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S-Fuzzy Left h-Ideal of Hemirings
D.R Prince Williams

Abstract— The notion of S-fuzzy left h-ideals in a hemiring is
introduced and it’s basic properties are investigated.We also study
the homomorphic image and preimage of S-fuzzy left h-ideal of
hemirings.Using a collection of left h-ideals of a hemiring, S-fuzzy
left h-ideal of hemirings are established.The notion of a finite-
valued S-fuzzy left h-ideal is introduced,and its characterization is
given.S-fuzzy relations on hemirings are discussed.The notion of
direct product and S-product are introduced and some properties of
the direct product and S-product of S-fuzzy left h-ideal of hemiring
are also discussed.

Keywords— hemiring,left h-ideal,anti fuzzy h-ideal,S-fuzzy left h-
ideal,t-conorm , homomorphism.

I. INTRODUCTION

THE concept of fuzzy subset was introduced by L.A.Zadeh
[8]. Fuzzy set theory is a useful tool to describe situations

in which the data are imprecise or vague. Fuzzy sets handle
such situation by attributing a degree to which a certain object
belongs to a set. B.Schweizer and A.Sklar [5,6] introduced the
notions of Triangular norm (t-norm) and Triangular conorm
(t-conorm).Triangular norm (t-norm) and Triangular conorm
(t-conorm or s-norm) are the most general families of binary
operations that satisfy the requirement of the conjunction and
disjunction operators respectively.The ideal theory plays an
important role in algebraic structure.La Torre [7] studied the
notion of h-ideals and k-ideals in hemirings.Then Y.B Jun
et. al[4] introduced the notion of fuzzy h-ideal of hemirings
and discussed related properties.First,Abu Osman [1] intro-
duced the notion of fuzzy subgroup with respect to t-norm.
Following this,J.Zhan [9] introduced the notion of T -fuzzy left
h-ideal of hemirings.Then,J.Zhan [10] introduced the notion
of fuzzy hyper ideals in hyper near-rings with respect to t-
norm.Recently,Y.U Cho et. al[3] introduced the notion of fuzzy
subalgebras with respect to t-conorm of BCK-algebras and
M.Akram et. al.[2] introduced the notion of sensible fuzzy
ideal with respect to t-conorm in BCK-algebras.Using the
idea of [2] and [3],In this paper we introduce the notion of
S-fuzzy left h-ideal of hemirings and investigate it is related
properties.Also,we review several results described in [9] using
t-conorm.

II. PRELIMINARIES

An algebra (R ; +, .) is said to be a semiring if (R ; +) and
(R ; .) are semigroups satisfying a. (b + c) = a.b + a.c and
(b + c) .a = b.a + c.a for all a, b, c ∈ R.A semiring R is
said to be additively commutative if a + b = b + a for all
a, b, c ∈ S. A semiring R may have an identity 1, defined by
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1.a = a = a.1 and a zero 0, defined by 0 + a = a = a + 0
and a.0 = 0 = 0.a for all a ∈ R.A semiring R is said to be a
hemiring if it is an additively commutative with zero.A non-
empty subset I of R is said to be a left (resp., right ideal)
if x, y ∈ I and r ∈ R imply that x + y ∈ I and rx ∈ I
(resp., xr ∈ I) . If I is both left and right ideal of R , we
say I is a two-sided ideal, or simply ideal, of R. A left ideal
I of a semiring R is said to be a k-ideal if a ∈ I and x ∈ R,
and if x + a ∈ I or a + x ∈ I then x ∈ I . Right k-ideal
is defined dually, and two-sided k-ideal or simply a k-ideal
is both a left and a right k-ideal.A left ideal I of a hemiring
R is called a left h-ideal if x + a + z = b + z implies that
x ∈ I for all x, y ∈ R and a, b ∈ R.Right h-ideals are defined
similarly.

Definition 2.1: Let X be a non-empty set. A fuzzy subset
of X is a function μ : X → [0, 1]. Let μ be the fuzzy subset
of a set X . For a fixed 0 ≤ t ≤ 1 , the set

L(μ; t) = {x ∈ X : μ(x) ≤ t}
is called a lower level set or simply level set of μ.

Definition 2.2: A fuzzy subset μ of a hemiring R is said to
be fuzzy left (resp., right) ideal of R if
(FI1)μ (x + y) ≥ min {μ (x) , μ (y)} and
(FI2)μ (xy) ≥ μ (y) (resp. , μ (xy) > μ (x))
for all x, y ∈ R .
If μ is a fuzzy ideal of R if it is both fuzzy left and a fuzzy
right ideal of R.

Definition 2.3: A fuzzy subset μ of a hemiring R is said to
be an anti fuzzy left (resp., right) ideal of R if
(FI1)μ (x + y) ≤ max {μ (x) , μ (y)} and
(FI2)μ (xy) ≤ μ (y) (resp. , μ (xy) ≤ μ (x))
for all x, y ∈ R .
If μ is an anti fuzzy ideal of R if it is both an anti fuzzy left
and anti fuzzy right ideal of R.

Definition 2.4: Let R and R′ be hemirings. A mapping
f : R → R′ is said to be a homomorphism if
f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y)
for all x, y ∈ R .

Definition 2.5: A fuzzy subset μ of a hemiring R is said to
be a fuzzy left (resp., right) h-ideal of R if
(AFI1)μ (x + y) ≥ min {μ (x) , μ (y)} and
(AFI2)μ (xy) ≥ μ (y) (resp. , μ (xy) ≥ μ (x))
for all x, y ∈ R .
(AFI3) If x + a + z = b + z implies that
μ(x) ≥ min{μ(a), μ(b)}, for all a, b, x, z ∈ S.
If μ is fuzzy h-ideal of R if it is both a fuzzy left and fuzzy
right h-ideal of R.

