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Ruin probability for a Markovian risk model with

two-type claims
Dongdong Zhang, and Deran Zhang∗

Abstract—In this paper, a Markovian risk model with two-type
claims is considered. In such a risk model, the occurrences of the
two type claims are described by two point processes {N

i
(t), t ≥

0}, i = 1, 2, where {N
i
(t), t ≥ 0} is the number of jumps during the

interval (0, t] for the Markov jump process {X
i
(t), t ≥ 0} . The ruin

probability Ψ(u) of a company facing such a risk model is mainly
discussed. An integral equation satisfied by the ruin probability Ψ(u)
is obtained and the bounds for the convergence rate of the ruin
probability Ψ(u) are given by using key-renewal theorem.
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I. INTRODUCTION

The classical risk model has been extensively studied since

the work of Cramer[3], and has been generalized to various

Markovian risk model which have been studied extensively

[1, 2, 4, 7]. Recently, many authors have studied continuous-

time risk models involving two classes of claims. Yuen et

al. [9] consider the non-ruin probability for a correlated risk

process involving two dependent classes of insurance risks,

with exponential claims, which can be transformed into a

surplus process with two independent classes of insurance

risks, for which one claim number process is Poisson and the

other is a renewal process with Erlang(2) claim inter-arrival

times. Li and Garrido [5] consider a risk process with two

classes of independent risks, namely the compound Poisson

process and the renewal process with generalized Erlang(2)

inter-arrivals times. A further extension was given by Li and

Lu [6]. They derive a system of integro-differential equations

for the Gerber-Shiu expected discounted penalty functions,

when the ruin is caused by a claim belonging either to the

first or to the second class and obtained explicit results when

the claim sizes are exponentially distributed. Zhang et al. [8]

extended the model of Li and Lu [6], by considering the claim

number process of the second class to be a renewal process

with generalized Erlang(n) inter-arrival times.

In this paper, we mainly consider a Markovian risk model

with two-type claims. Integral equation for the ruin probability

is found and the bounds for the convergence rate of the ruin

probability are given.

Let (Ω,F ,P) be a complete probability space containing

all objects defined in the following, (Si,Bi)(i = 1, 2) be two

measurable spaces where Si is a subset of real line R and Bi
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is a Borel σ−algebra on Si. Consider the risk model

U(t) = u + ct −

N1(t)
∑

k=1

Yk −

N2(t)
∑

k=1

Zk, (1)

where u = U(0) ≥ 0 is the initial surplus, c > 0 is

the premium income rate, {Yk, k ≥ 1} are i.i.d nonnegative

random sequence with common distribution function F1and

mean value µ1; {Zk, k ≥ 1} are also i.i.d nonnegative random

sequence but with common distribution function F2 and mean

value µ2, Y = {Yk, k ≥ 1} and Z = {Zk, k ≥ 1}
denote the two-type claim processes; Ni(t) is the number of

jumps during the interval (0, t] for the Markov jump process

Xi = {Xi(t), t ≥ 0} on space Si with bounded intensity

function λi(x) and jumping measure Qi(x,B). Throughout

this paper, we always assume that Xi is stationary ergodic

with initial stationary distribution qi(·), i.e.,
∫

B
λi(x)qi(dx) =

∫

Si
λi(x)Qi(x,B)qi(dx) and X1, X2, Y, Z are mutually inde-

pendent.

Let

T = inf{t ≥ 0 : U(t) < 0}, (inf Φ = ∞)

Ψ(u) = P (T < ∞|U(0) = u) ,

R(u) = 1 − Ψ(u),

Ψx(u) = P (T < ∞|U(0) = u,X1(0) = x) ,

Rx(u) = 1 − Ψx(u), x ∈ S1,

˜Ψy(u) = P (T < ∞|U(0) = u,X2(0) = y) ,

˜Ry(u) = 1 − ˜Ψy(u), y ∈ S2,

Ψxy(u) = P (T < ∞|U(0) = u,X1(0) = x,X2(0) = y) ,

Rxy = 1 − Ψxy(u), x ∈ S1, y ∈ S2.

We call T the time of ruin, Ψ(u) the ruin probability, R(u)
the survival probability. Obviously, we have

Ψ(u) =

∫

S1

∫

S2

Ψxy(u)q2(dy)q1(dx)

=

∫

S1

Ψx(u)q1(dx)

=

∫

S2

˜Ψy(u)q2(dy).

Let

ρ =
c − µ1

∫

S1
λ1(x)q1(dx) − µ2

∫

S2
λ2(x)q2(dx)

µ1

∫

S1
λ1(x)q1(dx) + µ2

∫

S2
λ2(x)q2(dx)

be the relative security loading. Throughout the paper, we

always assume that ρ > 0.
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II. INTEGRAL EQUATION OF RUIN PROBABILITY

Lemma 2.1 Under the assumption that ρ > 0, we have

lim
u→∞

Ψ(u) = 0.

Proof Put Y (t) = U(t) − u, since lim
t→∞

Ni(t)
t

=
∫

Si
λi(x)qi(dx), i = 1, 2, then

lim
t→∞

Yt

t
= lim

t→∞



c −
1

t

N1(t)
∑

k=1

Yk −
1

t

N2(t)
∑

k=1

Zk





= c − lim
t→∞

1

N1(t)

N1(t)
∑

k=1

Yk ·
N1(t)

t

− lim
t→∞

1

N2(t)

N2(t)
∑

k=1

Zk ·
N2(t)

t

= c − µ1

∫

S1

λ1(x)q1(dx) − µ2

∫

S2

λ2(x)q2(dx).

By the theory of Markov process and the assumption that

λi(x) is bounded, it is clear that Xi has only finite jumps

during the interval (0, τ ], thus inf
t≥0

Yt is finite with probability

one and thus

lim
u→∞

Ψ(u) = lim
u→∞

P(inf
t≥0

(u + Y (t) < 0) = 0,

then Lemma 2.1 is proved.

Corollary 2.1 For Ψx(u), x ∈ S1, ˜Ψy(u), y ∈ S2 we have

lim
u→∞

Ψx(u) = 0, q1(·) − a.e. x ∈ S1;

lim
u→∞

˜Ψy(u) = 0, q2(·) − a.e. y ∈ S2.

Proof Since Ψ(u) =
∫

S1
Ψx(u)q1(dx) =

∫

S2

˜Ψy(u)q2(dy), by the dominated convergence theorem, we

can get

0 = lim
u→∞

Ψ(u) =

∫

S1

lim
u→∞

Ψx(u)q1(dx)

=

∫

S2

lim
u→∞

˜Ψy(u)q2(dy).

Obviously, it is that lim
u→∞

Ψ̃x(u) > 0, q1(·)−a.e. x ∈ S1 and

lim
u→∞

˜Ψy(u) > 0, q2(·) − a.e. y ∈ S2, thus

lim
u→∞

Ψx(u) = 0, q1(·) − a.e. x ∈ S1;

lim
u→∞

˜Ψy(u) = 0, q2(·) − a.e. y ∈ S2,

the proof of Corollary 2.1 is completed.

In the following, by using the backward differential tech-

nique, we give an integral equation satisfied by the ruin

probability Ψ(u).

Theorem 2.1 If the relative security loading ρ > 0, then

Ψ(0) =
1

c

(

µ1

∫

S1

λ1(x)q1(dx) + µ2

∫

S2

λ2(x)q2(dx)

)

,

Ψ(u) =
1

c

∫

S1

λ1(x)q1(dx)

∫

∞

u

F 1(z)dz

+
1

c

∫ u

0

[∫

S1

λ1(x)Ψx(u − z)q1(dx)

]

F 1(z)dz

+
1

c

∫

S2

λ2(x)q2(dx)

∫

∞

u

F 2(z)dz

+
1

c

∫ u

0

[∫

S2

λ2(y)˜Ψy(u − z)q2(dy)

]

F 2(z)dz,

where F i(z) = 1 − Fi(z), i = 1, 2.

