
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

586

Abstract—Wireless Sensor and Actor Networks (WSANs)

constitute an emerging and pervasive technology that is attracting
increasing interest in the research community for a wide range of
applications. WSANs have two important requirements: coordination
interactions and real-time communication to perform correct and
timely actions. This paper introduces a methodology to facilitate the
task of the application programmer focusing on the coordination and
real-time requirements of WSANs. The methodology proposed in
this model uses a real-time component model, UM-RTCOM, which
will help us to achieve the design and implementation of applications
in WSAN by using the component oriented paradigm. This will help
us to develop software components which offer some very interesting
features, such as reusability and adaptability which are very suitable
for WSANs as they are very dynamic environments with rapidly
changing conditions. In addition, a high-level coordination model
based on tuple channels (TC-WSAN) is integrated into the
methodology by providing a component-based specification of this
model in UM-RTCOM; this will allow us to satisfy both sensor-actor
and actor-actor coordination requirements in WSANs. Finally, we
present in this paper the design and implementation of an application
which will help us to show how the methodology can be easily used
in order to achieve the development of WSANs applications.

Keywords—Sensor networks, real time and embedded systems.

I. INTRODUCTION
IRELESS Sensor and Actor Networks (WSAN) are one
of the fields related to wireless sensor networks (WSN)

which is gaining more and more interest from the research
community. WSANs are a variation of WSN in which the
devices deployed in the environment are not only the ‘motes’
capable of sensing different physical phenomena, but also
actors capable of performing different actions depending of
the data sensed by the sensors. In fact, they are capable of
performing a reaction to the data sensed, in case it is needed.
For example, we could use WSANs to develop an alarm
system which could be installed in certain buildings, such as
museums or banks. In case a burglar enters a room in the
museum, he/she would increase the level of noise in the room.
 The sensors deployed on it would relay the origin and
intensity of the noise and send this data to the actors which
could trigger and alarm, so that we could prevent the valuable

This paper has been funded in part by EU funded project FP6 IST-5-

033563 and Spanish project TIN2005-09405-C02-01.
Authors are with Department of Languages and Computer Science, Málaga

University, 29071 Málaga, Spain (e-mails: {barbaran, mdr, dgarrido, luisll,
tolo}@lcc.uma.es; corresponding to provide phone: +34 952 13 28 65; fax:
+34 952 13 13 97; e-mail: esteve@lcc.uma.es).

paintings in the museum to be stolen. Actors are usually
equipped with higher computing and electronic resources than
sensors. Furthermore, because of the actor’s richer resources,
the number of actors deployed in the environment will be
much smaller than the number of sensors, which could be in
the order of hundreds or even thousands. In some specific
situations, integrated sensor/actor nodes, especially robots,
may replace actor nodes.

Working with WSANs means we will have to deal with
both sensors and actors. Thus, there is a need for coordination
between sensors and actors and actors with each other. More
specifically, sensor-actor coordination makes possible that
sensors can send to actors the sensed data in the environment.
Depending on the environment and the different situations we
have to deal with, an actor may need every single reading
from its area sensors or it might be interested only in receiving
some critical information (for the example of the alarm system
explained above, the actor might be interested in receiving
only the measurements which have sensed a higher level of
noise than usual). After receiving the data from the sensors,
actors need to coordinate with each other in order to take
decisions so that they can perform the most appropriate action
according to the sensed data. Another important choice which
must be taken is which actor will perform the action. In some
situations, an action could be performed by different actors
collaborating with each other in case it is very complex.

The real-time behavior issue will be a very important
requirement in WSANs due to the fact that in many cases
actors will need to react or receive information from sensors
meeting timing requirements. As a result of it, both
coordination models and communication protocols used in
WSANs should support real-time properties.

