
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

251

Abstract— In this paper, we describe a rule-based message
passing method to support developing collaborative applications, in
which multiple users share resources in distributed environments.
Message communications of applications in collaborative
environments tend to be very complex because of the necessity to
manage context situations such as sharing events, access controlling of
users, and network places. In this paper, we propose a message
communications method based on unification of artificial intelligence
and logic programming for defining rules of such context information
in a procedural object-oriented programming language. We also
present an implementation of the method as java classes.

Keywords— agent programming, logic programming,

multi-media application, collaborative application.

I. INTRODUCTION AND MOTIVATION

Ith the recent speeding up of the computer network,
rapid development of high-speed devices, and

commoditization of our personal computers, our daily-use
computer software needs to perform more advanced and
complex processing. For example, many ubiquitous or
GRID-enabled applications need support for dynamic
context-aware situations. In such environments, the software
must manage many IP addresses of multiple users in a dynamic
network, QOS of applications, access control of users, and so
on.
To achieve such management, distributed computers must

communicate with each other so as to meet these system
constraints. Collaborative software for multiple uses in
distributed places is one of the most extreme examples of
software that needs such complex communications. For
developing such software, developers must design numerous
communication protocols and have to implement these
protocols correctly. However, developers currently must use
extremely low-level APIs for implementing network
communications. Most current general methods for message
communication in a computer network employ Socket
communication. In this method, however, we must manage a
byte queue even for simple event dispatching. New
communication methods like Remote Procedure Call (RPC),
XML-RPC, and Object Request Broker (ORB) can hide
low-level byte sequences, but developers still have to manage

Authors are with the Information Media Center, Tokyo University of
Science, 2780-1 Yamazaki, Noda, Chiba, Japan.
(e-mail:yamazaki@imc.tus.ac.jp).

troublesome procedural processing such as string processing to
manage context-aware programming, and these processes are
difficult for the software developer. To define context-aware
programming, we can use pattern-matching methods. The most
general and widely spread pattern-matching method is "regular
expression," which is used in most common programming
languages. However, regular expression simply checks if the
character sequence of a target string matches that of pattern
strings, so developers still have to mange procedural processing
that is not strongly related to the application logic, even for
getting single argument from the coming event. When we use
pattern matching for XML document, we can use the Document
Object Model (DOM) [1] API or database management query
languages such as XQuery [2]. To use these methods, however,
developers still need to manage the same procedural
processing.
Unification, which is the one of most attractive aspects of

logic programming languages, is used infrequently compared
to regular expression, but it is a simple and powerful
pattern-matching method. In unification, patterns can be seen
as rules defined in declaratory statements. Indeed, prolog
programming language, which supports unification for
execution in clauses, can easily define state transition rules [3].
Unification is a powerful method, but at this moment, few
systems support unification for procedural programming
languages.

In this paper, we design and implement a system that can
support unification-based rule defining and rule execution for
message communication in a procedural object-oriented
programming language. We also show an example of a
video-conference application that was implemented by the
proposed method. By using the proposed systems, the
developer will be able to declaratively define rules of complex
message communication and suitable application behavior.

 The remainder of this paper is structured as follows. In
Section 2, we briefly present the target application for our
proposed method. In Section 3, we describe the design
approach and give an overview of our proposed rule-based
method. In section 4, we then demonstrate the implementation
of the java library that supports unification-based rules for
message communications. Section 5 describes related works
and presents our conclusion.

Rule-Based Message Passing for Collaborative
Application in Distributed Environments

Wataru Yamazaki, Hironori Hiraishi, and Fumio Mizoguchi

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

252

User Management Server

login

access rights

share event <event(type, arg1, arg2…)>

event distributionPhysical environment

Virtual environment

Sharing application

Fig. 1 Target Application

II. TARGET APPLICATION

We now introduce the target application that was
implemented using the proposed library. The application is a
collaborative software environment with an integrated
video-conference application, and resource sharing
application such as presentation application, web browser and
text editors. Figure 1 gives an overview of the application.
When one authorized user sends a control command to the
system, the command is shared by all (or enrolled) users. In the
user's view (virtual environment), the GUI and its operations
are all allowed operations. Illegal operations and
terminal-dependent operations are not shown to the user
automatically. To realize such a transparent virtual
environment, the physical (system) environment should
manage a large volume of message communications of many
kinds.
In Fig. 1, a presentation application is shared by multiple

users. Some events, such as controlling slides and adding
annotation generated by a user are shared by appropriate users.
The sharing applications share states of the application, not the
graphics of the application. (Of course, graphics sharing is
also realized by the sharing state of the application.) Therefore,
not all events need to be shared by users. Here, shared events
are saved by an event log. By accessing this event log, for
example, users who did not attend a meeting in real-time can
also learn about the progress of the meeting. Automatic
proceeding generation is another possible application using
the event logs.
For the above application, the main message communications

illustrated in Fig. 1 are as follows. 1. A user logs in to the
system. 2. A server gives the user access rights. 3. A user
sends shared a event to the system. 4. The system multicasts
the event to suitable users. Each message contains at least the
sender name, the message address, command, and arguments
of the command. The message content may thus differ

considerably.
As we mentioned in the previous section, developers should

design and implement complex protocols properly, but this is
difficult in conventional procedural languages. The primary
reason for this problem is that designing a protocol is a
deductive process, but the implementing program language
does not support direct deductive programming. Starting in the
next section, we will demonstrate how to adopt the deductive
defining to procedural programming languages by focusing on
the message communications.

