
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:11, 2016

2006

Abstract—The use of customised soft-core processors in which

instructions can be integrated into a system in application hardware is
increasing in the Field Programmable Gate Array (FPGA) field.
Specifically, the partial run-time reconfiguration of FPGAs in
specialised processors for a particular domain can be very beneficial.
In this report, the design and implementation for the customisation of
a soft-core MIPS processor using an FPGA and partial
reconfiguration (PR) of FPGA technology will be addressed to
achieve efficient resource use. This can be achieved using a PR
design flow that helps the design fit into a smaller device. Moreover,
the impact of static power consumption could be reduced due to
runtime reconfiguration. This will be done by configurable custom
instructions implemented in the hardware as an extension on the
MIPS CPU. The aim of this project is to investigate the PR of FPGAs
for run-time adaptations of the instruction set of a soft-core CPU,
including the integration of custom instructions and the exploration
of the potential to use the MultiBoot feature available in Xilinx
FPGAs to carry out the PR process. The system will be evaluated and
tested on a Nexus 3 development board featuring a Xilinx Spartran-6
FPGA. The system will be able to load reconfigurable custom
instructions dynamically into user programs with the help of the trap
handler when the custom instruction is called by the MIPS CPU. The
results of this experiment demonstrate that custom instructions in
hardware can speed up a certain function and many instructions can
be saved when compared to a software implementation of the same
function. Implementing custom instructions in hardware is perfectly
possible and worth exploring.

Keywords—Customisation, FPGA, MIPS, partial
reconfiguration.

I. INTRODUCTION

PGAs have become popular over the last decade as they
allow designers to create complex digital designs at a low

implementation cost. Application Specific Circuits (ASICs), in
contrast, introduce a high initial cost and require a large
amount of resources to create complex designs. Modern
FPGAs now occupy central positions in industry because of
their capacity for over 1000 multipliers, megabytes of on-chip
memory, hundreds of thousands of logic cells and clock
speeds of up to half a gigahertz. Moreover, the cost per
function in FPGAs decreases significantly over time [1].

PR is one of the most important features of modern FPGAs
provided by the FPGA vendor Xilinx. It allows modules
running on an FPGA to dynamically reconfigure and swap
during execution while the remaining modules continue
operating. PR is an interesting topic for research among
students and researchers in the Reconfigurable Computing and

Rehab A Shendi was a student at School of Computer Science, University
of Manchester, UK. She is now with the Department of Computer Science,
Taibah University, Saudi Arabia (e-mail: rshendi@taibahu.edu.sa).

Adaptive Hardware field. FPGAs are less efficient in area,
power and speed than ASICs; however, it is possible to make
them more efficient than a static system when all or parts of
the hardware are reconfigured at run-time through the
execution operation. The instruction set with user-defined
instructions of a soft-core, that is used to speed up the
execution of an application in a specific domain, can provide
huge PR benefits. Such benefits include integrating different
sizes of reconfigurable modules into the system to be placed
on an FPGA at run-time, and being able to communicate
efficiently with the rest of the system and avoiding additional
delay.

In this paper, the extension of a MIPS soft-core, user-
defined instruction set will be presented with the help of PR.
The aim of this project is to investigate PR of FPGAs for run-
time adaptations of the instruction set of a Soft-core CPU,
including the integration of custom instructions by presenting
a practical introduction to soft-core processor with extension
design through the use of step-by-step integration of the
system for PR using GoAhead tool flow. The powerful
GoAhead tool supports all recent Xilinx FPGAs and includes
some features that are not available in the other PR tools
provided by the FPGA vendor Xilinx [2] as will be introduced
in Section III. The objective of this project is to investigate a
custom instruction module library that offers low latency
performance; low implementation costs in terms of logic
resources, and achieves high CPU clock cycle savings
compared to software-only implementations.

II. BACKGROUND

A. MIPS Architecture

MIPS overview

In this section, the MIPS architecture will be used as a
demonstrator for the custom instruction implementation in
hardware. It is used to implement a 32 bit embedded system.
Moreover, it is one of the most widely supported RISC
processors that have been used in research on efficient
processor organisations to deliver the highest performance and
high power efficiency.

The original MIPS architecture consists of the following
functional blocks:
 Instruction decoder: It will decode the simple MIPS

instructions since all instructions are the same size with
only three different formats.

 Programme Counter (PC): It contains the address of the
currently executed instruction and then increments the
stored value address of the next instruction by 4. In the

Run-Time Customisation of Soft-Core CPUs on Field
Programmable Gate Array

Rehab Abdullah Shendi

F

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:11, 2016

2007

case of there being a branch or jump instruction, a delayed
branch will occur, which means one more instruction is
performed and the value that is provided by the branch or
jump instruction will be added to the instruction address.

 Arithmetic Logic Unit (ALU): It is a fundamental block
of the CPU that performs arithmetic and logical operation
on the operands, which are the data inputs to an ALU to
be operated on, from register to register, memory to
register or vice versa.

 Registers: the MIPS processor has 31 general purpose
registers including register 0 that holds a constant zero.
The other registers will be used by the compiler as
outlined in the "MIPS32® Instruction Set Quick
Reference"

 Memory: It will be only accessed via load and store
instructions.

Pipeline registers are often placed between the functional
blocks in order to allow the processor to run at high clock
speeds and to minimise the delay. Basically, the MIPS
processor has been designed to use pipelining to improve
throughput and performance. It includes a 5-stage pipeline:
Instruction Fetch, Instruction Decode, Execute, Memory
access and Register Write Back.

MIPS Instruction Set

The MIPS instruction set is divided into three core groups
of instructions. Each one of them has its own encoding, as
illustrated in Table I.

TABLE I

TYPE OF MIPS INSTRUCTIONS [3]

Instructions
type

 BITS

31-26 25-21 20-16 15-11 10-6 5-0

R-type opcode rs rt rd shamt funct

I-type opcode rs rt immediate

J-type opcode address

Table I shows that each type has a 6-bit main opcode that

can be used by the decoder to determine the instruction, while
the other fields, rs, rt and rd, will be address vectors in the
registers file. Those instructions are used for:
• R-type instructions are Arithmetic Instructions that use

two operands from the register file, rs and rt, and the
result of the operation will be returned to the register rd.
The R-type instruction could share their opcode with
other instructions and funct-code will determine the
operation.

• I-type instructions are Load/Store Instructions that use a
register, rs, with a constant value, coded as the immediate,
the result will be returned to the register rt. The I-type
instruction could be used for braches, so the immediate
will be added to the current PC to perform a branch.

• J-type instructions are Jump instructions that provide a
new address for the PC. This means moving the execution
to a new code block.

B. Reconfigurable CPU Instruction Set Extensions

Many different applications could be handled by using only
GPPs, General purpose processors. However, most of them
could use only a small subset of all the available instructions
in the GPP. Therefore, some small changes to dedicated
hardware in any application could give a huge improvement in
execution time. A compression algorithm, for example, would
need to count the number of one-bits in a vector. By adding
dedicated hardware instruction, the speed up of this algorithm
will be increased. Extending the instruction set of a CPU could
be one way to do this, allowing for hardware acceleration of
small parts of an application. The Microblaze and the Nios
soft-core CPUs from Xilinx and Altera are good examples of
CPUs that allow custom instructions with the benefits of a fast
RISC machine. The next section will highlight the interesting
points regrading custom instructions.

1) Custom Instructions in Hardware

Custom instructions enable a designer to implement a
complex sequence of standard instructions into a simpler and
single instruction built in hardware. The simple description of
implementing such a custom instruction in a MIPS CPU, that
can access the register file in the same way as an ALU, is
shown in Fig. 1.

Fig. 1 (a) A typical CPU (b) Extensions CPU with Reconfigurable
Instructions [1]

Fig. 1 shows that extending the CPU with exchangeable

instructions could be done after decoding unused instruction in
the original CPU ISA. Then, a multiplexer is used in order to
select between normal ALU option and one or more user
defined instructions. Then the configurable instruction can be
integrated into the CPU [1].

The custom instruction logic block has two input ports and
one output result, as shown in Fig. 4. Often, custom
instructions operate in a single clock cycle. However, a multi-
cycle operation can be considered for longer combinatory
paths. Through the use of custom instructions, it becomes
possible to tailor the processor core to a certain application.

One way to emulate the configuration instructions is by
adding a large reconfigurable accelerator modules multiplexer
that can be placed outside the CPU on the system bus.
However, this approach will involve an additional cost.
Another way to configure such a custom instruction in
hardware is by using runtime partial reconfigurable. The
custom instruction could be placed in small slots/islands close
to the MIPS CPU, which could cause routing congestion
because a high number of signals need to be entered inside the
small area. Devices from Altera or Xilinx support design flow
tools such as PlanAhead, Open PR and GoAhead flow can

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:11, 2016

2008

communicate between the static system, which includes MIPS
CPU, with custom instructions as they can implement the
interface between the static and partial system. By using bus
macros, proxy logic or direct mapping wired technique that
are provided by PlanAhead, OpenPR and GoAhead flow tools
respectively.

Reference [3], who proposed a fast dynamic PR system
using GoAhead, argued that with a high number of signals and
small islands/slots, design flows using bus macros or proxy
logic could not give good results, considering the
communication overhead. He shows that by using GoAhead
with the direct wire approach, the implementation of the
custom instructions can be very efficient in small islands/slots.
Consequently, the modules can be relocated. The benefits of
allowing the custom instruction to be relocated in more than
one slot are the flexibility of slot utilization, the reduction of
the external fragmentation and the removal of unnecessary
reconfiguration calls, as mentioned by [4].

As a result, the processor will need a look-up table to store
a location of a slot that has a custom instruction so that the
decoder will know from which custom instruction slot the
result should be routed [3].

2) Custom Instructions in Software

Reconfiguration of custom modules could be done either by
run-time PR or by a multiplexer that emulates the
configuration process, as already mentioned above, and the
reconfiguration time could be the biggest overhead. So, in
order to trigger the configuration process, there are two
fundamental options:
 Explicit approach: The configuration instruction will be

loaded during the execution time by the user or by the
program, before the processor needs it. Reference [5]
proposed this method as the configuration pre-fetch
instructions before the instruction is called. This method
could be fast. However, the speed of the configuration
controller and the size of the bitstream will affect the time
that the reconfiguration of the custom instruction takes.
Consequently, the processor must be stalled, if the
configuration of the custom instruction is not finished
before the processor calls it.

 Implicit approach: An exception trap will be triggered
when the processor detects that the custom instruction is
not in hardware. The trap handler will handle the
configuration process of the custom instruction that the
processor needs. The trap handler could run a program [6]
that the software function will be executed when the
custom hardware is not configured. This approach could
remove a lot of overheads by not stalling the CPU while
the configuration is in progress. However, it could take
time to handle the trap.

C. Design Considerations

The development of a customizable CPU on FPGAs
requires the consideration of critical system factors in order to
attain the desired performance. Some of the critical objectives
that are normally taken into consideration include the speed of

the CPU, the memory, the power required and the speed with
which the CPU can access other components of the system.
There is usually a trade-off between the performance and the
power required to attain such performance [7].

The additional design considerations of a customisable
configuration include the architecture of the processor and its
suitability for the targeted application. This implies that the
designer will have to take into consideration the size and type
of memory and peripheral bus. In addition, the designer will
have to decide on the model and size of the address space that
is confined to the CPU, space and type of the caches and
instruction and data caches. It is also important to give
consideration to the type of controllers that are being used in
the architecture. Optional accelerators might be used to speed
up the CPU [8].

It should also be mentioned that the operating system and
the design and development tools are part of the
considerations that will have to be evaluated by the designer.
The biggest advantage of implementing the soft-core CPU
using FPGA lies in the fact that in the case of any mistake
being committed during the development phase, there is the
possibility of repeating the process to reconfigure the
parameters afresh. There are no limits to the number of times
the processor can be reconfigured. This provides designers
with a degree of design flexibility [9].

The designer will have to take the development and design
tools into consideration that will be used to develop the soft-
core. Fig. 2 provides an illustration of the design and
development tools. The design and development tools are
considered to be responsible for the parameterisation of the
soft-core and also the associated implementation of the
peripherals [10].

Fig. 2 Design and development tools [11]

FPGAs allow extensive customisation alternatives that are

not found in other platforms such as ASIC. Additionally, an
FPGA is also considered to have optimisation techniques that

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:11, 2016

2009

help a designer to work towards achieving performance
metrics faster [12]. The benefits of using an FPGA platform in
customising soft-core CPUs have also be reviewed. The
development of a customisable CPU on FPGA requires critical
system factors in order to attain the desired performance [12].

Evaluation of the design and development tools will help
the designer to easily and quickly attain the design
requirements. It should also be noted that the wrong choice of
design and development tools can lead to system
inefficiencies. The design and development tools are
considered to be responsible for the parameterisation of the
soft-core and also the associated implementation of the
peripherals [13].

III. RELATED WORK

Related work that is relevant to this project can be
categorized into two parts: instruction set extension and PR.

A. Instruction Set Extension

An example study regarding instruction set extension is that
of [14]. This study demonstrates the ability to extend the
NIOS-II CPU with custom instructions using the SOPC
builder wizard of the Quartus design tool. Integrating custom
instructions with a soft-core instruction set is a feasible way of
speeding up application execution in specific domains such as
cryptography [15]. Some of the issues involved in the
customisation of an instruction set were analysed in detail by
[16] who provided a comprehensive overview of instruction-
set extensions.

B. PR

A fair amount of literature has been published on partial
run-time reconfiguration in the soft-core CPUs of FPGA.
These studies have shown that PR reduces the size, weight,
power and cost of an FPGA system. The use of design
techniques to increase performance and resource utilisation of
reconfigurable soft CPUs was studied by [17]. They have
investigated the appropriate instruction implementation
technique for a soft CPU which can achieve a performance
improvement, while at the same time reduce the resource
requirement. It is a different task but fairly closely related to
what this project is aiming at. Their goal is to improve soft
CPUs for FPGAs using PR. For example, they presented a
classification method that determined the parameters for
selecting the most suitable instruction based on profiling.
Instruction Set Extensions, Software Emulation,
Reconfigurable Instructions and ISA Subsetting are the
optimisation techniques used in their methodology.
Reconfigurable instructions could result in a critical side effect
in terms of the configuration time. An example of this could
be stalling programme execution while waiting for the
reconfiguration process to complete could cause an overhead
[17]. Another study by [4] involved an approach to reduce this
overhead. They examined the problem which occurs when the
36 communication needs an extra logic or the placement of
reconfigurable modules needs to be restricted to the static
system which causes an additional logic overhead. They reveal

a novel tool called ReCoBus-Builder. In a case study, modules
of different sizes and latency were integrated with soft CPUs
without causing any logic overhead by using partial run-time
reconfiguration. For this project, the newer tool GoAhead,
which is a fully re-implemented issue of the tool ReCoBus-
Builder, will be used. However, this study will be a library of
dynamic instruction set extension.

IV. SYSTEM DESIGN AND METHODOLOGY

A. System Development Methodology

System Development Methodology Designing and
developing such an effective customization soft-core
processor is a challenging task, especially with little
experience in processor and system design. Therefore, a
system development lifecycle method and a step-by-step
design approach are appropriate. This can progressively
develop a researcher’s learning experience in this important
computer engineering field and developing an effective system
using PR field.

Fig. 3 The general approach of the system development stages [18]

Fig. 3 shows the general lifecycle stages that were used in

this project in order to develop a processor. The requirement
analysis stage has already been introduced in the objectives
section of the Introduction. The design and implementation
stages used a step-by-step design and implementation method
[19], as shown in Fig. 4, and this will be discussed below in
this section. The testing and evolution stages will be
introduced in Section IV and will use an appropriate approach
for FPGA Embedded Processors design and evaluation [20]
such as comparing the system against a software
implementation and comparing with the others real-world
system. Finally, some techniques for optimizing the
performance and cost in an FPGA MIPS processor system will
be discussed.

When using such a step-by-step design and implementation
method, the customizing soft-core processor has to be done by
gradually integrating the processor module with other system

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:11, 2016

2010

modules and developing other modules to get the final
customization soft-core MIPS processor design with the help
of the PR. Each of the steps is briefly described below.

Fig. 4 A step-by-step design and implementation method

First Step: MIPS CPU: First of all, the soft-core is the

brain of the system. A MIPS CPU has been implemented in
one module, using an XOR gate in the top level in order to
synthesize as shown in Fig. 8. The reason for the XOR gate is
that the MIPS CPU used more interface wires than there are
I/O pins available on the FPGA board. By XORing some of
the CPU outputs, the CPU could be synthesized for test
purpose (e.g. for data mining clock frequency and resources
utilization). Testing MIPS instructions encoding and
implementation module was done by using Test Bench in the
Xilinx ISE package.

Fig. 5 First step, system overview

Second step: Custom instruction in software: A GCC cross

compiler is used in order to compile the MIPS C code. This
compiler is modified to include the custom instructions by
assigning the custom instructions to unused opcodes.
Accordingly, this will be used in the instruction decoder to
select the instructions from the binary code. Installing the
compiler was done using a virtual machine that was installed
on the Windows operating system.

Third step: One custom instruction in hardware: A custom
module that will be connected with the MIPS is chosen.
Adding a “Counting One” function as a custom module
component in the MIPS CPU. The MIPS will detect the
custom instruction and return the result from the custom
module. Moreover, the MIPS CPU module is connected with
other modules such as ROM, RAM and GPIO via system bus.

 Fourth step: Custom Instructions library in hardware:
Four custom modules are implemented. In addition, a Trap
handler that is based on a multiplexer (MUX) is developed in
order to choose one custom instruction, the one that is called
by the MIPS CPU. This approach has overhead logic costs.

Fig. 6 Third Step, system overview

Fig. 7 Fourth step, system overview

Fifth step: Reconfiguration Custom instruction: There are

different methods for implementing reconfigurable custom
modules in hardware as already mentioned in the background
section. In this project the following approaches have been
implemented.

First approach step: Improving the Trap handler: The
Trap handler based on a MUX is improved to handle the
configuration process. In this approach, the trap handler will
be based on ICAP. It is done by implementing the trap handler
as a state machine which includes a table to save the addresses
of the configuration bitstreams for the different custom
instructions as will be introduced later and then uses the ICAP
primitive in order to load the bitstreams into the device. We
will exploit the fact that all academic boards come with serial
SPI memory that is often not used. The MultiBoot feature is
applied in this project; this allows the FPGA to load one of
several configuration revisions. Spartan-6 FPGAs support two
different configuration modes: BPI and SPI. The functionality
of this feature is described in detail in [21]. The iMACT will
be used to supply the starting address for each configuration
revision in order to generate the MultiBoot SPI file [21]. SPI
PROM is specified to store the configuration bitstream for the
different custom modules. Consequently, if the custom
instruction is needed by the MIPS CPU then the trap handler
will check if the custom instruction is already configured
otherwise a different bitstream will be loaded from an attached
external memory (SPI PROM) into the FPGA. As a result, the
FPGA will be reconfigured with a different configuration

MIPS CPU
Module Instructions

ROM
Module

Memory
Module

General I/O
Module

Custom
Module

MIPS
CPU

Module

Instruction
s ROM
Module

Memory
Module

General
I/O

Module

CM
1

CM
1

CM
1

CM
1

Trap
MUX

System

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:11, 2016

2011

bitstream. The whole process works with full reconfiguration,
with respect to the MIPS and the extension. The
reconfiguration will only make sense with partially
reconfigurable custom instructions because rebooting the
whole system each time when different custom instruction is
called is not a good idea. So a different approach comes from
investigating the MultiBoot can be used for PR.

Fig. 8 Fifth step: System overview of the first approach

Fig. 9 Final step, system overview [22]

Second approach step: Exploiting the MultiBoot feature

for PR. As stated in [22]. PR is a technique for modifying the
operation of the FPGA by loading a different bitstream while
it is performing its normal operation. The whole design in this
technique is translated into different bitstreams or files, where
each one defines a separate function and is loaded upon being
required. Application Specific Integrated Chips (ASIC) are
fabricated and designed to perform a fixed functionality. On
the other hand, FPGAs offer the flexibility of being
reprogrammed, and most modern FPGAs offer the capability
of on-site programming. In PR, the operation of the FPGA is
modified by programming a partial bitstream (also called bit
files), which defines the operation of a subset of the
programmable blocks while in this case the whole FPGA
fabric is not reprogrammed. In such a scenario, first of all a
full bit file is programmed into the FPGA, which defines the
operation for the whole FPGA. Then afterwards, depending on

the requirement of the operation, a partial bit file can be
downloaded to modify the reconfigurable parts of the FPGA
and the other parts continue to perform their operation without
being affected. The conceptual diagram of the partial
reconfigurable system is shown below.

It can be seen that there is a Reconfigurable Block A in the
system, which can be loaded with one of the possible
configurations defined by several BIT files, A1.bit, A2.bit,
A3.bit, and A4.bit. The logic in the FPGA design is divided
into two different regions: reconfigurable region and static
region. The dark area of the FPGA block represents
reconfigurable regions and the lighter area shows the static
region. The functionality of the reconfigurable region is
defined by the partial bit files and can be re-programmed by
loading one of the partial configurations, while the static
region continues to perform its operation and is not affected
by the reprogramming of the reconfigurable region. The
method of PR offers several advantages:
– This approach helps to reduce the area or size of the

FPGA device required to implement a given function,
which means fewer logic blocks are consumed; hence, as
a result, it also reduces the cost and power consumption of
the device.

– This approach helps to implement and test multiple
algorithms or methods to perform a specific functionality.
In such a case, multiple implementations can be loaded
turn by turn and can be compared against each other.

– This technique enhances the design security as specific
user dependent keywords or codes can be included into
the reconfigurable region and reprogrammed by the end
user.

– This approach enhances the fault tolerance in the FPGA
design, where any malfunctioning regions or parts can be
reprogrammed by the user and can be debugged.