The coordination and real-time issues will increase the
functionality and capabilities of WSANs resulting in a greater
software complexity for applications. Furthermore, sensor and
actor programming is a tedious error-prone task usually
carried out from scratch. These reasons prompted us to
develop a methodology that facilitates the development of
WSAN applications. We think that the component-oriented
paradigm is a good alternative [6] to design our methodology;
because the software components [7] offer features such as
reusability and adaptability which seem very suitable for
WSANs as they are very dynamic environments with rapidly
changing conditions. In order to show how the methodology
can be easily used to achieve the design and implementation
of WSANs applications we present an application which is in
charge of the temperature and noise measurements for a set of

RTCoord: A Methodology to Design
WSAN Applications

J. Barbarán, M. Díaz, I. Esteve, D. Garrido, L. Llopis, and B. Rubio

W

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

587

buildings.
The methodology proposes to use a real-time component

model (UM-RTCOM [8]) which will help us to specify the
software components in our framework and will allow us to
indicate some real-time constraints to them. In order to satisfy
the above mentioned coordination requirements of WSANs,
the methodology will incorporate a high-level coordination
model called TC-WSAN [10].

UM-RTCOM is a previous development focused on
software components for real-time distributed systems, and it
is adapted to the unique characteristics of WSANs. TC-
WSAN is based on TCMote [12][13] and it is integrated into
the framework in order to satisfy the coordination
requirements mentioned above. By means of special
components, both sensor-actor and actor-actor coordination is
carried out through tuple channels (TCs). A TC is a structure
that allows one-to-many and many-to-one communication of
data structures, represented by tuples. The priority issue, taken
into account at two levels, channels and tuples, contributes to
achieving the real-time requirements of WSANs. UM-
RTCOM will allow us to give a component-based design for
TC-WSAN so that we can take advantage of using the
component oriented paradigm.

A. Operational Setting
Our reference operational setting is based on an architecture

where there is a dense deployment of (not mobile) sensors
forming clusters, each one governed by a (possibly mobile)
actor. Communication between a cluster actor and the sensors
is carried out in a single-hop way. Although single-hop
communication is inefficient in WSNs due to the long distance
between sensors and the base station, in WSANs this may not
be the case, because actors are close to sensors.

Several actors may form a super-cluster which is governed
by one of them, the so-called cluster leader actor. This way, a
hierarchical structure may be achieved so that, in our
operational setting, the base station can be considered as the
leader actor of a cluster grouping the leader actors of outer
clusters (Fig. 1).

Clustering avoids the typical situation in WSANs where
multiple actors can receive information from sensors about the
sensed phenomena. Lack of coordination between sensors
may cause too many and unnecessary actors to be activated
and as a result the total energy consumption of all sensors can
rise. Moreover, clustering together with the single-hop
communication scheme minimizes the event transmission time
from sensors to actors, which contributes to support the real-
time communication required in WSANs.

The rest of the paper is structured as follows. In Section 2
the main characteristics of UM-RTCOM are presented.
Section 3 introduces the methodology including the
coordination model TC-WSANs with its main design goals,
primitives and its component-based UM-RTCOM design.
Section 4 describes the use of the proposed methodology in
order to achieve the design and implementation of a real
WSAN application. Finally, some conclusions are sketched in
Section 5.

Fig. 1 Operational Setting

II. THE UM-RTCOM MODEL
Component-based development is a key technology in the

development of modern software systems. In previous work,
we presented UM-RTCOM, a component model especially
suitable for real-time and embedded systems. Some of its main
features have prompted us to use it for the development of
WSAN applications. UM-RTCOM components are light-
weight components which do not depend on any specific
execution platform or heavy framework.

The model improves some features of standard component
models, adding constructions to express temporal constraints,
synchronization, quality of service, events, etc. It is a
Hierarchical model where components act like containers of
other components and, at the same time, provide interfaces.
More details on the model characteristics are sketched in [8].

A. Component Types
There are two main component types: primitive and

generic. Generic components are the standard components of
the model. They provide services through interfaces and can
require services of other generic components. On the other
hand, primitive components (active or passive) are contained
in generic components. They are the basis for building generic
components, representing execution threads (active) or shared
resources (passive).

B. Component Interactions
Communication between components is performed through

interfaces and events. UM-RTCOM provides synchronization
primitives (wait, call, raise) which allow services and events
to be invoked, raised or waited for.

C. Real-Time Characteristics
UM-RTCOM was designed for use in real-time systems. It

supports constructions for this type of system such as
component configuration, specification of real-time
constraints or the possibility of performing real-time analysis.
We think WSAN systems can also benefit from some of these
features.