III. APPROACH

Generally, pattern matching for a communication system
consists of the following three parts. 1. The inner state of the
system when the system received the message. (Inner state) 2.
The kind of message the system received. (Message type) 3.
The kind of executions to be performed when the system
received the message. (Execution and rewrite the state) Figure
2 illustrates this situation using state transitions.

S1

S2

S3

e_1

e_2

Fig. 2 Message communications by state transition

Figure 2 indicates that when the system's state is S1 and the
system get the message e_1, then the state will change to S2,
and that when the system's state is S1 and the system receives
the message s_2, the system changes its inner state to S3. Here,
some executions generally occur before the state transition.
These state transitions can be easily defined by commit-choice
parallel logic programming languages such as GHC [4].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

253

run(S1) :- mes(e1) | exec_1…exec_n, run(S2).
(Rule1)

run(S1) :- mes(e2) | exec_1…snd(mes), run(S3).
(Rule2)

In GHC, the part to ":-" is called the head, the part from ":-" to
"|" is called the guard, and the remainder is called the body. As
shown in rule 1 and rule 2, the events are located in the guard
part. The rules are checked in parallel, and the body part is
executed only when head matching (run predicates with
argument S1 and S2 in the example rules) and guard matching
are successful. The guard part can consists of multiple
predicates. In that case, the body will be executed only when
every predicate is successful. Therefore, predicates in the
guard portion cannot have any side effect because when one
predicate in the guard part fails, the side effect cannot be
canceled by the system. For example, in the guard part, the
state of message may be checked, but the message cannot be
removed until all predicates in the body succeed. Also, once
the guard part successfully executes all its predicates, all
predicates in the body part must succeed. In GHC, a state
transition can be defined by using recursive calling. As rule1
and rule 2 demonstrate, message communication can be
defined and implemented deductively by state transition and
logical unification.

IV. RULE-BASED MESSAGE PASSING

A. Design

Figure 3 presents an overview of the method of adapting a
GHC-like rule base to an object-oriented procedural
programming language.

Fig. 3 Architecture of Agent

In our system, the component that contains the list of rules
and that manages the pattern matching is called the Agent.
Each rule consists of three parts mentioned in the previous
section, namely, inner state (corresponding to the head in
GHC), pattern (corresponding to the guard part in GHC), and
executing objects (corresponding to the body part). To realize
these components in object-oriented programming, we need
the following objects and functions as a minimum.

Agent object contains the list of rules and checks if
each rule is executable.
Rule object is the rule checked by the agent and
consists of three parts: the inner states, the message
pattern, and the executing target.

 Term object is an abstract object for the logical term
and is used for defining the pattern to try unification of
the pattern and the coming message term.
 State-checking interface is the interface for inner
state matching and is registered to the agent so the
agent can call this method
Message pattern is defined as logical term and is
registered to the rule for the pattern matching.
 Body interface (shown as executants in Fig. 3) is
the interface corresponding to the body part in GHC,
and these objects are executed after the above
unifications. Sending message and state rewrites are
examples of implementing this interface.

Assuming the above objects and functions, we can define and
execute the rules as follows. The step numbers in the
following description correspond to the numbers in Fig. 3.

[step 0] Initialize the applying rule index “i” to 0 (i:=0) and go
to step1.
[step 1] The agent selects the “i” th rule (rules[i]), and goes to
step 2.
[step 2] The agent checks the inner state by calling the
registered method. If the check succeeds, go to step 3. If not,
and if i is r (r is the size of rule list), i:=0 and go to step 1, if i
is not r, i:= i+1 and go to step 1.
[step 3] If the incoming message (top of the queue) and
registered term (pattern) are unified, then go to step 4. If not
and if I is r, i:=0, and go to step 5. If i is not r, i:=i+1, and go
to step 1.
[step 4] The agent executes the method of the registered body
interface. Message sending and state rewrite are performed in
this step.
[step 5] The agent removes the coming message (top of the
message queue).

Step 5 is not shown in Fig. 3, because the step is subordinate,
but step 5 is important. If the agent is in step 5, it means that
none of the rules in the agent matched this message at that
moment. Therefore, if the agent leaves the message in the
queue, the agent will never be able to change state.