Proof Using the backward differential technique, we have

Rxy(u) = (1 − λ1(x)△)(1 − λ2(y)△)Rxy(u + c△)

+ λ1(x) △ (1 − λ2(y)△)

∫

S1

Q1(x,dx1)×

∫ u+c△

0

Rx1y(u + c △−z)dF1(z)

+ λ2(y) △ (1 − λ1(x)△)

∫

S2

Q2(y, dy1)×

∫ u+c△

0

Rxy1
(u + c △−z)dF2(z) + ◦(△). (2)

Thus

cR
′

xy(u) =(λ1(x) + λ2(y))Rxy(u)

− λ1(x)

∫

S1

Q1(x,dx1)

∫ u

0

Rx1y(u − z)dF1(z)

− λ2(y)

∫

S2

Q2(y, dy1)

∫ u

0

Rxy1
(u − z)dF2(z).

Replacing u by t and integrating from t = 0 to t = u, we

obtain

c(Rxy(u) − Rxy(0))

= λ1(x)

∫ u

0

Rxy(t)dt

− λ1(x)

∫ u

0

∫

S1

Q1(x,dx1)

∫ t

0

Rx1y(t − z)dF1(z)dt

+ λ2(y)

∫ u

0

Rxy(t)dt

− λ2(y)

∫ u

0

∫

S2

Q2(y, dy1)

∫ t

0

Rxy1(t − z)dF2(z)dt

= λ1(x)

∫ u

0

Rxy(t)dt − λ1(x)

∫

S1

Q1(x,dx1)

∫ u

0

Rx1y(t)dt

+ λ1(x)

∫

S1

Q1(x,dx1)

∫ u

0

F 1(z)Rx1y(u − z)dz

+ λ2(y)

∫ u

0

Rxy(t)dt − λ2(y)

∫

S2

Q2(y, dy1)

∫ u

0

Rxy1
(t)dt

+ λ2(y)

∫

S2

Q2(y, dy1)

∫ u

0

F 2(z)Rxy1
(u − z)dz. (3)
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Integrating both sides of Eq.(3) about q1(·) and q2(·), we get

c[R(u) − R(0)] =

∫ u

0

[∫

S1

λ1(x)Rx(u − z)q1(dx)

]

F 1(z)dz

+

∫ u

0

[∫

S2

λ2(y) ˜Ry(u − z)q2(dy)

]

F 2(z)dz.

Let t → ∞ in the above equation, by the dominated conver-

gence theorem, then

c[R(∞) − R(0)] =

∫

∞

0

[∫

S1

λ1(x)Rx(∞)q1(dx)

]

F 1(z)dz

+

∫

∞

0

[∫

S2

λ2(y) ˜Ry(∞)q2(dy)

]

F 2(z)dz.

It follows from Corollary2.1 that

cΨ(0) = µ1

∫

S1

λ1(x)q1(dy) + µ2

∫

S2

λ2(y)q2(dy),

then

Ψ(0) =
1

c

(

µ1

∫

S1

λ1(x)q1(dx) + µ2

∫

S2

λ2(x)q2(dx)

)

,

and

Ψ(u) = Ψ(0) −
1

c
×

∫ u

0

[∫

S1

λ1(x)(1 − Ψx(u − z))q1(dx)

]

F 1(z)dz

−
1

c

∫ u

0

[∫

S2

λ2(y)(1 − ˜Ψy(u − z)q2(dy)

]

F 2(z)dz

=
1

c

∫

S1

λ1(x)q1(dx)

∫

∞

u

F 1(z)dz

+
1

c

∫ u

0

[∫

S1

λ1(x)Ψx(u − z)q1(dx)

]

F 1(z)dz

+
1

c

∫

S2

λ2(x)q2(dx)

∫

∞

u

F 2(z)dz

+
1

c

∫ u

0

[∫

S2

λ2(y)˜Ψy(u − z)q2(dy)

]

F 2(z)dz.

Thus the theorem is completed.

III. BOUNDS FOR CONVERGENCE RATE OF RUIN

PROBABILITY

Let hi(r) =
∫ +∞

0
erxdFi(x) − 1, ˜λi =

sup
x∈Si

{λi(x)}, ̂λ = inf
x∈Si

{λi(x)}, i = 1, 2. In the following, we

assume that

ρ̃ =
c

˜λ1µ1 + ˜λ2µ2

− 1 > 0, ρ̂ =
c

̂λ1µ1 + ̂λ2µ2

− 1 > 0,

and assume that there exists a real number r∞ > 0 such that

hi(r) → ∞ when r → ∞ ( we allow for the possibility

r∞ = ∞).

Lemma 3.1 Under the above assumptions, there exist ˜R, ̂R
such that

˜λ1

c
h1( ˜R) +

˜λ2

c
h2( ˜R) = ˜R,

̂λ1

c
h1( ̂R) +

̂λ2

c
h2( ̂R) = ̂R.

The proof of Lemma 3.1 is omitted.

Theorem 3.1 For the probability Ψ(u), we have

lim sup
u→∞

e
˜RuΨ(u) ≤

1 + ρ̃

(1 + ρ̃)
(

˜λ1

c
h

′

1(
˜R) + +

˜λ2

c
h

′

2(
˜R) − 1

) ,

(4)

lim inf
u→∞

e
̂RuΨ(u) ≥

1 + ρ̂

(1 + ρ̂)
(

̂λ1

c
h

′

1(
̂R) + +

̂λ2

c
h

′

2(
̂R) − 1

) .

(5)

Proof By theorem 2.1, we have

Ψ(u) ≤
˜λ1

c

∫

∞

u

F 1(z)dz +
˜λ2

c

∫

∞

u

F 2(z)dz

+
˜λ1

c

∫ u

0

Ψ(u − z)F 1(z)dz +
˜λ2

c

∫ u

0

Ψ(u − z)F 2(z)dz

=
˜λ1

c

∫

∞

u

F 1(z)dz +
˜λ2

c

∫

∞

u

F 2(z)dz

+

∫ u

0

Ψ(u − z)

(

˜λ1

c
F 1(z) +

˜λ2

c
F 2(z)

)

dz.

Multiplying the above inequality by e
˜Ru, we have

e
˜RuΨ(u)

≤
˜λ1

c
e

˜Ru

∫

∞

u

F 1(z)dz +
˜λ2

c
e

˜Ru

∫

∞

u

F 2(z)dz

+

∫ u

0

e
˜R(u−z)Ψ(u − z)e

˜Rz

(

˜λ1

c
F 1(z) +

˜λ2

c
F 2(z)

)

dz.

Thus, by lemma 3.1, we have that

∫

∞

0

e
˜Rz

(

˜λ1

c
F 1(z) +

˜λ2

c
F 2(z)

)

dz = 1,

and then

0 ≤ lim
u→∞

˜λ1

c
e

˜Ru

∫

∞

u

F 1(z)dz +
˜λ2

c
e

˜Ru

∫

∞

u

F 2(z)dz

≤ lim
u→∞

∫

∞

u

e
˜Rz

(

˜λ1

c
F 1(z) +

˜λ2

c
F 2(z)

)

dz = 0,

so by the key-renewal theorem, we obtain

lim sup
u→∞

e
˜RuΨ(u) ≤

c1

c2
,

where

c1 =

∫

∞

0

e
˜Ru

∫

∞

u

(

˜λ1

c
F 1(z) +

˜λ2

c

∫

∞

u

F 2(z)

)

dzdu,

c2 =

∫

∞

0

ze
˜Rz

(

˜λ1

c
F 1(z) +

˜λ2

c

∫

∞

u

F 2(z)

)

dz.

So from the two above equations, we can get

c1 =
ρ̃

˜R(1 + ρ̃)
, c2 =

1

˜R

(

˜λ1

c
h

′

1( ˜R) + +
˜λ2

c
h

′

2( ˜R) − 1

)

.

Then the proof of (4) is completed.

We can get the proof of (5) by imitating the above proof of

(4).¤
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