– This approach enables the designer to divide the complete
design into multiple regions or blocks, and these blocks
can be added to the FPGA design incrementally; hence, it
speeds up the FPGA design and verification process.

In our partially reconfigurable system, there is a PR
controller implemented in the static region. This PR controller
is used to retrieve the partial bitstreams from any memory
connected to the FPGA, and then forwards it to a
configuration port. There are two possibilities for the PR
controller; either it is implemented in an external device such
as a separate processor or in the static region of the FPGA
design. In the case of the PR controller being located inside
the static region of the FPGA, the partial bit files are loaded
using ICAP interface. Like the other logic in the static region
of the FPGA, the PR controller logic functions without being
affected by the programming of partial bit files.

The fundamentals and the concepts of the PR for any
system design are discussed above. However, nothing in the
documentation provides information on using the ICAP
primitive to send the command sequence for loading
configuration bitsreams in MultiBoot feature for PR. Hence,
PR is applied. The code will be changed to include a black box
that presents the custom instruction wrapper later in order to

MIPS
CPU

Module

Instructions
ROM

Module

Memory
Module

General I/O
Module

CM3

Reg

Trap handler

System Bus

CM ICAP

CM1
CM4

MUXM1

CM2

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:11, 2016

2012

perform the down to top syntheses, which is the important
concept when implementing PR.

B. System Design

The overall project is comprised of two parts. One is the
implementation of a custom instruction module library, where
we implement custom modules for different operations like
CRC, Ones counter, parity etc. The other part is the
implementation of the PR region of the FPGA, which is used
to reconfigure the reconfigurable region according to the
requirements.

C. System Architecture and Components

The overall system is divided into two main regions, the
static region and reconfigurable region, as show in Fig. 14.
The static part includes all of the 48 major logic and the
reconfigurable region only includes the custom module. The
MIPS CPU is the main controller processor of the system and
it fetches instructions from the instruction ROM. The MIPS
CPU decodes the instructions and performs the desired
operations. When the MIPS CPU encounters an instruction
which is not implemented in its datapath, it will start a
hardware trap handler and send the opcode of the desired
operation to the trap handler. The trap handler will look at the
opcode and check if the desired instruction is already loaded
into the custom module and performs the operation. If the
desired instruction is not loaded into the custom module, then
the configuration manager inside the trap handler will load the
partial bitstream using the ICAP primitive and hence a new
partial bit file will be loaded into the reconfigurable region
and then the operation is performed. The whole process is
carried out in hardware to achieve the lowest latency for
reconfiguration.

Fig. 10 The final system design

The system operates on a 50 MHz clock, that is derived

internally from a top level clock using Global buffers BUFG
to allow accessing of the clock in high speed and to provide
the least amount of skew possible between the MIPS and the
peripherals, which are connected to the bus that physically
located in large distances.

D. MIPS Soft-Core Processor

The CPU core is based on the MIPS I instruction set and is

built in the system as a soft-core processor. It is used as a
platform demonstrator for reconfigurable instruction
extensions. Moreover, it is the main module that will control
all the different modules and it will run a trap when the
custom instruction exception occurs.

E. Peripheral Component Modules

– Memory RAM: A static memory that provides write-
before-read behavior. In other words, the data being
returned, during a write-cycle, is the same as that being
written. The memory module is synthesized into internal
block memories in the Sparton-6 FPGA architecture [23].

– GPIO: General-purpose input/output (GPIO) that includes
any connection with an input or output pin. The user at
run-time can have control of them. GPIO pins such as
LEDs and switches go OFF by default [3].

– ROM: This module will contain the machine code of the
instructions, using the ROM’s address as an index into
this memory. The machine code will be generated with
the help of a GCC cross compiler that compiles the C
code and runs the assembly to produce the binary code
that can be used in this array.

– UART: Universal Asynchronous Receiver/Transmitter. A
UART module can be added to the system. This unit
allows the user to control the operation of the MIPS CPU,
the trap handler and other modules and allows them to
check the status of the system. Additionally, the UART
module can also be used to load the configuration
required by the ICAP module.

– System Bus: All modules are connected via a baseline bus
protocol, consisting of: Chip select (CS) input signal,
Write enable (WR_en) input signal, Address input signal,
Writedata input signal and Readdata output signal, with
the MIPS as the only master module [3].

F. Configuration Controller Module

 The Trap Handler

The Trap Handler is a core module and is located in the
static region of the FPGA design. The trap handler is directly
connected with the MIPS CPU with a bus, this module can be
easily modified such that multiple CPUs can use it to load the
configuration at the desired places and run the operations.
Whenever the MIPS CPU encounters an instruction which is
not implemented in its datapath, then there are two options:
either to have a stall or trigger the trap handler. The trap
handler is implemented so as to avoid the malfunction of the
CPU due to the non-implemented instruction.

The Trap handler is the module to handle the exception
encountered by the MIPS CPU. The MIPS CPU reads the
instructions from the instruction ROM and then decodes them.
After this, it executes them. In the case that the instruction
received is not implemented in the MIPS CPU, an exception is
generated. Then the MIPS CPU requests the trap handler to
handle the exception. The operation of the trap handler is
controlled by a state machine. Fig. 11 shows the state machine
diagram for the trap handler.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:11, 2016

2013

Fig. 11 Trap Handler State Machine

There are four states in the state machine. ST0 is the reset
state and the system is normally in this state. Here it waits for
the trap start signal, which comes from the MIPS CPU. When
an exception occurs inside the MIPS CPU, it will send the trap
start signal to the trap handler. On the reception of this signal,
the state machine moves to either ST1 or ST2. If the requested
Opcode is equal to the currently loaded CUSTOM ID, then
there is no need to load the partial bit file so the state machine
moves to ST2. In the other case, the state machine moves to
ST1, where it sends the command to the ICAP primitive to
load the partial bit file inside the custom module. The
configuration process is typically thousands of cycles so we
use a counter in order to monitor the configuration reading
signal from ICAP before going to ST2. At ST2, the trap
handler will send a start signal to the custom module and in
ST3, it will wait for it to complete the operation.

Each custom module is assigned a unique opcode and the
address, which are given in Table II.

TABLE II
CUSTOM INSTRUCTIONS’ ADDRESS AND ID

Custom Module Name Opcode Address

CRC-32 010000 X"100000"

Ones Counter 100001 X"200000"

Parity 010001 X"300000"

Leading Zero Counter 100000 X"400000"

 The ICAP Primitive

As we are using Spartan-6 FPGA, the ICAP primitive is
used to initiate the configuration process (called
ICAP_SPARTAN6). It is implemented in the FPGA's fixed
logic. This primitive can be used to program the FPGA logic
by user control.

 Custom Modules

There are four custom instructions implemented in the
design. The instructions are: CRC-32, Ones Counter, Parity
flag and Leading zero counter. The concept of each custom
instruction is taken from different sources, for example, using
the CRC generator to generate the CRC-32 custom instruction
module [24].

Each implemented module is assigned a CUSTOM ID,
which makes it differentiable from the others. More custom

instructions can be implemented and added to the systems by
assigning a unique CUSTOM ID to each of the custom
instruction as in Fig. 12.

Fig. 12 Custom Module Logic

The CUSTOM ID is evaluated by the instruction decoder of
the MIPS CPU in order to run the corresponding module or to
trigger the configuration process through the hardware trap
handler.

G. Custom Instructions as Partial Reconfigurable Modules

Fig. 13 Custom Instruction (CI) act as extension of the ALU

Fig. 13 shows the MIPS CPU with custom instructions as

extensions to the original ALU. It could take one or two 32-bit
input operands and one 32-bit output is computed. Adding
custom instructions to the system can speed up the execution
time of an application as mentioned above. Run-time
reconfigurable accelerator modules in a PR region with a
proxy logic approach for the communication have been
implemented using the GoAhead tools.

Proxy logic will be used as a connection primitive which is
nothing else than a look up table in route through mode. It acts
as a placeholder for the non-existing part of the system; that is,
it replaces the partial module when implementing the static
system and it replaces the static system when implementing
reconfigurable custom instruction accelerator. The same wires
are used for the communication between the static system and
the reconfigurable area.

OP_ OP_

CI AL

ALU_out

Instruction

RES

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:11, 2016

2014

H. Static System Implementation

A screenshot of the static system is shown in Fig. 14. It
shows the operand signals (OP_A, OP_B) in the left side and
the result signal is collected at the right. The amount of wires
that are connected from the static part of the system to the PR
region is four for the connection primitive. Consequently, it
takes 8 connection primitives for each of the 32-bit interface
signals (OP_A,OP_B and RES).

Fig. 14 Static implementation

Fig. 15 Partial Part: The example shows the implementation CRC
instruction

I. Reconfigurable Instructions

Implementing the reconfigurable modules in the absence of
the static system is done as can be seen in the screenshot in
Fig. 15. For the partial module implementation, the same
primitive will be used with the other side which is not
connected yet OP_A to CI and OP_B to Ci and RES_from CI.
Fig. 15x shows the CRC module connects where the static
design ends by the proxy logic. The custom instruction
wrapper has been auto generated by the GoAhead tool.

As the output of the result is not connected to the outside
word (i.e. the path ends at the connection primitives), the
FPGA tools would typically remove all logic and routing to
the output primitive. This will eventually result in an empty
design to overcome this; all interface signals were set with a
keep attribute (which is specific to the Xilinx vender tools).

V. RESULTS AND EVALUATION

The cost of the system resources for the first approach and
the cost of the system resources for the final system approach
are outlined in Table III.

TABLE III

RESOURCE REQUIREMENTS FOR CONFIGURATION CONTROLLER

Approach Nr of LUT Nr.of Slices Latency

MUX based trap handler 246 1798 20.011ns

ICAP based trap handler 438 1370 18.125ns

The results reveal that when using a MUX based trap

handler. The system used less look up tables than the ICAP-
based trap handler due to the simpler datapath in the ICAP
variant. However, the slice resources that are used in the
MUX-based trap handler system will be more than those used
in the ICAP-based trap handler because the system uses more
logic for the custom modules. Finally, the latency is higher in
the case of the system that is based on the MUX-trap handler
because of the trap overhead. However, in the ICAP system,
unless one custom instruction is configured in the system and
only in the case of the custom instruction not the desired one
then the reconfiguration will be considered. Note that the
delay in this table is for the whole implementation without
considering the reconfiguration overhead. Only by introducing
the ICAP-based trap handler, were we able to run the system
at the target 50 MHz clock frequency

For the custom modules, Table IV shows the cost of the
resources.

The results in Table IV show the implementation costs for
the custom instructions. In the progress report, manual code
optimization was performed in order to see if the tools
recognize the optimization by itself or not and the result shows
the tools do not do that. This point was considered when we
implemented the custom module. Therefore, the result shown
in Table IV shows the better use of the resources, delay and
bitstream size for each custom module after manually
optimising each module.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:11, 2016

2015

TABLE IV
RESOURCE REQUIREMENTS FOR CUSTOM MODULES

Custom
Module

Nr. Of
LUT

Nr.of
Slices

Latency (Max/av)ns
Bitstream
size (KB)

CRC 32 43 18 8.038/3.597 282

Counting One 39 19 15.717/14.35 263

Leading Zero 19 15 9.723/3.597 293

Parity (XOR) 7 6 3.618/3.597 282

A. System Performance

The whole system, including the configuration controller,
can run at a system clock of 50 MHz. The first of the two
biggest limitation factors is that the MIPS CPU runs a trap
when a custom instruction exception occurs and traps have a
tiny additional overhead which would not occur in case of a
baseline MIPS implementation. The second factor is that the
trap handler represents the configuration controller, which
uses external flash memory.

