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Abstract—The use of customised soft-core processors in which 

instructions can be integrated into a system in application hardware is 
increasing in the Field Programmable Gate Array (FPGA) field. 
Specifically, the partial run-time reconfiguration of FPGAs in 
specialised processors for a particular domain can be very beneficial. 
In this report, the design and implementation for the customisation of 
a soft-core MIPS processor using an FPGA and partial 
reconfiguration (PR) of FPGA technology will be addressed to 
achieve efficient resource use. This can be achieved using a PR 
design flow that helps the design fit into a smaller device. Moreover, 
the impact of static power consumption could be reduced due to 
runtime reconfiguration. This will be done by configurable custom 
instructions implemented in the hardware as an extension on the 
MIPS CPU. The aim of this project is to investigate the PR of FPGAs 
for run-time adaptations of the instruction set of a soft-core CPU, 
including the integration of custom instructions and the exploration 
of the potential to use the MultiBoot feature available in Xilinx 
FPGAs to carry out the PR process. The system will be evaluated and 
tested on a Nexus 3 development board featuring a Xilinx Spartran-6 
FPGA. The system will be able to load reconfigurable custom 
instructions dynamically into user programs with the help of the trap 
handler when the custom instruction is called by the MIPS CPU. The 
results of this experiment demonstrate that custom instructions in 
hardware can speed up a certain function and many instructions can 
be saved when compared to a software implementation of the same 
function. Implementing custom instructions in hardware is perfectly 
possible and worth exploring. 
 

Keywords—Customisation, FPGA, MIPS, partial 
reconfiguration. 

I. INTRODUCTION 

PGAs have become popular over the last decade as they 
allow designers to create complex digital designs at a low 

implementation cost. Application Specific Circuits (ASICs), in 
contrast, introduce a high initial cost and require a large 
amount of resources to create complex designs. Modern 
FPGAs now occupy central positions in industry because of 
their capacity for over 1000 multipliers, megabytes of on-chip 
memory, hundreds of thousands of logic cells and clock 
speeds of up to half a gigahertz. Moreover, the cost per 
function in FPGAs decreases significantly over time [1]. 

PR is one of the most important features of modern FPGAs 
provided by the FPGA vendor Xilinx. It allows modules 
running on an FPGA to dynamically reconfigure and swap 
during execution while the remaining modules continue 
operating. PR is an interesting topic for research among 
students and researchers in the Reconfigurable Computing and 
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Adaptive Hardware field. FPGAs are less efficient in area, 
power and speed than ASICs; however, it is possible to make 
them more efficient than a static system when all or parts of 
the hardware are reconfigured at run-time through the 
execution operation. The instruction set with user-defined 
instructions of a soft-core, that is used to speed up the 
execution of an application in a specific domain, can provide 
huge PR benefits. Such benefits include integrating different 
sizes of reconfigurable modules into the system to be placed 
on an FPGA at run-time, and being able to communicate 
efficiently with the rest of the system and avoiding additional 
delay.  

In this paper, the extension of a MIPS soft-core, user-
defined instruction set will be presented with the help of PR. 
The aim of this project is to investigate PR of FPGAs for run-
time adaptations of the instruction set of a Soft-core CPU, 
including the integration of custom instructions by presenting 
a practical introduction to soft-core processor with extension 
design through the use of step-by-step integration of the 
system for PR using GoAhead tool flow. The powerful 
GoAhead tool supports all recent Xilinx FPGAs and includes 
some features that are not available in the other PR tools 
provided by the FPGA vendor Xilinx [2] as will be introduced 
in Section III. The objective of this project is to investigate a 
custom instruction module library that offers low latency 
performance; low implementation costs in terms of logic 
resources, and achieves high CPU clock cycle savings 
compared to software-only implementations. 

II. BACKGROUND 

A. MIPS Architecture  

MIPS overview  

In this section, the MIPS architecture will be used as a 
demonstrator for the custom instruction implementation in 
hardware. It is used to implement a 32 bit embedded system. 
Moreover, it is one of the most widely supported RISC 
processors that have been used in research on efficient 
processor organisations to deliver the highest performance and 
high power efficiency.  

The original MIPS architecture consists of the following 
functional blocks:  
 Instruction decoder: It will decode the simple MIPS 

instructions since all instructions are the same size with 
only three different formats.  

 Programme Counter (PC): It contains the address of the 
currently executed instruction and then increments the 
stored value address of the next instruction by 4. In the 
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case of there being a branch or jump instruction, a delayed 
branch will occur, which means one more instruction is 
performed and the value that is provided by the branch or 
jump instruction will be added to the instruction address.  

 Arithmetic Logic Unit (ALU): It is a fundamental block 
of the CPU that performs arithmetic and logical operation 
on the operands, which are the data inputs to an ALU to 
be operated on, from register to register, memory to 
register or vice versa.  

 Registers: the MIPS processor has 31 general purpose 
registers including register 0 that holds a constant zero. 
The other registers will be used by the compiler as 
outlined in the "MIPS32® Instruction Set Quick 
Reference"  

 Memory: It will be only accessed via load and store 
instructions.  

Pipeline registers are often placed between the functional 
blocks in order to allow the processor to run at high clock 
speeds and to minimise the delay. Basically, the MIPS 
processor has been designed to use pipelining to improve 
throughput and performance. It includes a 5-stage pipeline: 
Instruction Fetch, Instruction Decode, Execute, Memory 
access and Register Write Back.  

MIPS Instruction Set  

The MIPS instruction set is divided into three core groups 
of instructions. Each one of them has its own encoding, as 
illustrated in Table I.  

 
TABLE I 

TYPE OF MIPS INSTRUCTIONS [3] 

Instructions 
type 

  BITS 

31-26 25-21 20-16 15-11 10-6 5-0 

R-type opcode rs rt rd shamt funct 

I-type opcode rs rt immediate 

J-type opcode  address 

 
Table I shows that each type has a 6-bit main opcode that 

can be used by the decoder to determine the instruction, while 
the other fields, rs, rt and rd, will be address vectors in the 
registers file. Those instructions are used for:  
• R-type instructions are Arithmetic Instructions that use 

two operands from the register file, rs and rt, and the 
result of the operation will be returned to the register rd. 
The R-type instruction could share their opcode with 
other instructions and funct-code will determine the 
operation.  

• I-type instructions are Load/Store Instructions that use a 
register, rs, with a constant value, coded as the immediate, 
the result will be returned to the register rt. The I-type 
instruction could be used for braches, so the immediate 
will be added to the current PC to perform a branch.  

• J-type instructions are Jump instructions that provide a 
new address for the PC. This means moving the execution 
to a new code block.  

B. Reconfigurable CPU Instruction Set Extensions  

Many different applications could be handled by using only 
GPPs, General purpose processors. However, most of them 
could use only a small subset of all the available instructions 
in the GPP. Therefore, some small changes to dedicated 
hardware in any application could give a huge improvement in 
execution time. A compression algorithm, for example, would 
need to count the number of one-bits in a vector. By adding 
dedicated hardware instruction, the speed up of this algorithm 
will be increased. Extending the instruction set of a CPU could 
be one way to do this, allowing for hardware acceleration of 
small parts of an application. The Microblaze and the Nios 
soft-core CPUs from Xilinx and Altera are good examples of 
CPUs that allow custom instructions with the benefits of a fast 
RISC machine. The next section will highlight the interesting 
points regrading custom instructions.  

1) Custom Instructions in Hardware  

Custom instructions enable a designer to implement a 
complex sequence of standard instructions into a simpler and 
single instruction built in hardware. The simple description of 
implementing such a custom instruction in a MIPS CPU, that 
can access the register file in the same way as an ALU, is 
shown in Fig. 1. 

 

 

Fig. 1 (a) A typical CPU (b) Extensions CPU with Reconfigurable 
Instructions [1] 

 
Fig. 1 shows that extending the CPU with exchangeable 

instructions could be done after decoding unused instruction in 
the original CPU ISA. Then, a multiplexer is used in order to 
select between normal ALU option and one or more user 
defined instructions. Then the configurable instruction can be 
integrated into the CPU [1]. 

The custom instruction logic block has two input ports and 
one output result, as shown in Fig. 4. Often, custom 
instructions operate in a single clock cycle. However, a multi-
cycle operation can be considered for longer combinatory 
paths. Through the use of custom instructions, it becomes 
possible to tailor the processor core to a certain application.  

One way to emulate the configuration instructions is by 
adding a large reconfigurable accelerator modules multiplexer 
that can be placed outside the CPU on the system bus. 
However, this approach will involve an additional cost. 
Another way to configure such a custom instruction in 
hardware is by using runtime partial reconfigurable. The 
custom instruction could be placed in small slots/islands close 
to the MIPS CPU, which could cause routing congestion 
because a high number of signals need to be entered inside the 
small area. Devices from Altera or Xilinx support design flow 
tools such as PlanAhead, Open PR and GoAhead flow can 
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communicate between the static system, which includes MIPS 
CPU, with custom instructions as they can implement the 
interface between the static and partial system. By using bus 
macros, proxy logic or direct mapping wired technique that 
are provided by PlanAhead, OpenPR and GoAhead flow tools 
respectively. 

Reference [3], who proposed a fast dynamic PR system 
using GoAhead, argued that with a high number of signals and 
small islands/slots, design flows using bus macros or proxy 
logic could not give good results, considering the 
communication overhead. He shows that by using GoAhead 
with the direct wire approach, the implementation of the 
custom instructions can be very efficient in small islands/slots. 
Consequently, the modules can be relocated. The benefits of 
allowing the custom instruction to be relocated in more than 
one slot are the flexibility of slot utilization, the reduction of 
the external fragmentation and the removal of unnecessary 
reconfiguration calls, as mentioned by [4]. 

As a result, the processor will need a look-up table to store 
a location of a slot that has a custom instruction so that the 
decoder will know from which custom instruction slot the 
result should be routed [3]. 

2) Custom Instructions in Software  

Reconfiguration of custom modules could be done either by 
run-time PR or by a multiplexer that emulates the 
configuration process, as already mentioned above, and the 
reconfiguration time could be the biggest overhead. So, in 
order to trigger the configuration process, there are two 
fundamental options:  
 Explicit approach: The configuration instruction will be 

loaded during the execution time by the user or by the 
program, before the processor needs it. Reference [5] 
proposed this method as the configuration pre-fetch 
instructions before the instruction is called. This method 
could be fast. However, the speed of the configuration 
controller and the size of the bitstream will affect the time 
that the reconfiguration of the custom instruction takes. 
Consequently, the processor must be stalled, if the 
configuration of the custom instruction is not finished 
before the processor calls it.  

 Implicit approach: An exception trap will be triggered 
when the processor detects that the custom instruction is 
not in hardware. The trap handler will handle the 
configuration process of the custom instruction that the 
processor needs. The trap handler could run a program [6] 
that the software function will be executed when the 
custom hardware is not configured. This approach could 
remove a lot of overheads by not stalling the CPU while 
the configuration is in progress. However, it could take 
time to handle the trap.  

C. Design Considerations  

The development of a customizable CPU on FPGAs 
requires the consideration of critical system factors in order to 
attain the desired performance. Some of the critical objectives 
that are normally taken into consideration include the speed of 

the CPU, the memory, the power required and the speed with 
which the CPU can access other components of the system. 
There is usually a trade-off between the performance and the 
power required to attain such performance [7]. 

The additional design considerations of a customisable 
configuration include the architecture of the processor and its 
suitability for the targeted application. This implies that the 
designer will have to take into consideration the size and type 
of memory and peripheral bus. In addition, the designer will 
have to decide on the model and size of the address space that 
is confined to the CPU, space and type of the caches and 
instruction and data caches. It is also important to give 
consideration to the type of controllers that are being used in 
the architecture. Optional accelerators might be used to speed 
up the CPU [8]. 

It should also be mentioned that the operating system and 
the design and development tools are part of the 
considerations that will have to be evaluated by the designer. 
The biggest advantage of implementing the soft-core CPU 
using FPGA lies in the fact that in the case of any mistake 
being committed during the development phase, there is the 
possibility of repeating the process to reconfigure the 
parameters afresh. There are no limits to the number of times 
the processor can be reconfigured. This provides designers 
with a degree of design flexibility [9]. 

The designer will have to take the development and design 
tools into consideration that will be used to develop the soft-
core. Fig. 2 provides an illustration of the design and 
development tools. The design and development tools are 
considered to be responsible for the parameterisation of the 
soft-core and also the associated implementation of the 
peripherals [10]. 

 

 

Fig. 2 Design and development tools [11] 
 
FPGAs allow extensive customisation alternatives that are 

not found in other platforms such as ASIC. Additionally, an 
FPGA is also considered to have optimisation techniques that 
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help a designer to work towards achieving performance 
metrics faster [12]. The benefits of using an FPGA platform in 
customising soft-core CPUs have also be reviewed. The 
development of a customisable CPU on FPGA requires critical 
system factors in order to attain the desired performance [12]. 

Evaluation of the design and development tools will help 
the designer to easily and quickly attain the design 
requirements. It should also be noted that the wrong choice of 
design and development tools can lead to system 
inefficiencies. The design and development tools are 
considered to be responsible for the parameterisation of the 
soft-core and also the associated implementation of the 
peripherals [13]. 

III. RELATED WORK 

Related work that is relevant to this project can be 
categorized into two parts: instruction set extension and PR. 

A. Instruction Set Extension 

An example study regarding instruction set extension is that 
of [14]. This study demonstrates the ability to extend the 
NIOS-II CPU with custom instructions using the SOPC 
builder wizard of the Quartus design tool. Integrating custom 
instructions with a soft-core instruction set is a feasible way of 
speeding up application execution in specific domains such as 
cryptography [15]. Some of the issues involved in the 
customisation of an instruction set were analysed in detail by 
[16] who provided a comprehensive overview of instruction-
set extensions.  

B. PR 

A fair amount of literature has been published on partial 
run-time reconfiguration in the soft-core CPUs of FPGA. 
These studies have shown that PR reduces the size, weight, 
power and cost of an FPGA system. The use of design 
techniques to increase performance and resource utilisation of 
reconfigurable soft CPUs was studied by [17]. They have 
investigated the appropriate instruction implementation 
technique for a soft CPU which can achieve a performance 
improvement, while at the same time reduce the resource 
requirement. It is a different task but fairly closely related to 
what this project is aiming at. Their goal is to improve soft 
CPUs for FPGAs using PR. For example, they presented a 
classification method that determined the parameters for 
selecting the most suitable instruction based on profiling. 
Instruction Set Extensions, Software Emulation, 
Reconfigurable Instructions and ISA Subsetting are the 
optimisation techniques used in their methodology. 
Reconfigurable instructions could result in a critical side effect 
in terms of the configuration time. An example of this could 
be stalling programme execution while waiting for the 
reconfiguration process to complete could cause an overhead 
[17]. Another study by [4] involved an approach to reduce this 
overhead. They examined the problem which occurs when the 
36 communication needs an extra logic or the placement of 
reconfigurable modules needs to be restricted to the static 
system which causes an additional logic overhead. They reveal 

a novel tool called ReCoBus-Builder. In a case study, modules 
of different sizes and latency were integrated with soft CPUs 
without causing any logic overhead by using partial run-time 
reconfiguration. For this project, the newer tool GoAhead, 
which is a fully re-implemented issue of the tool ReCoBus-
Builder, will be used. However, this study will be a library of 
dynamic instruction set extension. 

IV. SYSTEM DESIGN AND METHODOLOGY 

A. System Development Methodology 

System Development Methodology Designing and 
developing such an effective customization soft-core 
processor is a challenging task, especially with little 
experience in processor and system design. Therefore, a 
system development lifecycle method and a step-by-step 
design approach are appropriate. This can progressively 
develop a researcher’s learning experience in this important 
computer engineering field and developing an effective system 
using PR field.  

 

 

Fig. 3 The general approach of the system development stages [18] 
 
Fig. 3 shows the general lifecycle stages that were used in 

this project in order to develop a processor. The requirement 
analysis stage has already been introduced in the objectives 
section of the Introduction. The design and implementation 
stages used a step-by-step design and implementation method 
[19], as shown in Fig. 4, and this will be discussed below in 
this section. The testing and evolution stages will be 
introduced in Section IV and will use an appropriate approach 
for FPGA Embedded Processors design and evaluation [20] 
such as comparing the system against a software 
implementation and comparing with the others real-world 
system. Finally, some techniques for optimizing the 
performance and cost in an FPGA MIPS processor system will 
be discussed. 

When using such a step-by-step design and implementation 
method, the customizing soft-core processor has to be done by 
gradually integrating the processor module with other system 
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modules and developing other modules to get the final 
customization soft-core MIPS processor design with the help 
of the PR. Each of the steps is briefly described below.  

 

 

Fig. 4 A step-by-step design and implementation method 
 
First Step: MIPS CPU: First of all, the soft-core is the 

brain of the system. A MIPS CPU has been implemented in 
one module, using an XOR gate in the top level in order to 
synthesize as shown in Fig. 8. The reason for the XOR gate is 
that the MIPS CPU used more interface wires than there are 
I/O pins available on the FPGA board. By XORing some of 
the CPU outputs, the CPU could be synthesized for test 
purpose (e.g. for data mining clock frequency and resources 
utilization). Testing MIPS instructions encoding and 
implementation module was done by using Test Bench in the 
Xilinx ISE package.  

 

 

Fig. 5 First step, system overview 
 
Second step: Custom instruction in software: A GCC cross 

compiler is used in order to compile the MIPS C code. This 
compiler is modified to include the custom instructions by 
assigning the custom instructions to unused opcodes. 
Accordingly, this will be used in the instruction decoder to 
select the instructions from the binary code. Installing the 
compiler was done using a virtual machine that was installed 
on the Windows operating system.  

Third step: One custom instruction in hardware: A custom 
module that will be connected with the MIPS is chosen. 
Adding a “Counting One” function as a custom module 
component in the MIPS CPU. The MIPS will detect the 
custom instruction and return the result from the custom 
module. Moreover, the MIPS CPU module is connected with 
other modules such as ROM, RAM and GPIO via system bus. 

 Fourth step: Custom Instructions library in hardware: 
Four custom modules are implemented. In addition, a Trap 
handler that is based on a multiplexer (MUX) is developed in 
order to choose one custom instruction, the one that is called 
by the MIPS CPU. This approach has overhead logic costs. 

 

Fig. 6 Third Step, system overview 
 

 

Fig. 7 Fourth step, system overview 
 
Fifth step: Reconfiguration Custom instruction: There are 

different methods for implementing reconfigurable custom 
modules in hardware as already mentioned in the background 
section. In this project the following approaches have been 
implemented.  

First approach step: Improving the Trap handler: The 
Trap handler based on a MUX is improved to handle the 
configuration process. In this approach, the trap handler will 
be based on ICAP. It is done by implementing the trap handler 
as a state machine which includes a table to save the addresses 
of the configuration bitstreams for the different custom 
instructions as will be introduced later and then uses the ICAP 
primitive in order to load the bitstreams into the device. We 
will exploit the fact that all academic boards come with serial 
SPI memory that is often not used. The MultiBoot feature is 
applied in this project; this allows the FPGA to load one of 
several configuration revisions. Spartan-6 FPGAs support two 
different configuration modes: BPI and SPI. The functionality 
of this feature is described in detail in [21]. The iMACT will 
be used to supply the starting address for each configuration 
revision in order to generate the MultiBoot SPI file [21]. SPI 
PROM is specified to store the configuration bitstream for the 
different custom modules. Consequently, if the custom 
instruction is needed by the MIPS CPU then the trap handler 
will check if the custom instruction is already configured 
otherwise a different bitstream will be loaded from an attached 
external memory (SPI PROM) into the FPGA. As a result, the 
FPGA will be reconfigured with a different configuration 
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bitstream. The whole process works with full reconfiguration, 
with respect to the MIPS and the extension. The 
reconfiguration will only make sense with partially 
reconfigurable custom instructions because rebooting the 
whole system each time when different custom instruction is 
called is not a good idea. So a different approach comes from 
investigating the MultiBoot can be used for PR.  

 

 

Fig. 8 Fifth step: System overview of the first approach 
 

 

Fig. 9 Final step, system overview [22] 
 
Second approach step: Exploiting the MultiBoot feature 

for PR. As stated in [22]. PR is a technique for modifying the 
operation of the FPGA by loading a different bitstream while 
it is performing its normal operation. The whole design in this 
technique is translated into different bitstreams or files, where 
each one defines a separate function and is loaded upon being 
required. Application Specific Integrated Chips (ASIC) are 
fabricated and designed to perform a fixed functionality. On 
the other hand, FPGAs offer the flexibility of being 
reprogrammed, and most modern FPGAs offer the capability 
of on-site programming. In PR, the operation of the FPGA is 
modified by programming a partial bitstream (also called bit 
files), which defines the operation of a subset of the 
programmable blocks while in this case the whole FPGA 
fabric is not reprogrammed. In such a scenario, first of all a 
full bit file is programmed into the FPGA, which defines the 
operation for the whole FPGA. Then afterwards, depending on 

the requirement of the operation, a partial bit file can be 
downloaded to modify the reconfigurable parts of the FPGA 
and the other parts continue to perform their operation without 
being affected. The conceptual diagram of the partial 
reconfigurable system is shown below. 

It can be seen that there is a Reconfigurable Block A in the 
system, which can be loaded with one of the possible 
configurations defined by several BIT files, A1.bit, A2.bit, 
A3.bit, and A4.bit. The logic in the FPGA design is divided 
into two different regions: reconfigurable region and static 
region. The dark area of the FPGA block represents 
reconfigurable regions and the lighter area shows the static 
region. The functionality of the reconfigurable region is 
defined by the partial bit files and can be re-programmed by 
loading one of the partial configurations, while the static 
region continues to perform its operation and is not affected 
by the reprogramming of the reconfigurable region. The 
method of PR offers several advantages: 
– This approach helps to reduce the area or size of the 

FPGA device required to implement a given function, 
which means fewer logic blocks are consumed; hence, as 
a result, it also reduces the cost and power consumption of 
the device.  

– This approach helps to implement and test multiple 
algorithms or methods to perform a specific functionality. 
In such a case, multiple implementations can be loaded 
turn by turn and can be compared against each other.  

– This technique enhances the design security as specific 
user dependent keywords or codes can be included into 
the reconfigurable region and reprogrammed by the end 
user.  

– This approach enhances the fault tolerance in the FPGA 
design, where any malfunctioning regions or parts can be 
reprogrammed by the user and can be debugged.  

– This approach enables the designer to divide the complete 
design into multiple regions or blocks, and these blocks 
can be added to the FPGA design incrementally; hence, it 
speeds up the FPGA design and verification process.  

In our partially reconfigurable system, there is a PR 
controller implemented in the static region. This PR controller 
is used to retrieve the partial bitstreams from any memory 
connected to the FPGA, and then forwards it to a 
configuration port. There are two possibilities for the PR 
controller; either it is implemented in an external device such 
as a separate processor or in the static region of the FPGA 
design. In the case of the PR controller being located inside 
the static region of the FPGA, the partial bit files are loaded 
using ICAP interface. Like the other logic in the static region 
of the FPGA, the PR controller logic functions without being 
affected by the programming of partial bit files.  

The fundamentals and the concepts of the PR for any 
system design are discussed above. However, nothing in the 
documentation provides information on using the ICAP 
primitive to send the command sequence for loading 
configuration bitsreams in MultiBoot feature for PR. Hence, 
PR is applied. The code will be changed to include a black box 
that presents the custom instruction wrapper later in order to 
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perform the down to top syntheses, which is the important 
concept when implementing PR.  

B. System Design 

The overall project is comprised of two parts. One is the 
implementation of a custom instruction module library, where 
we implement custom modules for different operations like 
CRC, Ones counter, parity etc. The other part is the 
implementation of the PR region of the FPGA, which is used 
to reconfigure the reconfigurable region according to the 
requirements.  

C. System Architecture and Components 

The overall system is divided into two main regions, the 
static region and reconfigurable region, as show in Fig. 14. 
The static part includes all of the 48 major logic and the 
reconfigurable region only includes the custom module. The 
MIPS CPU is the main controller processor of the system and 
it fetches instructions from the instruction ROM. The MIPS 
CPU decodes the instructions and performs the desired 
operations. When the MIPS CPU encounters an instruction 
which is not implemented in its datapath, it will start a 
hardware trap handler and send the opcode of the desired 
operation to the trap handler. The trap handler will look at the 
opcode and check if the desired instruction is already loaded 
into the custom module and performs the operation. If the 
desired instruction is not loaded into the custom module, then 
the configuration manager inside the trap handler will load the 
partial bitstream using the ICAP primitive and hence a new 
partial bit file will be loaded into the reconfigurable region 
and then the operation is performed. The whole process is 
carried out in hardware to achieve the lowest latency for 
reconfiguration. 

 

 

Fig. 10 The final system design 
 
The system operates on a 50 MHz clock, that is derived 

internally from a top level clock using Global buffers BUFG 
to allow accessing of the clock in high speed and to provide 
the least amount of skew possible between the MIPS and the 
peripherals, which are connected to the bus that physically 
located in large distances. 

D. MIPS Soft-Core Processor 

The CPU core is based on the MIPS I instruction set and is 

built in the system as a soft-core processor. It is used as a 
platform demonstrator for reconfigurable instruction 
extensions. Moreover, it is the main module that will control 
all the different modules and it will run a trap when the 
custom instruction exception occurs. 

E. Peripheral Component Modules 

– Memory RAM: A static memory that provides write-
before-read behavior. In other words, the data being 
returned, during a write-cycle, is the same as that being 
written. The memory module is synthesized into internal 
block memories in the Sparton-6 FPGA architecture [23].  

– GPIO: General-purpose input/output (GPIO) that includes 
any connection with an input or output pin. The user at 
run-time can have control of them. GPIO pins such as 
LEDs and switches go OFF by default [3]. 

– ROM: This module will contain the machine code of the 
instructions, using the ROM’s address as an index into 
this memory. The machine code will be generated with 
the help of a GCC cross compiler that compiles the C 
code and runs the assembly to produce the binary code 
that can be used in this array. 

– UART: Universal Asynchronous Receiver/Transmitter. A 
UART module can be added to the system. This unit 
allows the user to control the operation of the MIPS CPU, 
the trap handler and other modules and allows them to 
check the status of the system. Additionally, the UART 
module can also be used to load the configuration 
required by the ICAP module. 

– System Bus: All modules are connected via a baseline bus 
protocol, consisting of: Chip select (CS) input signal, 
Write enable (WR_en) input signal, Address input signal, 
Writedata input signal and Readdata output signal, with 
the MIPS as the only master module [3]. 

F. Configuration Controller Module 

 The Trap Handler 

The Trap Handler is a core module and is located in the 
static region of the FPGA design. The trap handler is directly 
connected with the MIPS CPU with a bus, this module can be 
easily modified such that multiple CPUs can use it to load the 
configuration at the desired places and run the operations. 
Whenever the MIPS CPU encounters an instruction which is 
not implemented in its datapath, then there are two options: 
either to have a stall or trigger the trap handler. The trap 
handler is implemented so as to avoid the malfunction of the 
CPU due to the non-implemented instruction.  

The Trap handler is the module to handle the exception 
encountered by the MIPS CPU. The MIPS CPU reads the 
instructions from the instruction ROM and then decodes them. 
After this, it executes them. In the case that the instruction 
received is not implemented in the MIPS CPU, an exception is 
generated. Then the MIPS CPU requests the trap handler to 
handle the exception. The operation of the trap handler is 
controlled by a state machine. Fig. 11 shows the state machine 
diagram for the trap handler. 
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Fig. 11 Trap Handler State Machine 
 

There are four states in the state machine. ST0 is the reset 
state and the system is normally in this state. Here it waits for 
the trap start signal, which comes from the MIPS CPU. When 
an exception occurs inside the MIPS CPU, it will send the trap 
start signal to the trap handler. On the reception of this signal, 
the state machine moves to either ST1 or ST2. If the requested 
Opcode is equal to the currently loaded CUSTOM ID, then 
there is no need to load the partial bit file so the state machine 
moves to ST2. In the other case, the state machine moves to 
ST1, where it sends the command to the ICAP primitive to 
load the partial bit file inside the custom module. The 
configuration process is typically thousands of cycles so we 
use a counter in order to monitor the configuration reading 
signal from ICAP before going to ST2. At ST2, the trap 
handler will send a start signal to the custom module and in 
ST3, it will wait for it to complete the operation. 

Each custom module is assigned a unique opcode and the 
address, which are given in Table II. 
 

TABLE II 
CUSTOM INSTRUCTIONS’ ADDRESS AND ID 

Custom Module Name Opcode Address 

CRC-32 010000 X"100000" 

Ones Counter 100001 X"200000" 

Parity 010001 X"300000" 

Leading Zero Counter 100000 X"400000" 

 The ICAP Primitive  

As we are using Spartan-6 FPGA, the ICAP primitive is 
used to initiate the configuration process (called 
ICAP_SPARTAN6). It is implemented in the FPGA's fixed 
logic. This primitive can be used to program the FPGA logic 
by user control.  

 Custom Modules 

There are four custom instructions implemented in the 
design. The instructions are: CRC-32, Ones Counter, Parity 
flag and Leading zero counter. The concept of each custom 
instruction is taken from different sources, for example, using 
the CRC generator to generate the CRC-32 custom instruction 
module [24]. 

Each implemented module is assigned a CUSTOM ID, 
which makes it differentiable from the others. More custom 

instructions can be implemented and added to the systems by 
assigning a unique CUSTOM ID to each of the custom 
instruction as in Fig. 12. 

 

 

Fig. 12 Custom Module Logic 
 

The CUSTOM ID is evaluated by the instruction decoder of 
the MIPS CPU in order to run the corresponding module or to 
trigger the configuration process through the hardware trap 
handler.  