Definition 2.6: A fuzzy subset μ of a hemiring R is said to
be an anti fuzzy left (resp., right) h-ideal of R if
(AFI1)μ (x + y) ≤ max {μ (x) , μ (y)} and
(AFI2)μ (xy) ≤ μ (y) (resp. , μ (xy) ≤ μ (x))
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for all x, y ∈ R .
(AFI3) If x + a + z = b + z implies that
μ(x) ≤ max{μ(a), μ(b)}, for all a, b, x, z ∈ S.
If μ is an anti fuzzy h-ideal of R it is both an anti fuzzy left
h-ideal and anti fuzzy right h-ideal of R.

Definition 2.7: A triangular conorm (t-conorm) is a map-
ping S : [0, 1] × [0, 1] −→ [0, 1] that satisfies the following
conditions:
(S1)S(x, 0) = x,
(S2)S(x, y) = S(y, x),
(S3)S(x, S(y, z)) = S(S(x, y), z),
(S4)S(x, y) ≤ S(x, z) whenever y ≤ z,
for all x, y, z ∈ [0, 1].

Replacing 0 by 1 in condition S, we obtain the concept of
t-norm T .

Proposition 2.8: For a t-conorm S.Then the following
statement holds S(x, y) ≥ max(x, y), for all x, y ∈ [0, 1].

Definition 2.9: Let S be a t-conorm. A fuzzy subset μ in a
hemiring R is called sensible with respect to S
if Imμ ⊆ �S ,where �S = {t ∈ [0, 1]|S(t, t) = t}.

III. S-FUZZY LEFT H-IDEALS IN HEMIRINGS

In what follows,R and S denotes a hemiring and t-conorm
respectively, unless otherwise specified.

Definition 3.1: A fuzzy subset μ of R is called a S-fuzzy
left ideal of a hemiring R (briefly, fuzzy left ideal with respect
to t-conorm ) if it satisfies the following conditions:

(SFI1)μ(x + y) ≤ S(μ(x), μ(y)),
(SFI2)μ(xy) ≤ μ(y),for all x, y ∈ S.
S-fuzzy right ideals are defined similarly.
Definition 3.2: A S-fuzzy ideal μ of R is said to be a

S-fuzzy left h-ideal if it satisfies the following condition:
(SFI3)x+a+z = b+z implies that μ(x) ≤ S(μ(a), μ(b)),

for all a, b, x, z ∈ S.
S-fuzzy right h-ideals are defined similarly.
Definition 3.3: A S-fuzzy left h-ideal μ of R is said to be

a sensible if it satisfies the sensible property.
Example 3.4: Let R be the set of natural numbers including

0, and R is a hemiring with usual addition and multiplication
.Define a fuzzy subset μ : R −→ [0, 1] by

μ(x) =
{

0 if x is even or 0,
1 otherwise.

and let Sm : [0, 1] × [0, 1] −→ [0, 1] be a function defined by
Sm(α, β) = min{x + y, 1} for all x, y ∈ [0, 1].Then, Sm is a
t-conorm.By routine calculation, we know that μ is a sensible
S-fuzzy left h-ideal of R.

Proposition 3.5: Let S be a t-conorm .Then, every sensible
S-fuzzy left h-ideal μ of a hemiring R is a anti fuzzy left h-
ideal of R.
Proof: The proof is obtained dually by using the notion of
t-conorm S instead of t-norm T in [9].

Corollary 3.6: If μ is a sensible S-fuzzy left h-ideal of R,
then each non-empty level subset L(μ; t) of μ is a left h-ideal
of R.

Proof: Assume that μ is a sensible S-fuzzy left h-ideal
of R and L(μ; t) is a non-empty level subset of μ in R.
(i) Since L(μ; t) is a non-empty level subset of μ, there exists

x, y ∈ L(μ; t) , μ(x + y) ≤ S(μ(x), μ(y)) = t.
Thus x + y ∈ L(μ; t).
(ii) Let x, y ∈ L(μ; t), such that μ(xy) ≤ μ(y) ≤ t.
Thus xy ∈ L(μ; t).
(iii) Let a, b, x, z ∈ L(μ; t), If x + a + z = b + z implies that
μ(x) ≤ S(μ(a), μ(b)) = t.Thus x ∈ L(μ; t)

Hence,L(μ; t) is a left h-ideal of R.

The following example shows that there exists a t-conorm
S such that an anti fuzzy h-ideal of R may not be an sensible
S-fuzzy left h-ideal of R.

Example 3.7: Let R be a hemiring in Example[3.4].Define
a fuzzy subset μ : R −→ [0, 1] by

μ(x) =

⎧⎨
⎩

1
5 if x is even or 0,

1
3 otherwise.

is an anti fuzzy h-ideal of R.
Let ν = (0, 1) and define the binary operation Sν on (0, 1) as
follows

Sν(α, β) =

⎧⎨
⎩

max {α, β} if min {α, β} = 0,
0 max {α, β} > 0, α + β ≥ 1 + ν
ν otherwise.

Then,Sν is a t-conorm.It is easy to check that μ is a S-fuzzy
left h-ideal of R, but

Sν (μ(0), μ(0)) = Sν

(
1
5
,
1
5

)
= ν �= μ(0).

Hence,μ is not a sensible S-fuzzy left h-ideal R.
Now, we consider the following theorem.
Theorem 3.8: Let S be a t-conorm and let μ be a sensible

fuzzy subset in a hemiring R, then μ is a sensible S-fuzzy
left h-ideal of R if and only if each non-empty level subset
L(μ; t) of μ is a left h-ideal of R.
Proof: The necessary condition can be given by
corollary[3.6].Coversely,assume that each non-empty level
subset L(μ; t) is a left h-ideal of R.
(i) Let x, y ∈ R.Let if possible,μ(x + y) > S(μ(x), μ(y)).Set
t0 := 1

2{μ(x + y) + S(μ(x), μ(y))},we have x ∈ L(μ; t0)
and y ∈ L(μ; t0),since L(μ; t) is a left h-ideal of R.Then
x + y ∈ L(μ; t0) and μ(x + y) ≤ t0,a contradiction.Thus
μ(x + y) ≤ S(μ(x), μ(y)).
(ii) If x, y ∈ L(μ; t) then xy ∈ L(μ; t).Then
μ(xy) ≤ μ(y) ≤ t.Thus μ(xy) ≤ μ(y).
(iii) Let a, b, x, z ∈ R.If x + a + z = b + z implies that
x ∈ L(μ; t)}.Define t = min{μ(a), μ(b)}.Then μ(x) ≤ t =
min{μ(a), μ(b)}. Thus μ(x) =≤ max{μ(a), μ(b)}.
Hence,μ is a sensible S-fuzzy left h-ideal of R.

Definition 3.9: Let R be a hemiring and a family of fuzzy

sets {μi|i ∈ I} in R.Then the union

( ∨
i∈I

μi

)
of {μi|i ∈ I}

is defined by (∨
i∈I

μi

)
(x) = sup {μi(x)|i ∈ I}

Theorem 3.10: If {μi|i ∈ I} is a family of S-fuzzy left h-
ideal of R,then (

∨
i∈I

μi)(x) is a S-fuzzy left h-ideal of R.
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Proof: Let {μi|i ∈ I} be a family of S-fuzzy left h-ideal of
R.
(i)For all x, y ∈ R,we have( ∨

i∈I

μi

)
(x + y) = sup {μi(x + y)|i ∈ I}

≤ sup {S (μi(x), μi(y)) |i ∈ I}

= S (sup (μi(x)|i ∈ I) , sup (μi(y)|i ∈ I))

= S

(( ∨
i∈I

μi

)
(x) ,

(
∨

i∈I
μi

)
(y)

)

(ii) For all x, y ∈ R,we have( ∨
i∈I

μi

)
(xy) = sup {μi(xy)|i ∈ I}

≤ sup {S (μi(x)) |i ∈ I}

= S

(( ∨
i∈I

μi

)
(x)

)

(iii) For all a, b, x, z ∈ R and if x + a + z = b + z then( ∨
i∈I

μi

)
(x) = sup {μi(x)|i ∈ I}

≤ sup {S (μi(a), μi(b)) |i ∈ I}

= S (sup (μi(a)|i ∈ I) , sup (μi(b)|i ∈ I))

= S

(( ∨
i∈I

μi

)
(a) ,

( ∨
i∈I

μi

)
(b)

)

Hence

( ∨
i∈I

μi

)
is a S-fuzzy left h-ideal of R.

Definition 3.11: Let f : R −→ R′ be a mapping ,where
R and R′ are non-empty sets and μ is a fuzzy subset of
R.The preimage of μ under f written μf ,is a fuzzy subset
of R defined by μf = μ(f(x)),for all x ∈ R.

Theorem 3.12: Let f : R −→ R′ be a homomorphism of
hemirings. If μ is a S-fuzzy left h-ideal of R′,then μf is S-
fuzzy left h-ideal of R.
Proof: Suppose μ is a S-fuzzy left h-ideal of R′,then
(i) For all x, y ∈ R,we have

μf (x + y) = μ (f (x + y)) = μ (f(x) + f(y))
≤ S (μ (f(x)) , μ (f(y)))
= S

(
μf (x), μf (y)

)
(ii)For all x, y ∈ R,we have

μf (xy) = μ (f (xy)) = μ (f(x)f(y))
≤ μ (f(y)) = μf (y)

(iii)For all a, b, x, z ∈ R and if x + a + z = b + z then

μf (x) = μ (f (x))
≤ S (μ (f(a)) , μ (f(b)))
= S

(
μf (a), μf (b)

)

Hence μf is a S-fuzzy left h-ideal of R.
Theorem 3.13: Let f : R −→ R′ be a homomorphism of

hemirings. If μf is a S-fuzzy left h-ideal of R ,then μ is S-
fuzzy left h-ideal of R′.
Proof: Suppose μ is a S-fuzzy left h-ideal of R′,then
(i)Let x′, y′ ∈ R′,there exists x, y ∈ R such that f(x) = x′

and f(y) = y′,we have

μ (x′ + y′) = μ (f (x) + f (y))
= μ (f (x + y))
= μf (x + y)
≤ S

(
μf (x), μf (y)

)
= S (μ (f(x)) , μ (f(y)))
= S (μ (x′) , μ (y′))

(ii)Let x′, y′ ∈ R′,there exists x, y ∈ R such that f(x) = x′

and f(y) = y′,we have

μ (x′y′) = μ (f (x) f (y)) = μ (f (xy))
= μf (xy)
≤ μf (y)
= μ (f(y))
= μ (y′)

(iii)Let a′, b′, x′, z′ ∈ R′,there exists a, b, x, z ∈ R such that
f(a) = a′, f(b) = b′, f(x) = x′, f(z) = z′.If x′ + a′ + z′ =
b′+z′.Then f(x+a+z) = f(b+z) and so f(x)+f(a)+f(z) =
f(b) + f(z).It follows that

μ (x′) = μ (f (x))
= μf (x)
≤ S

(
μf (a), μf (b)

)
= S (μ (f(a)) , μ (f(b)))
= S (μ (a′) , μ (b′))

Hence μ is a S-fuzzy left h-ideal of R′.
Definition 3.14: Let f be a mapping defined on R.If ν is a

fuzzy subset in f(R),then the fuzzy subset μ = ν ◦f in R(i.e.,
the fuzzy subset defined by μ(x) = ν(f(x)) for all x ∈ R) is
called the preimage of ν under f .

Proposition 3.15: An onto homomorphic preimage of a S-
fuzzy left h-ideal R is S-fuzzy left h-ideal.
Proof: The proof is obtained dually by using the notion of
t-conorm S instead of t-norm T in [9 ,Proposition 3.10].

Let μ be a fuzzy subset in a hemiring R and f be a
mapping defined on R.Then the fuzzy subset μf in f(R)
defined by μf (y) = inf

x∈f−1(y)
μ(x) for all y ∈ f(R) is called

the image of μ under f .A fuzzy subset μ in R is said to
have an inf property if for every subset H ⊆ R,there exists
h0 ∈ H such that μ(h0) = inf

h∈H
μ(h).

Proposition 3.16: An onto homomorphic image of S-fuzzy
left h-ideal with inf property is S-fuzzy left h-ideal.
Proof: Let f : R −→ R′ be an onto homomorphism of
semirings and let μ be a S-fuzzy left h-ideal of R with the
inf property.

(i)Given x′, y′ ∈ R′,we let x0 ∈ f−1(x′) and y0 ∈ f−1(y′)
be such that

μ (x0) = inf
h∈f−1(x′)

μ (h) , μ (y0) = inf
h∈f−1(y′)

μ (h)
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respectively.Then , we have

μf (x′ + y′) = inf
z∈f−1(x′+y′)

μ (z) ≤ max {μ (x0) , μ (y0)}

≤ S (μ (x0) , μ (y0))

= S

(
inf

h∈f−1(x′)
μ (h) , inf

h∈f−1(y′)
μ (h)

)

= S
(
μf (x′) , μf (y′)

)
(ii)Given x′, y′ ∈ R′,we let x0 ∈ f−1(x′) and y0 ∈ f−1(y′)
be such that

μ (x0) = inf
h∈f−1(x′)

μ (h) , μ (y0) = inf
h∈f−1(y′)

μ (h)

respectively.Then , we have

μf (x′y′) = inf
z∈f−1(x′y′)

μ (z) ≤ μ (y0)

= inf
h∈f−1(y′)

μ (h) = μf (y′)

(ii) Given a′, b′, x′, y′ ∈ R′ , we let a0 ∈ f−1(a′),
b0 ∈ f−1(b′) , x0 ∈ f−1(x′) , z0 ∈ f−1(z′) be such that

μ (a0) = inf
h∈f−1(a′)

μ (h) , μ (b0) = inf
h∈f−1(b′)

μ (h)

μ (x0) = inf
h∈f−1(x′)

μ (h) , μ (z0) = inf
h∈f−1(z′)

μ (h)

respectively.If x′+a′+z′ = b′+z′ then x0+a0+z0 = b0+z0

, where (x0 + a0 + z0) ∈ f−1(x′ + a′ + z′) and (b0 + z0) ∈
f−1(b′ + z′),we have

μf (x′) = inf
z∈f−1(x′)

μ (z) ≤ max {μ (a0) , μ (b0)}

= S

(
inf

h∈f−1(a′)
μ (h) , inf

h∈f−1(b′)
μ (h)

)

= S
(
μf (a′) , μf (b′)

)

Hence,μf is a S-fuzzy left h-ideal of R′.
Definition 3.17: A t−conorm S on [0, 1] is called a con-

tinuous t−conorm if S is a continuous function from [0, 1]×
[0, 1] −→ [0, 1] with respect to usual topology.
We observe that the function ” max ” is always a continuous
t-conorm

Proposition 3.18: Let S be a continuous t−conorm and
let f be a homomorphism on a hemiring R.If μ is a S-fuzzy
left h-ideal of R,then μf is a S-fuzzy left h-ideal of f(R).

Proof: Let A1 = f−1(y1), A2 = f−1(y2) and
A12 = f−1(y1 + y2),where y1 + y2 ∈ f(R). Consider the set

A1+A2 = {x ∈ R|x = a1 + a2 for some a1 ∈ A1, a2 ∈ A2}

If x ∈ A1 + A2,then x = x1 + x2 for some x1 ∈ A1 and
x2 ∈ A2 so that we have f(x) = f(x1 + x2) = f(x1) +
f(x2) = y1 + y2,that is , x ∈ f−1(y1 + y2) = A12.Thus ,

A1 + A2 ⊆ A12.It follows that

μf (y1 + y2) = inf
{
μ(x)|x ∈ f−1 (x1 + x2)

}
= inf {μ(x)|x ∈ A12}
≤ inf {μ(x)|x ∈ A1 + A2}
≤ inf {μ(x1 + x2)|x1 ∈ A1, x2 ∈ A2}
≤ inf {S (μ(x1), μ(x2)) |x1 ∈ A1, x2 ∈ A2}

Since S is continuous for every ε > 0,we see that if

inf{μ(x1)|x1 ∈ A1} − x�
1 ≤ δ and

inf{μ(x2)|x2 ∈ A2} − x�
2 ≤ δ,then

S (inf {μ(x1)|x1 ∈ A1} , inf {μ(x2)|x2 ∈ A2})−S (x∗
1, x

∗
2) ≤ ε

Choose a1 ∈ A1 and a2 ∈ A2,such that

inf{μ(x1)|x1 ∈ A1} − μ(a1) ≤ δ and
inf{μ(x2)|x2 ∈ A2} − μ(a2) ≤ δ,then

S (inf {μ(x1)|x1 ∈ A1} , inf {μ(x2)|x2 ∈ A2})
−S (μ(a1), μ(a2)) ≤ ε

Thus,we have

(i)μf (y1 + y2) ≤ inf {S (μ(x1), μ(x2)) |x1 ∈ A1, x2 ∈ A2}
= S (inf {μ(x1)|x1 ∈ A1} , inf {μ(x2)|x2 ∈ A2})
= S

(
μf (y1) , μf (y2)

)
(ii)Similarly, we can prove that

μf (y1y2) ≤ μf (y2)

(iii) Now , let a1, b1, x1, z1 ∈ f(R) be such that
x1 + a1 + z1 = b1 + z1.we can prove that

μf (x1) ≤ S
(
μf (a1) , μf (b1)

)
Hence,μf is a S-fuzzy left h-ideal of f(R).

Lemma 3.19: Let T be a t-norm.Then t-conorm S can be
defined as

S(x, y) = 1 − T (1 − x, 1 − y).
Proof: Straightforward.

Theorem 3.20: A fuzzy subset μ of R is a T -fuzzy left
h-ideal if and only if its complement μc is a S-fuzzy left h-
ideal of R.
Proof: Let μ be a T -fuzzy left h-ideal of R.
(i) For all x, y ∈ R,we have

μc (x + y) = 1 − μ (x + y)
≤ 1 − T (μ (x) , μ (y))
= 1 − T (1 − μc (x) , 1 − μc (y))
= S (μc (x) , μc (y))

(ii)For all x, y ∈ R,we have

μc (xy) = 1 − μ (xy) ≤ 1 − μ (y) = μc (y)

(iii)For all a, b, x, z ∈ R,If x + a + z = b + z such that

μc (x) = 1 − μ (x)
≤ 1 − T (μ (a) , μ (b))
= 1 − T (1 − μc (a) , 1 − μc (b))
= S (μc (a) , μc (b))
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Hence μc(x) is a S-fuzzy left h-ideal of R.
The converse is proved similarly.

IV. CHAIN CONDITIONS

Let μ and ν be a fuzzy subset in a hemiring R.Then the
S−h-product of μ and ν is defined by

μ ◦h ν (x) =

⎧⎪⎪⎨
⎪⎪⎩

inf (S (μ(ai), μ(bi)) | i = 1, 2)
if x can be expressed as

x + a1b1 + z = a2b2 + z,
0 otherwise.

Proposition 4.1: Let μ and ν be a fuzzy subset of R.If
they are S-fuzzy left h-ideal of R,then so μ ∪ ν,where
μ ∪ ν is defined by (μ ∪ ν)(x) = S(μ(x), ν(x)) for all
x,∈ R.Moreover,If μ and ν are a S-fuzzy right h-ideal and
a S-fuzzy left h-ideal respectively,then μ ◦h ν ⊆ μ ∪ ν
Proof: The proof is obtained dually by using the notion of
t-conorm S instead of t-norm T in [9,proposition 4.2].

Theorem 4.2: Let μ be a fuzzy subset in R and
Im(μ) = {α0, α1, ..., αk},where αi < αj whenever i > j.Let
{An|n = 0, 1, ..., k} be a family of ideals of R such that
(i) A0 ⊂ A1 ⊂ ... ⊂ Ak = R,
(ii) μ(A∗) = αn,where A∗

n = An \ An−1, A−1 = φ for
n = 0, 1, ..., k.
Then μ is a S-fuzzy left h-ideal of R.
Proof: Suppose {An|n = 0, 1, ..., k} be a family of ideals of
R.
(i) For all x, y ∈ R,Then we discuss the following cases:If
x + y ∈ An and y ∈ An such that x ∈ An,since An is an
ideal of R.thus

μ(x + y) ≤ αn = S(μ(x), μ(y)).
If x+y /∈ A∗

n and y /∈ A∗
n,then the following four cases arise:

1) x + y ∈ R \ An and y ∈ R \ An

2) x + y ∈ An−1 and y ∈ An−1

3) x + y ∈ R \ An and y ∈ An−1

4) x + y ∈ An−1 and y ∈ R \ An

But,in either cases,we know that
μ(x + y) ≤ S(μ(x), μ(y)).

If x + y ∈ R \ A∗
n and y /∈ A∗

n then either y ∈ An−1 or
y ∈ R \An. It follows that either x ∈ An or x ∈ R \An.Thus

μ(x + y) ≤ S(μ(x), μ(y)).
If x + y /∈ R \ A∗

n and y ∈ A∗
n then by similar process we

have
μ(x + y) ≤ S(μ(x), μ(y)).

(ii) Similarly, for x, y ∈ R,we have
μ(xy) ≤ μ(y).

(iii)For all a, b, x, z ∈ R,If x + a + z = b + z such that
a ∈ An and b ∈ An then x ∈ An.By the above process it is
easy to show that

μ(x) ≤ S(μ(a), μ(b)).
Hence μ is a S-fuzzy left h-ideal of R.

Theorem 4.3: Let {An|n ∈ N} be a family of h-ideals of
a hemiring R which is nested,that is,R = A1 ⊃ A2 ⊃ ....Let
μ be a fuzzy subset in R defined by

μ (x) =

⎧⎨
⎩

1
n+1 if x ∈ An\An+1, n = 1, 2, 3...,

0 if x ∈
∞⋂

n=1
An .

for allx ∈ R.Then μ is a S-fuzzy left h-ideal of R.

Proof: Let x, y ∈ R.
(i)Suppose that x ∈ Ak \ Ak+1 and y ∈ Ar \ Ar+1

for k = 1, 2, ...; r = 1, 2, ... .Without loss of generality,we
may assume that k ≤ r.Then x + y ∈ Ak and so

μ (x + y) ≤ 1
k + 1

= max {μ (x) , μ (y)} ≤ S (μ (x) , μ (y))

If x, y ∈
∞⋂

n=1
An then x + y ∈

∞⋂
n=1

An and thus

μ (x + y) = 0 = S (μ (x) , μ (y))

If x ∈
∞⋂

n=1
An then y /∈

∞⋂
n=1

An,then there exists i ∈ N such

that y ∈ Ai \ Ai+1.It follows that x + y ∈ Ai so that

μ (x + y) ≤ 1
i + 1

= max {μ (x) , μ (y)} ≤ S (μ (x) , μ (y))

Similarly,we know that

μ (x + y) ≤ S (μ (x) , μ (y))

for all x /∈
∞⋂

n=1
An then y ∈

∞⋂
n=1

An.

(ii)Now,if y ∈ Ar\Ar+1 for some k = 1, 2, ...,then xy ∈ Ak

for all x ∈ R.Thus

μ (x + y) ≤ 1
k + 1

= μ (y)

If y ∈
∞⋂

n=1
An then xy ∈

∞⋂
n=1

An for all x ∈ R.Thus

μ (xy) = 0 = μ (y)

(iii) Now,let a, b, x, z ∈ R be such that x+a+ z = b+ z.If
a, b ∈ Ar \ Ar+1 for some r = 1, 2, 3..., then x ∈ Ar as Ar

is a left h-ideal of R.Thus

μ (x) ≤ 1
k + 1

= max {μ (a) , μ (b)} ≤ S (μ (a) , μ (b))

If a, b ∈
∞⋂

n=1
An then x ∈

∞⋂
n=1

An and so

μ (x) = 0 = S (μ (a) , μ (b))

Assume that a ∈ Ar \ Ar+1 for some r = 1, 2, 3, ...,and

b ∈
∞⋂

n=1
An( or , a ∈

∞⋂
n=1

An and b ∈ Ar \ Ar+1 for some

r = 1, 2, 3...).Then x ∈ Ar and so

μ (x) ≤ 1
r + 1

= max {μ (a) , μ (b)} ≤ S (μ (a) , μ (b))

Hence, μ is a S-fuzzy left h-ideal of R.
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Let μ : R −→ [0, 1] be a fuzzy subset of R.The smallest
S-fuzzy left h-ideal containing μ is called the S-fuzzy left
h-ideal generated by μ, and μ is said to be n-valued if μ(R)
is a finite set of n elements.When no specific n is intended,
we call μ a finite-valued fuzzy subset.

Theorem 4.4: A S-fuzzy left h-ideal ν of R is finite valued
if and only if a finite-valued fuzzy subset μ of R is generated
by ν .
Proof: If ν : R −→ [0, 1] is a finite-valued S-fuzzy left h-ideal
of R,then one may choose μ = ν.Consequently, assume that
μ : R −→ [0, 1] is a n-valued fuzzy subset with n distinct
values t1, t2, ..., tn,where t1 < t2 < ... < tn.Let Gi be the
inverse image of ti under μ, that is,Gi = μ−1(ti).Obviously,
j⋃

i=1

Gi ⊆
r⋃

i=1

Gi when j < r.We denote by Aj the left h-ideal

of R generated by the set
j⋃

i=1

Gi.Then we have the following

chain of left h-ideals:

A1 ⊇ A2 ⊇ ... ⊇ An = R

Define a fuzzy ν : R −→ [0, 1] by

ν (x) =
{

tn if ∈ An,
tj if ∈ Aj\Aj−1; j = 1, 2, ..., n − 1

We claim that ν is a S-fuzzy left h-ideal of R and μ is
generated by ν.Let x, y ∈ R and let i and j be the largest
integer such that x ∈ Ai and y ∈ Aj .we may assume that
i < j without loss of generality.Then x+y ∈ Ai and xy ∈ Ai

and so

ν (x + y) ≤ tj = max {ti, tj} = max {ν (x) , ν (y)}
≤ S (ν (x) , ν (y))

and
ν (xy) ≤ tj = ν (y)

Now,let a, b, x, z ∈ R be such that x+a+z = b+z.If a ∈ Ai

and b ∈ Aj for some i < j,then a, b ∈ Ai and so x ∈ Ai as
Ai is a h-ideal of R.Thus

ν (x) ≤ tj = max {ti, tj} = max {ν (a) , ν (b)}
≤ S (ν (a) , ν (b))

Hence, μ is a S-fuzzy left h-ideal of R.
If x ∈ R and μ(x) = tj ,then x ∈ Gj and so x ∈ Aj .But we
get ν(x) ≤ tj = μ(x).Consequently, ν ⊆ μ.Let γ be any S-

fuzzy left h-ideal of R which is a subset of μ.Then,
j⋃

i=1

Gi =

L(γ; tj) ⊆ L(μ; tj), and thus Aj ⊆ L(γ; tj).Hence,γ ⊆ μ and
μ is generated by ν.Note that | Imμ |= n =| Imν |.Thus
completing the proof.
A semiring R is a said to be left h-artinian (see [9]) if it
satisfies the descending chain condition on left h-ideals of R.

Theorem 4.5: If R is a h-artinian hemiring, then every S-
fuzzy left h-ideal of R is finite valued.
Proof: Let μ : R −→ [0, 1] be a S-fuzzy left h-ideal of R
which is not finite valued.Then,there exists sequence of distinct
numbers μ(0) = t1 > t2 > ... > tn,where t1 = μ(xi) for
some xi ∈ R. This sequence induces an infinite sequence of
distinct left h-ideals of R:

L (μ; t1) ⊃ L (μ; t2) ⊃ ... ⊃ L (μ; tn) ⊃ ... .

This is a contradiction.

Combining Theorem 8 and Theorem 9,we have the following
corollary.

Corollary 4.6: If R is a h-artinian hemiring, then every S-
fuzzy left h-ideal of R is generated by a finite fuzzy subset
in R.

V. S-PRODUCT OF S-FUZZY LEFT h-IDEALS

Definition 5.1: (see [2]) A fuzzy relation on any set R is a
fuzzy subset μ : R × R.

Definition 5.2: Let S be a t-conorm . If μ is a fuzzy relation
on a set R and ν is a fuzzy set in R,then μ is a S-fuzzy relation
on ν if μν (x, y) ≥ S (ν(x), ν(y)) , for all x, y ∈ R

Definition 5.3: Let S be a t-conorm . Let μ and ν be a
fuzzy subset of R . Then direct S-product of μ and ν is defined
by (μ × ν) (x, y) = S (μ(x), ν(y)) , for all x, y ∈ R

Lemma 5.4: Let S be a t-conorm .Let μ and ν be a fuzzy
subset of R .Then,
(i) μ × ν is a S-fuzzy relation on S.
(ii) L(μ × ν; t) = L(μ; t) × L(ν; t),for all t ∈ [0, 1]
Proof: The proof is obvious.

Definition 5.5: Let S be a t-conorm .Let μ be a fuzzy subset
of R,then μ is said to be the strongest S-fuzzy relation on R
if μν (x, y) ≥ S (ν(x), ν(y)) , for all x, y ∈ R

Lemma 5.6: For given fuzzy subset ν in a set R,let μν be
the strongest S-fuzzy relation on R.Then
L(μν ; t) = L(μ; t) × L(ν; t) , for all t ∈ [0, 1].
Proof: The proof is obvious.

Proposition 5.7: For given fuzzy subset ν in a set R,let μν

be the strongest S-fuzzy relation on R. If μν is a sensible
S-fuzzy left h-ideal of R × R,then ν(a) ≥ ν(0) for a ∈ R.
Proof: If μν is a sensible S-fuzzy left h-ideal of R×R,then
μν(a, a) ≥ μν(0, 0) for a ∈ R.This means S(ν(a), ν(a)) ≥
S(ν(0), ν(0)) for a ∈ R.Since μ is sensible,then ν(a) ≥ ν(0)
for a ∈ R.
The following proposition is an immediate consequence of
lemma 5.6.

Proposition 5.8: Let μ and ν be S-fuzzy left h-ideal
of R,then the level left h-ideals of μν are given by
L(μν ; t) = L(μ; t) × L(ν; t), for all t ∈ R.

Theorem 5.9: Let S be a t-conorm. Let μ and ν be S-fuzzy
left h-ideal of R,then μ×ν is a S-fuzzy left h-idealof R×R.
Proof: Suppose μ and ν be S-fuzzy left h-ideal of R.Let
μ× ν is a S-fuzzy left h-idealof R×R.Let x = (x1, x2) and
y = (y1, y2) be any element of R × R.Then,
(i)

(μ × ν ) (x + y) = (μ × ν) ((x1, x2) + (y1, y2))
= (μ × ν) ((x1 + y1, x2 + y2))
= S (μ(x1 + y1), ν(x2 + y2))
≤ S (S (μ(x1), μ(y1))) , S (ν(x2), ν(y2)))
= S (S (μ(x1), ν(x2))) , S (μ(y1), ν(y2)))
= S ((μ × ν) (x1, x2), (μ × ν) (y1, y2))
= S ((μ × ν) (x), (μ × ν) (y))
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(ii)
(μ × ν ) (xy) = (μ × ν) ((x1, x2)(y1, y2))

= (μ × ν) ((x1y1, x2y2))
= S (μ(y1), ν(y2))
= (μ × ν) (y1, y2)
= (μ × ν) (y)

(iii) Let x = (x1, x2) ,z = (z1, z2), a = (a1, a2) and
b = (b1, b2) be such that x1 + a1 + z1 = b1 + z1 and
x2 + a2 + z2 = b2 + z2.Then,

(μ × ν ) (x) = (μ × ν) ((x1, x2))
= S (μ(x1), ν(x2))
≤ S (S (μ(a1), μ(b1))) , S (ν(a2), ν(b2)))
= S (S (μ(a1), ν(a2))) , S (μ(b1), ν(b2)))
= S ((μ × ν) (a1, a2), (μ × ν) (b1, b2))
= S ((μ × ν) (a), (μ × ν) (b))

Thus, μ × ν is a S-fuzzy left h-ideal of R × R.

Corollary 5.10: Let S be a t-conorm. Let μ and ν be a
sensible S-fuzzy left h-ideal of R,then μ × ν is a sensible
S-fuzzy left h-ideal of R × R.
Proof: By Theorem 5.9,we have μ×ν is a S-fuzzy left h-ideal
of R × R.Let x = (x1, x2) be any element in R × R,then

(μ × ν ) (x) = (μ × ν) ((x1, x2))
= S (μ(x1), ν(x2))
= S (S (μ(x1), μ(x1))) , S (ν(x2), ν(x2)))
= S (S (μ(x1), ν(x2))) , S (μ(x1), ν(x2)))
= S ((μ × ν) (x1, x2), (μ × ν) (x1, x2))
= S ((μ × ν) (x), (μ × ν) (x))

Hence, μ× ν is a sensible S-fuzzy left h-ideal of R ×R.
As the converse of Corollary 5.10,we have a following ques-
tion: If μ× ν is a sensible S-fuzzy left h-ideal of R×R,then
are both μ and ν sensible S-fuzzy left h-ideal of R? The
following example gives a negative answer.

Example 5.11: Let R be a hemiring with |R| ≥ 2 and let
t ∈ [0, 1].Define a sensible fuzzy subset μ and ν in R by
μ(x) = 1 and

ν(x) =
{

1 if x = 0,
t otherwise.

for all x ∈ R,respectively.
If x = 0,then ν(x) = 1 , and thus

(μ × ν) (x, x) = S (μ(x), ν(x)) = S (1, 1) = 1

If x �= 0,then ν(x) = t, and thus

(μ × ν) (x, x) = S (μ(x), ν(x)) = S (1, t) = 1
That is,μ× ν is a constant function,and so μ× ν is a sensible
S-fuzzy left h-ideal of R × R.Now,μ is a sensible S-fuzzy
left h-ideal of R,but ν is not a sensible S-fuzzy left h-ideal
of R,since for x �= 0,we have ν(0) = 1 > t = ν(x).

Now,we generalize the product of two S-fuzzy left h-ideal
of R to the product of n S-fuzzy left h-ideal.we first need to

generalize the domain of t-conorm R to
n∏

i=1

[0, 1] as follows.

Definition 5.12: The function Sn :
n∏

i=1

[0, 1] → [0, 1] is

defined by
Sn (α1, α2, ... , αn) =

S (αi, Sn−1 (α1, α2, ... , αi−1, αi+1, ... , αn))

for all 1 ≤ i ≤ n,where n ≥ 2 S2 = S and S1 = identity.
Lemma 5.13: For a t-conorm S and every αi, βi ∈ [0, 1],

where 1 ≤ i ≤ n,n ≥ 2,we have

Sn (S (α1, β1) , S (α2, β2) , ... , S (αn, βn))
= S (Sn (α1, α2, ... , αn) , Sn (β1, β2, ... , βn)) .

Proposition 5.14: Let S be a t-conorm. Let {Ri}n
i=1 be the

finite collection of hemirings and R =
n∏

n=1
Ri the S-product

of Si.Let μi be a S-fuzzy left h-ideal of Si,where

1 ≤ i ≤ n. Then, μ =
n∏

n=1
μi defined by

μ (x1, x2, ... , xn) =
n∏

i=1

μi (x1, x2, ... , xn)

= Sn (μ1 (x1) , μ2 (x2) , ... , μn (xn))

for all x1, x2, ... , xn ∈ R is a S-fuzzy left h-ideal of R.
Proof: The proof is similar to the proof of Theorem 10.