B. Form of defining rules

01 public class TestAgent extends Agent{
….
02 public TestAgent(String name){
03 super(name);
04 StateListener st1 = new StateListener(){
 public boolean stateChanged(){return foo();};};
05 Executant el1 = new Executant(){
 public void execRule(Message m){bar(m);};};
06 Rule r = new Rule(st1,"event(Name, No,slide(X)))",el1);
07 addRule(r);
08 }
09 public boolean foo(){

Rule

State

Pattern

Executants

Agent

Rule

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

254

10 return controllable;
11 }
12 public void bar(Message m){
13 Message smes = new Message("ok(Name,No2)");
14 smes.substitute("Name",getID());
15 smes.substitute(“No2”,m.get(“No”))
16 m.getAgent().sendMessage(smes);
17 }
17 }

Fig. 4 Form of defining rules

Figure 4 illustrates the usage of the java implementation of
the rule-based pattern-matching library. In Java programming
language, event handling and its interface execution can be
seen as the same kind of deductive style. We therefore adapt
this method to our rule-based unification pattern matching. As
Fig. 4 shows, developers extend the Agent class to define the
rules (line 1). In this example, if the agent gets message
“event(Name, No, slide(X))” and the inner state of the agent is
controllable, then the agent will send the ACK message
“ok(Myid, No)” to the sender. This program is part of a
simplified version of the protocol used in the application we
mentioned in the previous section. The original sender sent a
command for changing the slide to page ”X” to the receivers;
the receivers change the slide if possible and send the ACK
message to the sender.
Here, variables (starts with capital) have following

definitions. Name is the sender ID, No is the event ID, and X is
the page number of the controlling slide. In the ACK message
“ok(Myid, No),” the variables are for the ID of the receiving
agent and for the event id contained in the original message.
After defining the rules, developers register the rule with the
agent (line 07). For the rule-matching agent, call the registered
methods. The rule definition itself is described in line 06. In
line 06, message pattern is defined as “event(Name, No,
slide(X))”, and if the matching succeeds, registered methods
in line 04 (public void foo()) are called. If the method returned
true, the registered method in line 05(public void bar(Message
m)) will be called.
Here, “Message” object (line 13) manages the relation

between the received message term and the registered pattern.
For example, if we want to get the term corresponding to “No”
in the registered pattern “event(Name,No,slide(X))” from the
received term, we use the method of Message object as follows.
(This example is shown in line 15 in Fig. 4.)
Term t = m.get(“X”) ;

The usage of message sending is shown in lines 13 to 16 in
Fig. 4. To send a message, the developer creates an instance of
“Message” object (line13). Here the developer can specify
variables in the message by using capitals. (In this example,
we use “Name” and “No2.”) We can use the method of
Message class to substitute a practical message in the variables
as follows (in Fig. 4 line 14 and line 15).
substitute(#variablename, #constant)

To define many message patterns in one agent, the rules can
share the registering method to simplify the program. In this
way, we can define rules and pattern matching in a Java

program more simply than conventional approaches.

V. RELATED WORK AND CONCLUSION

The interactive work space [6] is a collaborative
environment to integrate many applications and physical
devices, and its event model can manage state transition. In
this research, however, the developer must write the state and
actions in its own language. Furthermore, it does not support
powerful pattern matching. In contrast, our proposed approach
is in the original java syntax and supports unification.
Workspace emphasizes a simple syntax and easy management,
but we implement the function as a library in the original
language, so the approaches are different.

 Jinni [7] is a black-board type integration model using
unification. The jinni program syntax is based on prolog, so
this approach doesn’t integrate the rule-based approach and
procedural programming either.

SOBA [8] is a framework for developing P2P applications,
and some shared event management is similar to our method.
However, SOBA does not support rule-based definition or
powerful pattern matching like unification.

The concept of DJ [9] (Declarative Java) may be similar to
our proposed method. DJ introduces constraint programming
for the Java GUI in java’s original syntax. DJ is focused on the
GUI program while our approach focuses on message passing.
In this paper, we have introduced rule-based message passing

using the unification method, and implemented a java library
the general programmer can easily use with the original java
procedural programming syntax.

REFERENCES

[1] DOM: Document Object Model
http://www.w3.org/DOM/

[2] XQuery:
http://www.w3.org/XML/Query

[3] Ivan Bratko, Prolog Programming for Artificial Intelligence, Second
Edition. Addison-Wesley 1990.

[4] E.Shapiro, The Family of Concurrent Logic Programming Languages,
ACM Computing Serveys,Vol.21, 1989.

[5] K. Ueda and T. Chikayama, Desing of the kernel language for the
parallel inference machine, The Computer Journal, 1990.

[6] Brad Johanson, Armando Fox, Terry Winograd, The Interactive
Workspaces Project: Experiences with Ubiquitous Computing Rooms.
IEEE Pervasive Computing Magazine 1(2), April-June 2002

[7] Paul Tarau. Jinni: Intelligent Mobile Agent Programming at the
Intersection of Java and Prolog. Proceedings of PAAM'99, 1999

[8] SOBA project
http://www.soba-projet.org

[9] Neng-Fa Zhou: Building Java Applets by Using DJ - A Java-based
Constraint Language. COMPSAC 1999:

