Ruin Probabilities with Dependent Rates of Interest and Autoregressive Moving Average Structures

Fenglong Guo, Dingcheng Wang

Abstract

This paper studies ruin probabilities in two discrete-time risk models with premiums, claims and rates of interest modelled by three autoregressive moving average processes. Generalized Lundberg inequalities for ruin probabilities are derived by using recursive technique. A numerical example is given to illustrate the applications of these probability inequalities.

Keywords—Lundberg inequality, NWUC, Renewal recursive technique, Ruin probability

I. Introduction

FOR over a century, ruin theory has been of major interest in actuarial science. Since a large portion of the surplus of insurance business comes from investment income, actuaries have been studying ruin problems under risk models with interest force. For example, Sundt and Teugels [5], [6] studied the effects of constant rate on the ruin probability under the compound Poisson risk model. Yang [8] established both exponential and non-exponential upper bounds for ruin probabilities in a risk model with constant interest force and independent premiums and claims. Cai [1] investigated the ruin probabilities in two risk models with independent premiums and claims and used a first-order autoregressive process to model the rates of interest. Cai and Dickson [2] obtained Lundberg inequalities for ruin probabilities in two discretetime risk processes with a Markov chain interest model and independent premiums and claims.
In classic risk theory, the surplus process of insurance business is usually assumed to have independent and stationary increments. However, because of the increasing complexity of insurance and reinsurance products, actuaries have been paying more and more attention to the modelling of dependent risk. For example, Gerber [3] assumed that the surplus process could be written as an initial surplus plus the annual gains and used a linear model to model the annual gains. Yang and Zhang [9] investigated a discrete-time risk model with constant interest force and adopted first-order autoregressive processes to model both the premiums and claims.
In this paper, we generalize the models considered by Cai [1] to the case that the premiums, claims and rates of interest have autoregressive moving average (ARMA) dependent structures simultaneously. Recursive equations for finitetime ruin probabilities and integral equations for ultimate ruin probabilities are given. Generalized Lundberg inequalities for

[^0]ruin probabilities are derived. A numerical example is given to illustrate the accuracy of the upper bounds.

Let $\left\{Y_{n}, n=1,2, \ldots\right\}$ be a sequence of nonnegative random variables, where Y_{n} represents the total amount of claims during the nth period, i.e. from time $n-1$ to time n, and satisfies

$$
\begin{equation*}
Y_{n}=\rho_{1} Y_{n-1}+W_{n}+\rho_{2} W_{n-1}, \quad 0 \leq \rho_{1}, \rho_{2}<1 \tag{1}
\end{equation*}
$$

with $Y_{0}=y_{0} \geq 0, W_{0}=w_{0} \geq 0$ and $\left\{W_{n}, n=1,2, \ldots\right\}$ being a sequence of independent, identically distributed (i.i.d.) and nonnegative random variables. One possible interpretation of model (1) is the following: the parameter ρ_{1} is the proportion of old business, which will remain in the new portfolio; while W_{n} is the uncertainty to claims occurring in the nth period, and ρ_{2} measures the degree of correlation. Model (2) below can be interpreted in a similar way.

Let $\left\{X_{n}, n=1,2, \ldots\right\}$ be another sequence of nonnegative random variables, where X_{n} denotes the total amount of premiums during the nth period, and satisfies

$$
\begin{align*}
X_{n}= & a_{1} X_{n-1}+\cdots+a_{p} X_{n-p} \\
& +Z_{n}+c_{1} Z_{n-1}+\cdots+c_{q} Z_{n-q} \tag{2}
\end{align*}
$$

with $0 \leq a_{1}, \ldots, a_{p}, c_{1}, \ldots, c_{q}<1, X_{j}=x_{j} \geq 0(j=$ $0,-1, \ldots,-p+1), Z_{k}=z_{k} \geq 0(k=0,-1, \ldots,-q+1)$, and $\left\{Z_{n}, n=1,2, \ldots\right\}$ being a sequence of i.i.d. and nonnegative random variables.
Let $\left\{I_{n}, n=1,2, \ldots\right\}$ be another sequence of nonnegative random variables, where I_{n} denotes the rate of interest during the nth period and satisfies

$$
\begin{align*}
I_{n}= & b_{1} I_{n-1}+\cdots+b_{s} I_{n-s} \\
& +R_{n}+d_{1} R_{n-1}+\cdots+d_{t} R_{n-t} \tag{3}
\end{align*}
$$

with $0 \leq b_{1}, \ldots, b_{s}, d_{1}, \ldots, d_{t}<1, I_{j}=i_{j} \geq 0(j=$ $0,-1, \ldots,-s+1), R_{k}=r_{k} \geq 0(k=0,-1, \ldots,-t+1)$, and $\left\{R_{n}, n=1,2, \ldots\right\}$ being a sequence of i.i.d. and nonnegative random variables.
Assume the processes $\left\{W_{n}, n=1,2, \ldots\right\},\left\{Z_{n}, n=\right.$ $1,2, \ldots\}$ and $\left\{R_{n}, n=1,2, \ldots\right\}$ are mutually independent. Denote $F(w)=\mathbb{P}\left(W_{1} \leq w\right), G(z)=\mathbb{P}\left(Z_{1} \leq z\right)$ and $H(r)=\mathbb{P}\left(R_{1} \leq r\right)$ with $F(0)=0$.