G. Custom Instructions as Partial Reconfigurable Modules 

 

Fig. 13 Custom Instruction (CI) act as extension of the ALU 
 
Fig. 13 shows the MIPS CPU with custom instructions as 

extensions to the original ALU. It could take one or two 32-bit 
input operands and one 32-bit output is computed. Adding 
custom instructions to the system can speed up the execution 
time of an application as mentioned above. Run-time 
reconfigurable accelerator modules in a PR region with a 
proxy logic approach for the communication have been 
implemented using the GoAhead tools. 

Proxy logic will be used as a connection primitive which is 
nothing else than a look up table in route through mode. It acts 
as a placeholder for the non-existing part of the system; that is, 
it replaces the partial module when implementing the static 
system and it replaces the static system when implementing 
reconfigurable custom instruction accelerator. The same wires 
are used for the communication between the static system and 
the reconfigurable area. 

OP_ OP_

CI AL

ALU_out 

Instruction 

RES 
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H. Static System Implementation 

A screenshot of the static system is shown in Fig. 14. It 
shows the operand signals (OP_A, OP_B) in the left side and 
the result signal is collected at the right. The amount of wires 
that are connected from the static part of the system to the PR 
region is four for the connection primitive. Consequently, it 
takes 8 connection primitives for each of the 32-bit interface 
signals (OP_A,OP_B and RES).  

 

 

Fig. 14 Static implementation 
 

 

Fig. 15 Partial Part: The example shows the implementation CRC 
instruction 

I. Reconfigurable Instructions 

Implementing the reconfigurable modules in the absence of 
the static system is done as can be seen in the screenshot in 
Fig. 15. For the partial module implementation, the same 
primitive will be used with the other side which is not 
connected yet OP_A to CI and OP_B to Ci and RES_from CI. 
Fig. 15x shows the CRC module connects where the static 
design ends by the proxy logic. The custom instruction 
wrapper has been auto generated by the GoAhead tool. 

As the output of the result is not connected to the outside 
word (i.e. the path ends at the connection primitives), the 
FPGA tools would typically remove all logic and routing to 
the output primitive. This will eventually result in an empty 
design to overcome this; all interface signals were set with a 
keep attribute (which is specific to the Xilinx vender tools). 

V. RESULTS AND EVALUATION 

The cost of the system resources for the first approach and 
the cost of the system resources for the final system approach 
are outlined in Table III.  

 
TABLE III 

RESOURCE REQUIREMENTS FOR CONFIGURATION CONTROLLER 

Approach  Nr of LUT  Nr.of Slices  Latency  

MUX based trap handler  246  1798  20.011ns  

ICAP based trap handler  438  1370  18.125ns  

 
The results reveal that when using a MUX based trap 

handler. The system used less look up tables than the ICAP-
based trap handler due to the simpler datapath in the ICAP 
variant. However, the slice resources that are used in the 
MUX-based trap handler system will be more than those used 
in the ICAP-based trap handler because the system uses more 
logic for the custom modules. Finally, the latency is higher in 
the case of the system that is based on the MUX-trap handler 
because of the trap overhead. However, in the ICAP system, 
unless one custom instruction is configured in the system and 
only in the case of the custom instruction not the desired one 
then the reconfiguration will be considered. Note that the 
delay in this table is for the whole implementation without 
considering the reconfiguration overhead. Only by introducing 
the ICAP-based trap handler, were we able to run the system 
at the target 50 MHz clock frequency  

For the custom modules, Table IV shows the cost of the 
resources.  

The results in Table IV show the implementation costs for 
the custom instructions. In the progress report, manual code 
optimization was performed in order to see if the tools 
recognize the optimization by itself or not and the result shows 
the tools do not do that. This point was considered when we 
implemented the custom module. Therefore, the result shown 
in Table IV shows the better use of the resources, delay and 
bitstream size for each custom module after manually 
optimising each module.  
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TABLE IV 
RESOURCE REQUIREMENTS FOR CUSTOM MODULES 

Custom 
Module 

Nr. Of 
LUT 

Nr.of 
Slices 

Latency (Max/av)ns 
Bitstream 
size (KB) 

CRC 32 43 18 8.038/3.597 282 

Counting One 39 19 15.717/14.35 263 

Leading Zero 19 15 9.723/3.597 293 

Parity (XOR) 7 6 3.618/3.597 282 

A. System Performance  

The whole system, including the configuration controller, 
can run at a system clock of 50 MHz. The first of the two 
biggest limitation factors is that the MIPS CPU runs a trap 
when a custom instruction exception occurs and traps have a 
tiny additional overhead which would not occur in case of a 
baseline MIPS implementation. The second factor is that the 
trap handler represents the configuration controller, which 
uses external flash memory.  

For PR, one important benchmark is the response time that 
has to be considered for the reconfiguration process. Swapping 
instructions will obviously take a significant amount of time 
for loading the corresponding partial bitstream from an 
external SPI memory to the device. Moreover, the bitstream 
size would affect the speed of the configuration module.  

In [3], the configuration controller for module relocation 
was designed to use two clocks, one clock running at 50 MHz 
for the part that was connected to the bus and the other one 
running at 100 MHz for the part that handled the configuration 
process. In our system, the trap handler will run at 50 MHz, 
which could slow down the configuration speed. Moreover, in 
[3] a decompression module is used to decompress the 
configuration data on the FPGA for faster reconfiguration. So, 
our predicted result of the reconfiguration time could be lower 
than what is achieved in that work. However, there are some 
techniques that could be applied to optimize the performance 
and cost in the system on the FPGA device. In this project, we 
used the FPGA MultiBoot feature that is slow, but that uses a 
serial configuration memory chip that is underutilized in most 
FPGA prototyping systems. This also separates the 
configuration bitstream storage from other memory which 
improves the security of the system.  

B. Performance Enhancing Techniques  

General speaking, performance techniques could be divided 
into: techniques that are not FPGA specific from compiler and 
memory usage to name a few; and techniques that are FPGA 
specific, such as increasing the operating frequency. As a rule 
of thumb, since optimizing configuration speed is a typical 
goal, an entire program should rarely be targeted at external 
[20] if so, then the use of another clock should be considered 
in order to handle the process faster than it would be. 

C.  Comparing the System to a Real-World System 

The available embedded processors with the manufacturers 
quoted maximum frequency and our soft-core, included the 
extension with its maximum frequency are summarized in 
Table V. Despite the MIPS processor being the slowest in that 
table, it might outperform the others due to the use of custom 
instructions.  

TABLE V 
COMPARISON BETWEEN XILINX EMBEDDED PROCESSORS WITH OUR SOFT-

CORE AND THEIR PERFORMANCE 
Processor Processor Type Device Family used Speed (MHz) 

Achieved 
PowerPCTM 405 hard Vritex-4 450 

MicroBlaze soft Vritex-II Pro 150 

MicroBlaze soft Spartan-3 85 

MIPS soft Spartan-6 50 

D. Hardware Acceleration  

A soft-core on the FPGA will allow the designer to make a 
trade-off between hardware and software in order to maximize 
efficiency and performance. If there is a software function 
identified as a software bottleneck, then a custom module can 
be designed for this function in the FPGA. The device will 
then act as a coprocessor or, as in our case, as a custom 
instruction extension to the soft-core processor.  

One way to evaluate custom instructions in hardware 
implementation is to compare them against software 
implementations of the functions running on the standard ISA 
of the MIPS CPU. The software functions that are used as a 
reference can be found on [25] Software evaluation for those 
four functions, which are written in C code, is compiled for 
the MIPS using a GCC cross-cross compiler. Using 
disassembly for the code in order to calculate how many 
instructions each function is consuming. Table VI shows how 
many CPU instructions are saved by using a custom 
instruction.  

 
TABLE VI 

SOFTWARE REQUIREMENTS 
Software function Instructions 

CRC 262 

Hamming weight 262 

Leading Zero 294 

Parity (XOR) 263 

VI. FUTURE WORK 

There are some improvements that can be done to the final 
implemented system and together these could be considered as 
the requirement analysis stage for the next lifecycle.  
• In this project, Nexys3 has been used as a platform. 

However, the lack of external interfaces caused 
limitations in the usability of this device. Using another 
academic board which includes audio and video then 
could show the input and the output of the system and 
could design a complete digital system built around soft-
core processor.  

• The MIPS CPU that is used as soft-core is a very simple 
processor, is nonpipelined and uses BRAM as both 
program memory and data memory. These could be 
improved by implementing a pipelined processor also by 
implementing a simple cache controller that could be 
connected to DDRmemory. As a result of this, executing 
larger programs and storing large data structures such as 
frame buffers could be possible.  

• The system uses the MultiBoot feature and the command 
sequence that is sent through the ICAP primitive to 
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support the read-back of configuration data from ICAP. 
However, there are two different ways for reading and 
writing the configuration data from ICAP. As illustrated 
in [3]. “Either clock is left toggling and clock enable is 
used to control throughput, or clock enable is kept high 
and the clock signal is controlled to achieve wanted 
throughput” with implementing ICAP interface.  

• Adding more advanced modules for communication over 
COM-port.  

• Measuring the clock cycle of the reconfiguration by using 
Log with a counter in the trap handler in order to reflect 
the number of clock cycles from the time the counter 
starts until it is stopped.  

• The Nexus3 board has a seven segment electrical screen; 
it could be exploited for testing.  

• Different benchmarks could be used to evaluate the soft-
core on the FPGA. The most standard benchmark is 
Dhrystone MIPs (DMIPs) and the result from this could 
then be compared with the results we achieved with our 
system. 

VII. CONCLUSION  

The system is improved through the lifecycle that is 
presented in the methodology. The final system after all 
improvements had been done meets the objectives outlined in 
the introduction chapter. Moreover, learning the concepts and 
the fundamental features of FPGAs step by step is the biggest 
achievement. The previous chapters described those concepts 
in detail, the necessary components and tools and the 
implementation of a fully functional PR system. The 
dynamically run-time reconfigurable custom instruction set 
extension of a MIPS CPU can be replaced in the system. The 
most important part of the implemented system are: 
1. MIPS CPU 
2. Trap handler, included ICAP primitive. 
3. The exploitation of the MultiBoot feature for the full and 

PR. 
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