterized protein sequence to be 
predicted. And, let ܨ be the set of obtained similarity measures 
between the sequence ܴ  and all the sequences from the nr 
database, with ܨ௅ the subset of low similarity measures, and ܨு 
the subset of high similarity measures, such that: 
 

௅ܨ ׫ ுܨ ൌ ௅ܨ     ݀݊ܽ     ܨ ת ுܨ ൌ  ሺ12ሻ                           ׎
 

,ܺ׊ ܻ א หܺܨ א ,௅ܨ ܻ א ுܨ ฺ ܵோ,௑ ൏ ܵோ,௒                     ሺ13ሻ 
 

Where, ܵோ,௑  and ܵோ,௒  are the similarity measures obtained 
between the sequences ܴ  with ܺ  and ܴ  with ܻ , respectively. 
The symbols ܨ௅  and ܨு  are simply used as variables 
representing all possible separations of ܨ according to previous 
Equations (12) and (13). By making use of the Koenig-Huygens 
theorem, the total inertia ܫ is calculated as follows: 
 

ܫ ൌ ෍൫ܵோ,௜ െ ܵҧிಽ൯ଶ

௜אிಽ

൅ ෍ ൫ܵோ,௝ െ ҧܵிಹ൯ଶ

௝אிಹ

൅ ൫ܵҧிಽ െ ܵҧிಹ൯ଶ      ሺ14ሻ 

 
Where, ܵோ,௜  and ܵோ,௝  the obtained similarity measures of 

sequences ܴ  with ݅  and ܴ  with ݆ , such that ݅  and ݆  are 
belonging to the subsets ܨ௅  and ܨு , all respectively; and ܵҧிಽ 
and ܵҧிಹ are the means (i.e., centers of gravity) of subsets ܨ௅ and 
 ௅ andܨ is the subsets ܨ ு, respectively. The best separation ofܨ
 in the previous ܫ ு that maximize the value of the total inertiaܨ
Equation (14). Then, the most significant similar sequences to 
be used as input data for the clustering process, is the subset of 

protein sequences corresponding to the subset ܨு maximizing ܫ 
the total inertia. 

In TABLE VI, are shown the predicted biochemical activities 
of the selected protein sequences. For the set of well 
characterized sequences, the clustering has predicted exactly 
the adequate biochemical cluster of each protein. For the set of 
protein sequences with unknown biochemical activities, the 
clustering has classified each uncharacterized sequence within 
the same cluster of an already well characterized protein, which 
the activity is assigned to the uncharacterized protein sequence. 
Please see TABLE VI. 

XI. DISCUSSION 
The excellent results obtained in this paper on different 

protein datasets and databases clearly demonstrate the 
efficiency of our new approach and its advantage over existing 
mainstream approaches are shown, both alignment-based and 
alignment-free, for measuring the similarity between protein 
sequences. Our experiments show that the new measure 
efficiently extracts the significant hidden information behind 
the biochemical activities of protein sequences, without 
resorting either to the alignment of protein sequences or to 
substitution relations between amino acids. This also constitutes 
an important advantage compared to alignment-free approaches 
that need a substitution matrix as input parameter, such as tSMS 
and SMS. 

Our new approach makes it possible to detect more 
efficiently the significant patterns that best represent the 
intrinsic properties of protein sequences, those underlying the 
chronological dependencies of structural features that can 
reveal biochemical activities of protein sequences. Moreover, 
by using a new efficient subsequence matching scheme, our 
approach more effectively handles protein sequences that 
contain similar structural features with significant meaning in 
chronologically non-equivalent positions. 

So far, the performance and the effectiveness of our new 
approach were shown on different types of protein sequences 
such as those from the COG, KOG, and PC databases, the group 
of multi domain 33 (ߙ ߚ/ )8 proteins, and also on different 
circular permutation protein sequences. Furthermore, the 
prediction of biochemical activities of several and different 
well-characterized as well as non-characterized protein 
sequences was performed. This prediction was done using a 
new and systematic technique that revealed hidden relations 
between proteins for which the alignment based approaches 
have not been able to detect. 

In future work, the study and the analysis of our new 
similarity measure will be deepen by further experimenting on 
hard-to-align protein sequences, such as tandem repeat and 
circular permutation protein sequences. More evidence on the 
ability of our new similarity measure to capture and make use of 
important structural features as well as the information hidden 
in the chronological and non-chronological order of the protein 
sequences will also attempt to be discovered. The significant 
patterns detected by SAF will be compared with those 
biochemically identified as conserved domains, involved in 
biochemical activities of proteins, with support from literature 
and functional annotations. The study and the analysis by 
further testing of the systematic technique presented in this 
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paper to predict the biochemical activities of protein sequences 
will be also deepen. Its web application server will be also 
provided. 
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TABLE VI 
BIOCHEMICAL ACTIVITIES PREDICTION OF THE SELECTED PROTEIN SEQUENCES 

 Protein Organism Known Activity Predicted activity 

Pr
ot

ei
n 

Se
qu

en
ce

s w
ith

 K
no

w
n 

Ac
tiv

iti
es

 AAA24053 Bacteria 

β-Galactosidase β-Galactosidase 

AAA69907 Bacteria 
AAA35265 Eukaryota 
AAA23216 Bacteria 
BAA07673 Bacteria 
AAK06078 Bacteria 
AAC48809 Eukaryota 

β-Glucuronidase β-Glucuronidase 

AAC74689 Bacteria 
AAA52561 Eukaryota 
AAK07836 Bacteria 
AAA37696 Eukaryota 
AAD01498 Eukaryota 

Pr
ot

ei
n 

Se
qu

en
ce

s w
ith

 U
nk

no
w

n 
Ac

tiv
iti

es
 

AAV32104 Eukaryota Unknown 
Ribonucleotide-Diphosphate 

Reductase XP_960828 Eukaryota Unknown 
NP_249831 Bacteria Unknown 
ACB94306 Bacteria Unknown 

FMRFamide 

XP_001675807 Eukaryota Unknown 
YP_869103 Bacteria Unknown 
NP_718648 Bacteria Unknown 

YP_001473371 Bacteria Unknown 
ZP_02158382 Bacteria Unknown 
YP_001831795 Bacteria Unknown 

ABK18067 Bacteria Unknown 

ATP-Binding Cassette 

YP_846502 Bacteria Unknown 
XP_001636168 Eukaryota Unknown 

YP_908731 Bacteria Unknown 
YP_672786 Bacteria Unknown 

XP_001632468 Eukaryota Unknown 
ABS67555 Bacteria Unknown 

Neuropeptides Precursor 
YP_429591 Bacteria Unknown 

YP_001417212 Bacteria Unknown 
XP_001621143 Eukaryota Unknown 

YP_429591 Bacteria Unknown 
YP_605034 Bacteria Unknown 

Methyltransferase Type 12 

YP_342594 Bacteria Unknown 
YP_049838 Bacteria Unknown 

ZP_01904033 Bacteria Unknown 
ZP_01627072 Bacteria Unknown 
ZP_02134734 Bacteria Unknown 

YP_206188 Bacteria Unknown 
 

 