Suppose that the claims are paid at the end of each period and there are two styles of premium collections. On one hand, if the premiums are collected at the beginning of each period, then the surplus process $\left\{U_{n}^{(1)}, n=1,2, \ldots\right\}$ with initial surplus u is of form

$$
\begin{equation*}
U_{n}^{(1)}=\left(U_{n-1}^{(1)}+X_{n}\right)\left(1+I_{n}\right)-Y_{n}, \tag{4}
\end{equation*}
$$

which can be rearranged as

$$
\begin{aligned}
U_{n}^{(1)}= & u \prod_{k=1}^{n}\left(1+I_{k}\right) \\
& +\sum_{k=1}^{n}\left(\left(X_{k}\left(1+I_{k}\right)-Y_{k}\right) \prod_{j=k+1}^{n}\left(1+I_{j}\right)\right)
\end{aligned}
$$

Vol:6, No:8, 2012 INTEGRAL EQUATIONS FOR RUIN Probabilities
Throughout this paper, denote the tail of any distribution function B by $\bar{B}(x)=1-B(x)$. We first give a recursive equation for Ψ_{n} and an integral equation for Ψ. For notational convenience, define

$$
\begin{aligned}
& \eta_{1}=a_{1} x_{0}+\cdots+a_{p} x_{-p+1}+c_{1} z_{0}+\cdots+c_{q} z_{-q+1} \\
& \eta_{2}=c_{1} i_{0}+\cdots+c_{s} i_{-s+1}+d_{1} r_{0}+\cdots+d_{t} r_{-t+1} \\
& \eta_{3}=\rho_{1} y_{0}+\rho_{2} w_{0}
\end{aligned}
$$

Clearly, $X_{1}=\eta_{1}+Z_{1}, I_{1}=\eta_{2}+R_{1}$ and $Y_{1}=\eta_{3}+W_{1}$.
Theorem 2.1. For $n=1,2, \ldots$, we have

$$
\begin{aligned}
& \quad \Psi_{n+1}\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right) \\
& =\int_{0}^{\infty} \int_{0}^{\infty} \bar{F}\left(\hbar_{z, r}\right) \mathrm{d} G(z) \mathrm{d} H(r) \\
& \\
& \quad+\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\hbar_{z, r}} \mathrm{~d} F(w) \mathrm{d} G(z) \mathrm{d} H(r) \\
& \quad \quad \quad \times \Psi_{n}\left(\hbar_{z, r}-w, y^{(2)}, x^{(2)}, i^{(2)}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \Psi\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right) \\
= & \int_{0}^{\infty} \int_{0}^{\infty} \bar{F}\left(\hbar_{z, r}\right) \mathrm{d} G(z) \mathrm{d} H(r) \\
& +\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\hbar_{z, r}} \mathrm{~d} F(w) \mathrm{d} G(z) \mathrm{d} H(r) \\
& \quad \times \Psi\left(\hbar_{z, r}-w, y^{(2)}, x^{(2)}, i^{(2)}\right),
\end{aligned}
$$

where

$$
\begin{equation*}
\hbar_{z, r}=(u+x)(1+i)-\eta_{3}, \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
x=\eta_{1}+z, \quad i=\eta_{2}+r, \quad y=\eta_{3}+w \tag{9}
\end{equation*}
$$

and

$$
\begin{align*}
& x^{(2)}=\left(x, x_{0}, x_{-1} \ldots, x_{-p+2}, z, z_{0}, z_{-1} \ldots, z_{-q+2}\right) \tag{10}\\
& y^{(2)}=(y, w) \tag{11}\\
& i^{(2)}=\left(i, i_{0}, i_{-1} \ldots, i_{-s+2}, r, r_{0}, r_{-1} \ldots, r_{-t+2}\right) \tag{12}
\end{align*}
$$

Proof: Given $W_{1}=w, Z_{1}=z$ and $R_{1}=r$, from (5), we have

$$
\begin{aligned}
U_{1}^{(1)} & =\left(u+X_{1}\right)\left(1+I_{1}\right)-Y_{1} \\
& =\left(u+\eta_{1}+z\right)\left(1+\eta_{2}+r\right)-\eta_{3}-w=\hbar_{z, r}-w .
\end{aligned}
$$

Thus, if $w>\hbar_{z, r}$, then

$$
\mathbb{P}\left(U_{1}^{(1)}<0 \mid W_{1}=w, Z_{1}=z, R_{1}=r\right)=1
$$

which implies that for $w>\hbar_{z, r}$,

$$
\mathbb{P}\left(\bigcup_{k=1}^{n+1}\left\{U_{k}^{(1)}<0\right\} \mid W_{1}=w, Z_{1}=z, R_{1}=r\right)=1 ;
$$

while if $0 \leq w \leq \hbar_{z, r}$, then

$$
\begin{equation*}
\mathbb{P}\left(U_{1}^{(1)}<0 \mid W_{1}=w, Z_{1}=z, R_{1}=r\right)=0 . \tag{13}
\end{equation*}
$$

Let $\left\{\widetilde{W}_{n}, n=1,2, \ldots\right\},\left\{\widetilde{Z}_{n}, n=1,2, \ldots\right\}$ and $\left\{\widetilde{R}_{n}, \stackrel{\text { Vol: }}{=}\right.$ 6, No: Nherefore, by conditioning on W_{1}, Z_{1} and R_{1}, we can get $1,2, \ldots\}$ be independent copies of $\left\{W_{n}, n=1,2, \ldots\right\}$, $\left\{Z_{n}, n=1,2, \ldots\right\}$ and $\left\{R_{n}, n=1,2, \ldots\right\}$, respectively. Given $W_{1}=w$, consider process $\left\{\tilde{Y}_{n}, n=1,2, \ldots\right\}$ which satisfies

$$
\widetilde{Y}_{n}=\rho_{1} \widetilde{Y}_{n-1}+\widetilde{W}_{n}+\rho_{2} \widetilde{W}_{n-1}
$$

with initial values $\widetilde{Y}_{0}=\eta_{3}+w=y$ and $\widetilde{W}_{0}=w$. Apparently, $\left\{\widetilde{Y}_{n}, n=1,2, \ldots\right\}$ has a similar structure to that of $\left\{Y_{n}, n=1,2, \ldots\right\}$ but with different initial values. Given $Z_{1}=z$, consider process $\left\{\widetilde{X}_{n}, n=1,2, \ldots\right\}$ which satisfies

$$
\begin{aligned}
\widetilde{X}_{n}= & a_{1} \widetilde{X}_{n-1}+\cdots+a_{p} \widetilde{X}_{n-p} \\
& +\widetilde{Z}_{n}+c_{1} \widetilde{Z}_{n-1}+\cdots+c_{q} \widetilde{Z}_{n-q}
\end{aligned}
$$

with initial values $\widetilde{X}_{0}=\eta_{1}+z=x, \widetilde{X}_{j-1}=x_{j}(j=$ $0,-1,-2, \ldots,-p+2), \quad \widetilde{Z}_{0}=\underset{\sim}{z}, \widetilde{Z}_{k-1}=z_{k}(k=$ $0,-1,-2, \ldots,-q+2)$. Clearly, $\left\{\widetilde{X}_{n}, n=1,2, \ldots\right\}$ has a similar structure to that of $\left\{X_{n}, n=1,2, \ldots\right\}$, but with different initial values. Similarly, given $R_{1}=r$, consider process $\left\{\widetilde{I}_{n}, n=1,2, \ldots\right\}$ which satisfies

$$
\begin{aligned}
\widetilde{I}_{n}= & b_{1} \widetilde{I}_{n-1}+\cdots+b_{s} \widetilde{I}_{n-s} \\
& +\widetilde{R}_{n}+d_{1} \widetilde{R}_{n-1}+\cdots+d_{t} \widetilde{R}_{n-t}
\end{aligned}
$$

with initial values $\widetilde{I}_{0}=\eta_{2}+r=\underset{\widetilde{R}}{i,} \widetilde{I}_{j-1}=i_{j}(j=$ $0,-1,-2, \ldots,-s+2), \quad \widetilde{R}_{0}=r, \widetilde{R}_{k-1}=r_{k}(k=$ $0,-1,-2, \ldots,-t+2)$. Obviously, $\left\{\widetilde{I}_{n}, n=1,2, \ldots\right\}$ has a similar structure to that of $\left\{I_{n}, n=1,2, \ldots\right\}$, but with different initial values. Thus, (13) and (5) imply that for $0 \leq w \leq \hbar_{z, r}$,

$$
\begin{aligned}
& \mathbb{P}\left(\bigcup_{k=1}^{n+1}\left\{U_{k}^{(1)}<0\right\} \mid W_{1}=w, Z_{1}=z, R_{1}=r\right) \\
= & \mathbb{P}\left(\bigcup_{k=2}^{n+1}\left\{U_{k}^{(1)}<0\right\} \mid W_{1}=w, Z_{1}=z, R_{1}=r\right) \\
= & \mathbb{P}\left(\bigcup _ { k = 2 } ^ { n + 1 } \left\{\left(\hbar_{z, r}-w\right) \prod_{j=2}^{k}\left(1+I_{j}\right)\right.\right. \\
& \left.\left.+\sum_{j=2}^{k}\left(X_{j}\left(1+I_{j}\right)-Y_{j}\right) \prod_{t=j+1}^{k}\left(1+I_{t}\right)<0\right\}\right) \\
= & \left(\bigcup _ { k = 1 } ^ { n } \left\{\left(\hbar_{z, r}-w\right) \prod_{j=1}^{k}\left(1+\widetilde{I}_{j}\right)\right.\right. \\
= & \Psi_{n}\left(\hbar_{z, r}-w, y^{(2)}, x^{(2)}, i^{(2)}\right) .
\end{aligned}
$$

$$
\begin{align*}
& \Psi_{n+1}\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right) \\
= & \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \mathrm{d} F(w) \mathrm{d} G(z) \mathrm{d} H(r) \\
& \times \mathbb{P}\left(\bigcup_{k=1}^{n+1}\left\{U_{k}^{(1)}<0\right\} \mid W_{1}=w, Z_{1}=z, R_{1}=r\right) \\
= & \int_{0}^{\infty} \int_{0}^{\infty} \int_{\hbar_{z, r}}^{\infty} \mathrm{d} F(w) \mathrm{d} G(z) \mathrm{d} H(r) \\
& +\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\hbar_{z, r}} \mathrm{~d} F(w) \mathrm{d} G(z) \mathrm{d} H(r) \\
= & \int_{0}^{\infty} \int_{0}^{\infty} \bar{F}\left(\hbar_{z, r}\right) \mathrm{d} G(z) \mathrm{d} H(r) \\
& +\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\hbar_{z, r}} \mathrm{~d} F(w) \mathrm{d} G(z) \mathrm{d} H(r) \\
& \times \Psi_{n}\left(\hbar_{z, r}-w, y^{(2)}, x^{(2)}, i^{(2)}\right) \\
& \tag{14}
\end{align*}
$$

Thus, from the dominated convergence theorem, the integral equation for Ψ in Theorem 2.1 follows immediately by letting $n \rightarrow \infty$ in (14).

Similarly, the following recursive equation for Φ_{n} and integral equation for Φ hold.

Theorem 2.2. For $n=1,2, \ldots$,

$$
\begin{aligned}
& \Phi_{n+1}\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right) \\
= & \int_{0}^{\infty} \int_{0}^{\infty} \bar{F}\left(\ell_{z, r}\right) \mathrm{d} G(z) \mathrm{d} H(r) \\
& +\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\ell_{z, r}} \mathrm{~d} F(w) \mathrm{d} G(z) \mathrm{d} H(r) \\
& \quad \times \Phi_{n}\left(\ell_{z, r}-w, y^{(2)}, x^{(2)}, i^{(2)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \Phi\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right) \\
= & \int_{0}^{\infty} \int_{0}^{\infty} \bar{F}\left(\ell_{z, r}\right) \mathrm{d} G(z) \mathrm{d} H(r) \\
& +\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\ell_{z, r}} \mathrm{~d} F(w) \mathrm{d} G(z) \mathrm{d} H(r) \\
& \times \Phi\left(\ell_{z, r}-w, y^{(2)}, x^{(2)}, i^{(2)}\right)
\end{aligned}
$$

with $y, x, i, y^{(2)}, x^{(2)}$ and $i^{(2)}$ specified in (9)-(12) and $\ell_{z, r}=$ $u(1+i)+x-\eta_{3}$.

III. Probability IneQualities for Ruin Probabilities

Using the recursive equations for Ψ_{n} and Φ_{n}, we can derive probability inequalities for Ψ and Φ by an inductive approach. We first give the probability inequality for Ψ.

Theorem 3.1. Suppose that there exists some constant $\gamma_{1}>0$ satisfying

$$
\begin{equation*}
\mathbb{E}^{\gamma_{1}\left[\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}\left(1+R_{1}\right)+\eta_{3}\right]}=1 \tag{15}
\end{equation*}
$$

Then, for any $\eta_{1} \geq \eta_{3}$,

$$
\begin{align*}
& \Psi\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right) \tag{16}\\
\leq & \beta_{1} \mathbb{E} \mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) W_{1}} \mathbb{E} \mathrm{e}^{-\gamma_{1}\left[\left(u+X_{1}\right)\left(1+I_{1}\right)-\eta_{3}\right]} \tag{17}
\end{align*}
$$

with

$$
\begin{equation*}
\beta_{1}^{-1}=\inf _{t \geq 0} \frac{\int_{t}^{\infty} \mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) w} \mathrm{~d} F(w)}{\mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) t} \bar{F}(t)} . \tag{18}
\end{equation*}
$$

Proof: For any $t \geq 0$, we have

$$
\begin{align*}
\bar{F}(t)= & \left(\frac{\int_{t}^{\infty} \mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) w} \mathrm{~d} F(w)}{\mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) t} \bar{F}(t)}\right)^{-1} \mathrm{e}^{-\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) t} \\
& \times \int_{t}^{\infty} \mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) w} \mathrm{~d} F(w) \\
\leq & \beta_{1} \mathrm{e}^{-\gamma_{1} t} \int_{t}^{\infty} \mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) w} \mathrm{~d} F(w) \tag{19}\\
\leq & \beta_{1} \mathrm{e}^{-\gamma_{1} t} \mathbb{E} \mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) W_{1}} \tag{20}
\end{align*}
$$

Clearly, $\left(u+X_{1}\right)\left(1+I_{1}\right)-\eta_{3} \geq 0$ when $\eta_{1} \geq \eta_{3}$. Then, from (20) we have

$$
\begin{aligned}
& \Psi_{1}\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right) \\
= & \mathbb{P}\left(W_{1}>\left(u+\eta_{1}+Z_{1}\right)\left(1+\eta_{2}+R_{1}\right)-\eta_{3}\right) \\
= & \int_{0}^{\infty} \int_{0}^{\infty} \bar{F}\left(\left(u+\eta_{1}+z\right)\left(1+\eta_{2}+r\right)-\eta_{3}\right) \mathrm{d} G(z) \mathrm{d} H(r) \\
\leq & \beta_{1} \mathbb{E} \mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) W_{1}} \\
& \times \int_{0}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-\gamma_{1}\left[\left(u+\eta_{1}+z\right)\left(1+\eta_{2}+r\right)-\eta_{3}\right]} \mathrm{d} G(z) \mathrm{d} H(r) \\
= & \beta_{1} \mathbb{E} \mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) W_{1}} \mathbb{E} \mathrm{e}^{-\gamma_{1}\left[\left(u+\eta_{1}+Z_{1}\right)\left(1+\eta_{2}+R_{1}\right)-\eta_{3}\right]} \\
= & \beta_{1} \mathbb{E} \mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) W_{1}} \mathbb{E}^{-\gamma_{1}\left[\left(u+X_{1}\right)\left(1+I_{1}\right)-\eta_{3}\right]} .
\end{aligned}
$$

Under an inductive hypothesis, we assume that for any y_{0}, w_{0}, $x_{0}, \ldots, x_{-p+1}, z_{0}, \ldots, z_{-q+1}, i_{0}, \ldots, i_{-s+1}, r_{0}, \ldots, r_{-t+1} \geq$ 0 and $\eta_{1} \geq \eta_{3}$,

$$
\begin{align*}
& \Psi_{n}\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right) \\
\leq & \beta_{1} \mathbb{E}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) W_{1}} \mathbb{E}^{-\gamma_{1}\left[\left(u+X_{1}\right)\left(1+I_{1}\right)-\eta_{3}\right]} \tag{21}\\
\leq & \beta_{1} \mathbb{E}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) W_{1}} \mathbb{E}^{-\gamma_{1}\left[\left(u+Z_{1}\right)\left(1+R_{1}\right)-\eta_{3}\right]} . \tag{22}
\end{align*}
$$

Take $y, x, i, y^{(2)}, x^{(2)}, i^{(2)}$ and $\hbar_{z, r}$ as in (9)-(12). Then, for $0 \leq w \leq \hbar_{z, r}$, by (15) and (22) we have

$$
\begin{align*}
& \Psi_{n}\left(\hbar_{z, r}-w, y^{(2)}, x^{(2)}, i^{(2)}\right) \\
\leq & \beta_{1} \mathbb{E} \mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) W_{1}} \\
& \times \mathbb{E}^{-\gamma_{1}\left[\left(\hbar_{z, r}-w+Z_{1}\right)\left(1+R_{1}\right)-\rho_{1}\left(w+\eta_{3}\right)-\rho_{2} w\right]} \\
= & \beta_{1} \mathbb{E}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) W_{1}} \\
& \times \mathbb{E}\left[\mathrm{e}^{-\gamma_{1}\left[Z_{1}\left(1+R_{1}\right)-\rho_{1} \eta_{3}\right]} \mathrm{e}^{-\gamma_{1}\left[\left(\hbar_{z, r}-w\right)\left(1+R_{1}\right)-\left(\rho_{1}+\rho_{2}\right) w\right]}\right] \\
\leq & \beta_{1} \mathbb{E} \mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) W_{1}} \\
& \times \mathbb{E}^{-\gamma_{1}\left[Z_{1}\left(1+R_{1}\right)-\eta_{3}\right]} \mathrm{e}^{-\gamma_{1}\left[\hbar_{z, r}-\left(1+\rho_{1}+\rho_{2}\right) w\right]} \\
= & \beta_{1} \mathrm{e}^{-\gamma_{1}\left[(u+x)(1+i)-\eta_{3}-\left(1+\rho_{1}+\rho_{2}\right) w\right]} . \tag{23}
\end{align*}
$$

Vol:6, Nop:8, 2012 , byeorem 2.1, (19) and (23), we get

$$
\begin{aligned}
& \quad \Psi_{n+1}\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right) \\
& \leq \beta_{1} \int_{0}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-\gamma_{1}\left[(u+x)(1+i)-\eta_{3}\right]} \mathrm{d} G(z) \mathrm{d} H(r) \\
& \quad \times \int_{\hbar_{z, r}}^{\infty} \mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) w} \mathrm{~d} F(w) \\
& +\beta_{1} \int_{0}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-\gamma_{1}\left[(u+x)(1+i)-\eta_{3}\right]} \mathrm{d} G(z) \mathrm{d} H(r) \\
& \quad \times \int_{0}^{\hbar_{z, r} r} \mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) w} \mathrm{~d} F(w) \\
& =\beta_{1} \int_{0}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-\gamma_{1}\left[(u+x)(1+i)-\eta_{3}\right]} \mathrm{d} G(z) \mathrm{d} H(r) \\
& \quad \times \int_{0}^{\infty} \mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) w} \mathrm{~d} F(w) \\
& =\beta_{1} \mathbb{E} \mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) W_{1}} \mathbb{E} \mathrm{e}^{-\gamma_{1}\left[\left(u+X_{1}\right)\left(1+I_{1}\right)-\eta_{3}\right]} .
\end{aligned}
$$

Thus, for all $n=1,2, \ldots$, (21) holds. Therefore, (17) follows by letting $n \rightarrow \infty$ in (21).

Similarly, we can obtain the following probability inequality for Φ.

Theorem 3.2. Suppose that there exists some constant $\gamma_{2}>0$ satisfying

$$
\begin{equation*}
\mathbb{E} \mathrm{e}^{\gamma_{2}\left[\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}+\eta_{3}\right]}=1 . \tag{24}
\end{equation*}
$$

Then, for any $\eta_{1} \geq \eta_{3}$,

$$
\begin{align*}
& \Phi\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right) \\
\leq & \beta_{2} \mathbb{E}^{\gamma_{2}\left(1+\rho_{1}+\rho_{2}\right) W_{1}} \mathbb{E}^{-\gamma_{2}\left[u\left(1+I_{1}\right)+X_{1}-\eta_{3}\right]} \tag{25}
\end{align*}
$$

with

$$
\begin{equation*}
\beta_{2}^{-1}=\inf _{t \geq 0} \frac{\int_{t}^{\infty} \mathrm{e}^{\gamma_{2}\left(1+\rho_{1}+\rho_{2}\right) w} \mathrm{~d} F(w)}{\mathrm{e}^{\gamma_{2}\left(1+\rho_{1}+\rho_{2}\right) t} \bar{F}(t)} . \tag{26}
\end{equation*}
$$

Refinements of upper bounds in Theorem 3.1 and Theorem 3.2 can be obtained when F is new worse than used in convex ordering (NWUC). A lifetime distribution B is said to be NWUC if for all $x \geq 0, y \geq 0$,

$$
\int_{x+y}^{\infty} \bar{B}(t) \mathrm{d} t \geq \bar{B}(x) \int_{y}^{\infty} \bar{B}(t) \mathrm{d} t .
$$

The class of NWUC distributions is larger than the class of decreasing failure rate (DFR) distributions. See Shaked and Shanthikumar [4] for properties of NWUC and other classes of lifetime distributions.

Corollary 3.1. Under the conditions of Theorem 3.1 and Theorem 3.2, if F is $N W U C$ and $\eta_{1} \geq \eta_{3}$, then,

$$
\begin{equation*}
\Psi\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right) \leq \mathbb{E} \mathrm{e}^{-\gamma_{1}\left[\left(u+X_{1}\right)\left(1+I_{1}\right)-\eta_{3}\right]}, \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right) \leq \mathbb{E} \mathrm{e}^{-\gamma_{2}\left[u\left(1+I_{1}\right)+X_{1}-\eta_{3}\right]} . \tag{28}
\end{equation*}
$$

Proof: From Proposition 6.1.1 of Willmot and Lin [7], we can get that if F is NWUC, then $\beta_{1}^{-1}=\mathbb{E}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) W_{1}}$ and $\beta_{2}^{-1}=\mathbb{E}^{\gamma_{2}\left(1+\rho_{1}+\rho_{2}\right) W_{1}}$. Thus, by Theorem 3.1 and Theorem 3.2 , we can conclude the proof.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

The constants γ_{1} defined in (15) and γ_{2} defined in (24) are: $6, \mathrm{No}: 8$, 2012 called adjustment coefficients. And the following remark gives sufficient conditions of the existences of γ_{1} and γ_{2}.
Remark 3.1. If $\mathbb{E}\left[\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}\left(1+R_{1}\right)+\eta_{3}\right]<0$ and $\mathbb{P}\left(\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}\left(1+R_{1}\right)+\eta_{3}>0\right)>0$ hold simultaneously, then, there exists a unique positive constant γ_{1} satisfying (15).
If $\mathbb{E}\left[\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}+\eta_{3}\right]<0$ and $\mathbb{P}\left(\left(1+\rho_{1}+\right.\right.$ $\left.\left.\rho_{2}\right) W_{1}-Z_{1}+\eta_{3}>0\right)>0$ hold simultaneously, then, there exists a unique positive constant γ_{2} satisfying (24).

Proof of Remark 3.1: Define

$$
\begin{equation*}
f(r)=\mathbb{E} \mathrm{e}^{r\left[\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}\left(1+R_{1}\right)+\eta_{3}\right]}-1 . \tag{29}
\end{equation*}
$$

Then,

$$
\begin{aligned}
f^{\prime \prime}(r)=\mathbb{E}\{ & {\left[\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}\left(1+R_{1}\right)+\eta_{3}\right]^{2} } \\
& \left.\times \mathrm{e}^{r\left[\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}\left(1+R_{1}\right)+\eta_{3}\right]}\right\} \geq 0,
\end{aligned}
$$

which implies that $f(r)$ is a convex function with $f(0)=0$ and

$$
f^{\prime}(0)=\mathbb{E}\left[\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}\left(1+R_{1}\right)+\eta_{3}\right]<0 .
$$

By $\mathbb{P}\left(\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}\left(1+R_{1}\right)+\eta_{3}>0\right)>0$, we can find some constant $\delta>0$ such that

$$
\mathbb{P}\left(\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}\left(1+R_{1}\right)+\eta_{3}>\delta\right)>0 .
$$

Then, we can get that

$$
\begin{aligned}
f(r)= & \mathbb{E e}^{r\left[\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}\left(1+R_{1}\right)+\eta_{3}\right]}-1 \\
\geq & \mathbb{E}\left[\mathrm{e}^{r\left[\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}\left(1+R_{1}\right)+\eta_{3}\right]}\right. \\
& \left.\times \mathbb{I}_{\left[\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}\left(1+R_{1}\right)+\eta_{3}>\delta\right]}\right]-1 \\
\geq & \mathrm{e}^{\delta r} \mathbb{P}\left(\left(1+\rho_{1}+\rho_{2}\right)-Z_{1}\left(1+R_{1}\right)+\eta_{3}>\delta\right)-1 \\
& \rightarrow \infty, \text { as } r \rightarrow \infty .
\end{aligned}
$$

Therefore, there exists some (unique) constant $\gamma_{1}>0$ satisfying (15).

By the same approach, we can prove the existence of $\gamma_{2}>$ 0.

Now, we consider the relationship between γ_{1} and γ_{2}.
Proposition 3.1. Suppose that $\mathbb{E}\left[\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}+\eta_{3}\right]<$ 0 . If there exists some constant $\gamma_{1}>0$ satisfying (15) and there exists some constant $\gamma_{2}>0$ satisfying (24), then, $\gamma_{1} \geq \gamma_{2}$.

Proof: Recall that $f(r)$ is a convex function with $f(0)=$ 0 and

$$
\begin{aligned}
f^{\prime}(0) & =\mathbb{E}\left[\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}\left(1+R_{1}\right)+\eta_{3}\right] \\
& \leq \mathbb{E}\left[\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}+\eta_{3}\right]<0 .
\end{aligned}
$$

Then, γ_{1} is the unique positive roots of equation $f(r)=0$ on $(0, \infty)$. Furthermore, if $r>0$ and $f(r) \leq 0$, then $\gamma_{1} \geq r$. From (24), we have

$$
\begin{aligned}
f\left(\gamma_{2}\right) & =\mathbb{E} \mathrm{e}^{\gamma_{2}\left[\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}\left(1+R_{1}\right)+\eta_{3}\right]}-1 \\
& \leq \mathbb{E} \mathrm{e}^{\gamma_{2}\left[\left(1+\rho_{1}+\rho_{2}\right) W_{1}-Z_{1}+\eta_{3}\right]}-1=0 .
\end{aligned}
$$

Thus, $\gamma_{1} \geq \gamma_{2}$.

$$
\begin{equation*}
\Psi\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right) \leq \Phi\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right) . \tag{30}
\end{equation*}
$$

This shows the impact of timing of premium payments on the ruin probabilities Ψ and Φ. It is natural to think of the relationship between upper bounds since (30) holds.
Denote the upper bounds in Theorem 3.1 and Theorem 3.2 respectively by $\Lambda_{1}\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right)$ and $\Lambda_{2}\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right)$. Then, from (15) and (24), we have

$$
\begin{equation*}
\Lambda_{1}\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right)=\beta_{1} \mathbb{E} \mathrm{e}^{-\gamma_{1}\left[\left(u+\eta_{1}\right)\left(1+I_{1}\right)+\eta_{2} Z_{1}\right]} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda_{2}\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right)=\beta_{2} \mathbb{E} \mathrm{e}^{-\gamma_{2}\left[u\left(1+I_{1}\right)+\eta_{1}\right]} . \tag{32}
\end{equation*}
$$

From Proposition 3.1, we can get that

$$
\begin{aligned}
& \frac{\int_{t}^{\infty} \mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) w} \mathrm{~d} F(w)}{\mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right) t} \bar{F}(t)} \\
= & \frac{\int_{t}^{\infty} \mathrm{e}^{\gamma_{1}\left(1+\rho_{1}+\rho_{2}\right)(w-t)} \mathrm{d} F(w)}{\bar{F}(t)} \\
\geq & \frac{\int_{t}^{\infty} \mathrm{e}^{\gamma_{2}\left(1+\rho_{1}+\rho_{2}\right)(w-t)} \mathrm{d} F(w)}{\bar{F}(t)} \\
= & \frac{\int_{t}^{\infty} \mathrm{e}^{\gamma_{2}\left(1+\rho_{1}+\rho_{2}\right) w} \mathrm{~d} F(w)}{\mathrm{e}^{\gamma_{2}\left(1+\rho_{1}+\rho_{2}\right) t} \bar{F}(t)},
\end{aligned}
$$

which, using (18) and (26), implies that

$$
\begin{equation*}
\beta_{1}^{-1} \geq \beta_{2}^{-1}, \quad \text { or } \quad \beta_{1} \leq \beta_{2} \tag{33}
\end{equation*}
$$

Thus, from (31)-(32) and (33), we have the following proposition.

Proposition 3.2. Under the conditions of Proposition 3.1, we have, for any $\eta_{1} \geq \eta_{3}$,

$$
\begin{equation*}
\Lambda_{1}\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right) \leq \Lambda_{2}\left(u, y^{(1)}, x^{(1)}, i^{(1)}\right) \tag{34}
\end{equation*}
$$

IV. Numerical Example

In this section, we give a numerical example to illustrate the tightness of the upper bounds derived in the section above. We use 2500 time intervals so that the true ruin probability could be a little larger than its simulated result. The calculations are obtained by Maple software and R programming language.

Example 4.1. Let the claims be modelled by (1) with initial values $y_{0}=w_{0}=0.1$ and coefficients $\rho_{1}=\rho_{2}=0.1$. In addition, let $\left\{W_{n}, n=1,2, \ldots\right\}$ have a common gamma density

$$
f(w)=\frac{w^{\alpha-1}}{\lambda^{\alpha} \Gamma(\alpha)} \mathrm{e}^{-w / \lambda}, \quad w \geq 0
$$

with shape $\alpha=0.5$ and scale $\lambda=1$. Here, $\Gamma(\cdot)$ denotes the gamma function.