For PR, one important benchmark is the response time that
has to be considered for the reconfiguration process. Swapping
instructions will obviously take a significant amount of time
for loading the corresponding partial bitstream from an
external SPI memory to the device. Moreover, the bitstream
size would affect the speed of the configuration module.

In [3], the configuration controller for module relocation
was designed to use two clocks, one clock running at 50 MHz
for the part that was connected to the bus and the other one
running at 100 MHz for the part that handled the configuration
process. In our system, the trap handler will run at 50 MHz,
which could slow down the configuration speed. Moreover, in
[3] a decompression module is used to decompress the
configuration data on the FPGA for faster reconfiguration. So,
our predicted result of the reconfiguration time could be lower
than what is achieved in that work. However, there are some
techniques that could be applied to optimize the performance
and cost in the system on the FPGA device. In this project, we
used the FPGA MultiBoot feature that is slow, but that uses a
serial configuration memory chip that is underutilized in most
FPGA prototyping systems. This also separates the
configuration bitstream storage from other memory which
improves the security of the system.

B. Performance Enhancing Techniques

General speaking, performance techniques could be divided
into: techniques that are not FPGA specific from compiler and
memory usage to name a few; and techniques that are FPGA
specific, such as increasing the operating frequency. As a rule
of thumb, since optimizing configuration speed is a typical
goal, an entire program should rarely be targeted at external
[20] if so, then the use of another clock should be considered
in order to handle the process faster than it would be.

C. Comparing the System to a Real-World System

The available embedded processors with the manufacturers
quoted maximum frequency and our soft-core, included the
extension with its maximum frequency are summarized in
Table V. Despite the MIPS processor being the slowest in that
table, it might outperform the others due to the use of custom
instructions.

TABLE V
COMPARISON BETWEEN XILINX EMBEDDED PROCESSORS WITH OUR SOFT-

CORE AND THEIR PERFORMANCE
Processor Processor Type Device Family used Speed (MHz)

Achieved
PowerPCTM 405 hard Vritex-4 450

MicroBlaze soft Vritex-II Pro 150

MicroBlaze soft Spartan-3 85

MIPS soft Spartan-6 50

D. Hardware Acceleration

A soft-core on the FPGA will allow the designer to make a
trade-off between hardware and software in order to maximize
efficiency and performance. If there is a software function
identified as a software bottleneck, then a custom module can
be designed for this function in the FPGA. The device will
then act as a coprocessor or, as in our case, as a custom
instruction extension to the soft-core processor.

One way to evaluate custom instructions in hardware
implementation is to compare them against software
implementations of the functions running on the standard ISA
of the MIPS CPU. The software functions that are used as a
reference can be found on [25] Software evaluation for those
four functions, which are written in C code, is compiled for
the MIPS using a GCC cross-cross compiler. Using
disassembly for the code in order to calculate how many
instructions each function is consuming. Table VI shows how
many CPU instructions are saved by using a custom
instruction.

TABLE VI

SOFTWARE REQUIREMENTS
Software function Instructions

CRC 262

Hamming weight 262

Leading Zero 294

Parity (XOR) 263

VI. FUTURE WORK

There are some improvements that can be done to the final
implemented system and together these could be considered as
the requirement analysis stage for the next lifecycle.
• In this project, Nexys3 has been used as a platform.

However, the lack of external interfaces caused
limitations in the usability of this device. Using another
academic board which includes audio and video then
could show the input and the output of the system and
could design a complete digital system built around soft-
core processor.

• The MIPS CPU that is used as soft-core is a very simple
processor, is nonpipelined and uses BRAM as both
program memory and data memory. These could be
improved by implementing a pipelined processor also by
implementing a simple cache controller that could be
connected to DDRmemory. As a result of this, executing
larger programs and storing large data structures such as
frame buffers could be possible.

• The system uses the MultiBoot feature and the command
sequence that is sent through the ICAP primitive to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:11, 2016

2016

support the read-back of configuration data from ICAP.
However, there are two different ways for reading and
writing the configuration data from ICAP. As illustrated
in [3]. “Either clock is left toggling and clock enable is
used to control throughput, or clock enable is kept high
and the clock signal is controlled to achieve wanted
throughput” with implementing ICAP interface.

• Adding more advanced modules for communication over
COM-port.

• Measuring the clock cycle of the reconfiguration by using
Log with a counter in the trap handler in order to reflect
the number of clock cycles from the time the counter
starts until it is stopped.

• The Nexus3 board has a seven segment electrical screen;
it could be exploited for testing.

• Different benchmarks could be used to evaluate the soft-
core on the FPGA. The most standard benchmark is
Dhrystone MIPs (DMIPs) and the result from this could
then be compared with the results we achieved with our
system.

VII. CONCLUSION

The system is improved through the lifecycle that is
presented in the methodology. The final system after all
improvements had been done meets the objectives outlined in
the introduction chapter. Moreover, learning the concepts and
the fundamental features of FPGAs step by step is the biggest
achievement. The previous chapters described those concepts
in detail, the necessary components and tools and the
implementation of a fully functional PR system. The
dynamically run-time reconfigurable custom instruction set
extension of a MIPS CPU can be replaced in the system. The
most important part of the implemented system are:
1. MIPS CPU
2. Trap handler, included ICAP primitive.
3. The exploitation of the MultiBoot feature for the full and

PR.

ACKNOWLEDGMENT

The author thanks supervisor, Dirk Koch, for giving the
opportunity to work in Computer Sciences: Computer System
Engineering.

REFERENCES
[1] Koch, D., 2013. Partial Reconfiguration on FPGAs: Architectures, Tools

and Applications. New York: Springer.
[2] Beckhoff, C., Koch, D. & Torresen, J., 2012. Go ahead: A partial

reconfiguration framework. Field-Programmable Custom Computing
Machines (FCCM), 2012 IEEE 20th Annual International Symposium,
pp. 37-44.

[3] Fritzell, A., 2013. A System for Fast Dynamic Partial Reconfiguration
using GoAhead Design and Implementation. Master’s Thesis: University
of Oslo.

[4] Koch, D., Beckhoff, C. & Torreson, J., 2010. Zero logic overhead
integration of partially reconfigurable modules. Proceedings of the 23rd
symposium on Integrated circuits and system design, pp. 103-108.

[5] Hauck, S., 1998. Configuration prefetch for single context
reconfigurable coprocessors. In: Proceedings of the 1998 ACM/SIGDA
sixth international symposium on Field programmable gate arrays. New
York: ACM, pp. 65-74.

[6] Pittman, R. N., Lynch, N. L. & Forin, A., 2006. eMIPS, A Dynamically
Extensible Processor, Redmond: Microsoft Research.

[7] Kulkarni, R., 2006. Disruptive Technology. Computing & Control
Engineering Journal. vol. 17, no. 1, Feb.-Mar., pp. 32-35.

[8] Deschamps, Jean-Pierre, Sutter, Gustavo D., Cantó, Enrique "Guide to
FPGA Implementation of Arithmetic Functions" Lecture Notes in
Electrical Engineering, Volumen 149. Springer Netherlands 2012

[9] Kozyrakis, C. E. & Patterson, D. A., 2004. Scalable, vector processors
for embedded systems. Micro, IEEE, 23(6), pp. 36-45.

[10] Kilts, S. (2007). Advanced FPGA design: architecture, implementation,
and optimization. John Wiley & Sons.

[11] Minev, P. B. & Kukenska, V. S., 2007. Implemenation of Soft-core
Processors in FPGAs. Gabrovo, International Scientific Conference.

[12] Gebotys, C. H., 2012. A network flow approach to memory bandwidth
utilization in embedded DSP core processors. IEEE Transactions on
Very Large Scale Integration (Vlsi) Systems, 10(4), pp. 390-398.

[13] Synopsys, 2010. SiliconBlue Selects Synopsys as FPGA Synthesis
Partner for Its iCE65 mobileFPGA Family. (Online) Available at:
http://news.synopsys.com/index.php?s=20295&item=123144
(Accessed 30 March 2015).

[14] Altera. (2011, Jan.) Nios II Custom Instruction User Guide. (Online).
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf

[15] S. Majzoub, H. Diab, "Mapping and Performance Analysis of Lookup
Table Implementations on Reconfigurable Platform," IEEE/ACS
International Conference on Computer Systems and Applications
(AICCSA’07), Le Méridien Amman Hotel, Amman, Jordan, May 13-16,
2007 pp.513-520.

[16] Galuzzi, C. & Bertels, K., 2011. The Instruction-Set Extension Problem:
A Survey. ACM Transactions on Reconfigurable Technology and
Systems. article 18, 4(2).

[17] Wold, A., Koch, D. & Torresen, J., 2012. Design techniques for
increasing performance and resource utilization of reconfigurable soft
CPUs. s.l., IEEE, pp. 50-55.

[18] Jo, J., 2013. 6 Basic Phases of Software Development Life Cycle
(SDLC). (Online) Available at:
http://www.techknol.net/2013/04/software-development-life-cycle.html
(Accessed 15 August 2015).

[19] Elkateeb, A., 2011. A Processor Design Course Project: Creating Soft-
Core MIPS Processor Using Step-by-Step Components' Integration
Approach. International Journal of Information and Education
Technology, 1(5), pp. 432-440.

[20] Fletcher, B., 2005. FPGA Embedded Processors Revealing True System
Performance. In: Embedded Training Program Embedded Systems
Conference.. (Online) Available at:
http://www.xilinx.com/products/design_resources/proc_central/resource/
ETP-367paper.pdf (Accessed 14 August 2015).

[21] Xilinx Inc, 2015. Spartan-6 FPGA Configuration User Guide. (Online)
Available at:
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
(Accessed 11 August 2015).

[22] Xilinx, 2012. Partial Configuration User Guide. (Online) Available at:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/u
g702.pdf (Accessed 1 August 2015).

[23] Doulos.com, 2015. Simple Ram Model. (Online) Available at:
https://www.doulos.com/knowhow/vhdl_designers_guide/models/simple
_ram_model/ (Accessed 7 August 2015).

[24] OutputLogic.com, 2013. OutputLogic.com. (Online) Available at:
http://outputlogic.com/ (Accessed 30 August 2015).

[25] Andersen, S. E., 2005. Bit Twiddling Hacks. (Online) Available at:
http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetNaive
(Accessed 31 August 2015).

Rehab A Shendi was a student at School of Computer Science, University of
Manchester, UK. She got a Master Degree in Computer science specialized in
Computer system engineering from The University of Manchester. She is now
with the Department of Computer Science, Taibah University, (e-mail:
rshendi@taibahu.edu.sa).