Definition 5.15: Let μ and ν be fuzzy subset in R.Then,the
S-product of μ and ν,written as

[μ . ν]S (x) = S (μ(x), ν(x))

for all x ∈ R.
Theorem 5.16: Let μ and ν be S-fuzzy left h-idealof R.If

S∗ is a t-conorm which dominates S,that is,

S∗ (S (α, β) , S (γ, δ)) ≥ S (S∗ (α, β) , S∗ (γ, δ))

for all α, β, γ, δ ∈ R.Then S∗-product of μ and ν,[μ . ν]S∗ is
a S-fuzzy left h-ideal of S.
Proof: Let x, y ∈ R,then we have
(i)

[μ . ν]S∗ (x + y) = S∗ (μ(x + y), ν(x + y))
≤ S∗ (S (μ(x), μ(y)) , S (ν(x), ν(y)))
≤ S∗ (S (μ(x), ν(x)) , S (μ(y), ν(y)))
= S ( [μ . ν]S∗ (x), [μ . ν]S∗ (y))

(ii)
[μ . ν]S∗ (xy) = S∗ (μ(xy), ν(xy))

≤ S∗ (μ(y), ν(y))
= [μ . ν]S∗ (y)

(iii) Now,let a, b, x, z ∈ R be such that x+a+z = b+z.Then

[μ . ν]S∗ (x) = S∗ (μ(x), ν(x))
≤ S∗ (S (μ(a), μ(b)) , S (ν(a), ν(b)))
≤ S∗ (S (μ(a), ν(a)) , S (μ(b), ν(b)))
= S ( [μ . ν]S∗ (a), [μ . ν]S∗ (b))

Hence,[μ . ν]S∗ is a S-fuzzy left h-ideal of R.
Theorem 5.17: Let R −→ R′ be an onto homomorphism

of hemirings.Let S∗ be a t-conorm such that S∗ dominates
S.Let μ and ν be S-fuzzy left h-ideal of S′.If [μ . ν]S∗ is
the S∗-product of μ and ν, and

[
f−1(μ) . f−1(ν)

]
S∗ is the

S∗-product of f−1(μ) and f−1(ν),then

f−1 ( [μ . ν]S∗) =
[
f−1(μ) . f−1 (ν)

]
S∗
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Proof: Let x ∈ R,then we have

f−1 ( [μ . ν]S∗) (x) = [μ . ν]S∗ (f(x))
= S∗ (μ (f(x)) , ν (f(x)))
= S∗ (

f−1 (μ(x)) , f−1 (ν(x))
)

=
[
f−1(μ) . f−1 (ν)

]
S∗ (x)

Theorem 5.18: Let ν be a sensible fuzzy subset of R. Let
μν be the strongest S-fuzzy relation on R.Then ν is a sensible
S-fuzzy left h-ideal of R if and only if μν is a sensible S-
fuzzy left h-ideal of R × R.
Proof: Suppose that ν is a sensible S-fuzzy left h-ideal of
R.Let x = (x1, x2) and y = (y1, y2) be any elements of
R × R.Then,
(i)

μν (x + y) = μν ((x1, x2) + (y1, y2))
= μν ((x1 + y1), (x2 + y2))
= S (ν(x1 + y1), ν(x2 + y2))
≤ S (S (ν(x1), ν(y1)) , S (ν(x2), ν(y2)))
= S (S (ν(x1), ν(x2)) , S (ν(y1), ν(y2)))
= S (μν (x1, x2) , S (μν (y1, y2)))
= S (μν (x) , S (μν (y)))

(ii)
μν (xy) = μν ((x1, x2)(y1, y2))

= μν ((x1y1, x2y2))
= S (ν(x1y1), ν(x2y2))
≤ μν ((x1, x2)(y1, y2))
= μν (y1, y2)
= μν (y)

(iii) Let x = (x1, x2), z = (z1, z2), a = (a1, a2) and
b = (b1, b2) be such that x1 + a1 + z1 = b1 + z1 and
x2 + a2 + z2 = b2 + z2.Then,

μν (x) = μν ((x1, x2))
= S (ν(x1), ν(x2))
≤ S (S (ν(a1), ν(b1)) , S (ν(a2), ν(b2)))
= S (S (ν(a1), ν(a2)) , S (ν(b1), ν(b2)))
= S (μν (a1, a2) , S (μν (b1, b2)))
= S (μν (a) , S (μν (b)))

Thus, μν is a S-fuzzy left h-ideal of R × R.
(iv) For any x = (x1, x2) ∈ R × R,then

S (μν (x) , μν (x)) = S (μν (x1, x2) , μν (x1, x2))
= S (S (ν(x1), ν(x2)) , S (, ν(x1), ν(x2)))
= S (S (ν(x1), ν(x1)) , S (, ν(x2), ν(x2)))
= S (ν(x1), ν(x2))
= μν (x1, x2)
= μν (x)

Hence, μν is a sensible S-fuzzy left h-ideal of R.
Conversely,suppose that μν is a sensible S-fuzzy left h-ideal
of R × R. Let x, y ∈ R, we have
(i)

ν (x + y) = S (ν (x + y) , ν (x + y))
= μν (x + y, x + y)
= μν ((x, x) + (y, y))
≤ S (μν (x, x) , μν (y, y))
= S (S (ν (x) , ν (x)) , S (ν (y) , ν (y)))
= S (ν (x) , ν (y))

(ii)
ν (xy) = S (ν (xy) , ν (xy))

= μν (xy, xy)
≤ μν (y, y)
= S (ν (y) , ν (y))
= ν (y)

(iii)Let a, b, x, z ∈ R be such that (x, x) + (a, a) + (z, z) =
(b, b) + (z, z).Since μν is a sensible S-fuzzy left h-ideal of
R × R.Then

ν (x) = S (ν (x) , ν (x))
= μν (x, x)
= μν ((x, x) + (y, y))
≤ S (μν (a, a) , μν (b, b))
= S (S (ν (a) , ν (a)) , S (ν (b) , ν (b)))
= S (ν (a) , ν (b))

Consequently,ν is a sensible S-fuzzy left h-ideal of R.
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