Assume the premiums are modelled by an $\operatorname{ARMA}(3,3)$ process, namely, for all $n=1,2, \ldots$,

$$
\begin{align*}
X_{n}= & a_{1} X_{n-1}+a_{2} X_{n-2}+a_{3} X_{n-3} \\
& +Z_{n}+c_{1} Z_{n-1}+c_{2} Z_{n-2}+c_{3} Z_{n-3} \tag{35}
\end{align*}
$$

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

TABLE I
Upper bounds and ruin frequencies (RF) of Example 4.1.

u	RF of (5)	RF of (7)	(27) for Ψ	(28) for Φ
0.5	0.2022	0.2122	0.5328	0.5440
1.5	0.0955	0.0988	0.3485	0.3594
2.5	0.0441	0.0490	0.2279	0.2375
3.5	0.0182	0.0237	0.1491	0.1569
4.5	0.0073	0.0116	0.0975	0.1036

Vol:6, No:8, 2012
[7] Willmot, G. E., Lin, X. S. Lundberg Approximations for Compound Distributions with Insurance Applications. Springer-Verlag, New York, 2001.
[8] Yang, H. Non-exponential bounds for ruin probability with interest effect included. Scand. Actuarial J., 1999, 1999(1): 66-79.
[9] Yang, H., Zhang, L. Martingale method for ruin probability in an autoregressive model with constant interest rate. Prob. Eng. Inf. Sci., 2003, 17(2): 183-198.
with initial values $x_{0}=x_{-1}=x_{-2}=0.5, z_{0}=z_{-1}=$ $z_{-2}=0.5$, coefficients $a_{1}=c_{1}=0.1, a_{2}=c_{2}=0.05$, $a_{3}=c_{3}=0.01$. In addition, let $\left\{Z_{n}, n=1,2, \ldots\right\}$ have a common Weibull density

$$
g(z)=\frac{\eta}{\theta}\left(\frac{z}{\theta}\right)^{\eta-1} \mathrm{e}^{-(z / \theta)^{\eta}}, \quad z \geq 0
$$

with shape $\eta=2$ and scale $\theta=1$.
Let the rates of interest follow an $\operatorname{ARMA}(3,3)$ process, i.e. for all $n=1,2, \ldots$,

$$
\begin{align*}
I_{n}= & b_{1} I_{n-1}+b_{2} I_{n-2}+b_{3} I_{n-3} \\
& +R_{n}+d_{1} R_{n-1}+d_{2} R_{n-2}+d_{3} R_{n-3} \tag{36}
\end{align*}
$$

with initial values $i_{0}=i_{-1}=i_{-2}=0.014, r_{0}=r_{-1}=$ $r_{-2}=0.012$, coefficients $b_{1}=d_{1}=0.1, b_{2}=d_{2}=0.05$ and $b_{3}=d_{3}=0.01$. In addition, suppose $\left\{R_{n}, n=1,2, \ldots\right\}$ have a common uniform distribution on $[0.01,0.014]$.
We can get that $\gamma_{1}=0.41782, \gamma_{2}=0.40794$, which supports Proposition 3.1. Since $0<\alpha<1$, the distribution function F of W_{1} is DFR and hence NWUC. Notice that $\eta_{1}=0.16>\eta_{3}=0.02$. Then, (27) applies to Ψ and (28) applies to Φ. The simulated results and upper bounds are given in Table I.

From Table I, we can see that the upper bounds are about two to ten times their ruin frequencies, respectively. However, it is not easy to obtain the true ruin probability in general The upper bounds, like the ones in this paper, are very easy to obtain, and in most of the practical problems, we only need the upper bound for the ruin probability. It is evident that both the ruin frequency and upper bound decrease as the initial surplus u increases. Table I demonstrate exactly the same relationship between the upper bounds as shown in Proposition 3.2.

Acknowledgment

The authors would like to thank the support of the Natural Science Foundation of China (Project No: 71001017)

References

[1] Cai, J. Ruin probabilities with dependent rates of interest. J. Appl. Prob., 2002, 39(2): 312-323.
[2] Cai, J., Dickson, D. Ruin probabilities with a Markov chain interes model. Insurance Math. Econom., 2004, 35(3): 513-525.
[3] Gerber, H. Ruin theory in the linear model. Insurance Math. Econom., 1982, 1(3): 213-217.
[4] Shaked, M., Shanthikumar, J. Stochastic Orders and their Applications Academic Press, San Diego, 1994
[5] Sundt, B., Teugels, J. Ruin estimates under interest force. Insurance Math. Econom., 1995, 16(1): 7-22.
[6] Sundt, B., Teugels, J. The adjustment function in ruin estimates under interest force. Insurance Math. Econom., 1997, 19(2): 85-94.

[^0]: F. Guo, Corresponding author, School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China. E-mail: fenglongguo@gmail.com
 D. Wang, Australian National University and Nanjing Audit University. E-mail: wangdc@uestc.edu.cn