III. DESIGNING WSANS APPLICATIONS WITH RTCOORD
As it has already been explained in this paper, RTCOORD

includes a coordination mechanism in order to achieve the
sensor-actor and actor-actor coordination requirements. In our
methodology we are using TC-WSAN, a coordination model

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

588

based on tuple channels, in order to achieve these
coordination requirements. In order to integrate TC-WSAN in
our framework, we will give a component specification of this
coordination model using UM-RTCOM. In Fig. 2, we show a
component diagram for TC-WSAN.

The diagram includes the components provided by the
framework used in the methodology and also the components
actor and sensor which depend on the specific application we
are developing and which must be supplied by the application
developer.

Fig. 2 Component Diagram: Framework

The region component is a passive UM-RTCOM that will

help us to do the clustering while the Interaction Agent
component is a passive UM-RTCOM component that uses the
MoteIF interface supplied by Crossbow [18] which will allow
us to communicate physically with the motes. The other two
components in the diagram (Tuple Channel and Tuple
Channel Space) will be explained in more detail later. Note
that the tcs component contains the Tuple Channel
component, so when actor and sensor components want to
deal with a tuple channel, they will do it by means of the
primitives provided by the tuple channel space component. In
the next section, further details on the process of using the
methodology in order to develop WSANs applications will be
explained.

In the next subsections, more details on TC-WSAN and
how it is used in our methodology are given.

A. The TC-WSAN Model
A coordination model can be viewed as a triple (E,M,L),

where E represents the entities being coordinated, M is the
media used to coordinate the entities, and L is the semantics
framework the model adheres to.

In our model, each cluster of the reference operational
setting is considered as a Virtual Machine (VM) comprising
these three items. The entities to be coordinated E are the
nodes (actors and sensors). A Tuple Channel Space, which
constitutes the coordination media M, stores the tuple
channels used to carry out the communication and
synchronization between the sensors and the actor. Finally, the
coordination ''laws'' L that govern the actions related to
coordination are determined by the semantics of every model
primitive. Further details on TC-WSAN are sketched on [10].

B. Using the Tuple Channel Space Component
A Tuple Channel Space (TCS) is a shared data space

accessed by the members of a cluster. The following UM-
RTCOM component definition shows the API offered by the
TC-WSANs model:

component CTupleChannelSpace {

struct attribute {
 string name;
 string value;
 };
typedef sequence<attribute> channel_attributes;
typedef sequence<short> lchannel_id;
typedef sequence<any> tuple;

interface ITupleChannelSpace {

void create(in channel_attributes ca,

out short chanid);
void get_attr(in short chanid,
 out channel_attributes ca);
void destroy(in channel_attributes
 search_pattern);
void find(in channel_attributes search_pattern,

in float timeout, out short chanid);
// access to channnels
void connect(in short chanid,in string mode);
void disconnect(in short chanid);
void put(in short chanid,in tuple t);
void get(in short chanid,in short timeout,

out tuple t);
}
input ITupleChannelSpace;
}

To facilitate the data-centric characteristics of sensor
queries, attribute-based naming is the scheme selected [19]:

[attribute1 = value1, attribute2 = value2, ...]

In our model the channels are identified by means of an
attribute-based data structure. This way, when a channel is
created in the TCS its attributes are specified. For example, in
case we want to create a many-to-one-channel so that the
sensors can send the sensed data to the leader actor in the
cluster, the attribute-based data structure identifying it could
be the following:

[com_type = many_to_one]
One of the characteristics that contribute to achieving the

real-time requirements demanded by WSANs is the priority
issue. In our approach, a priority can be associated to a
channel by means of an attribute. Then, a system entity can
obtain the corresponding priority of a channel through the
get_attr primitive.

On the other hand, when it is desirable that a channel be
removed from the tcs, an attribute-based data structure with
(probably) some partially specified fields (search_pattern) is

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

589

used as an argument of the destroy primitive. A
search_pattern is also used by the find primitive in order to
find an appropriate channel to establish some communication.
Primitives connect, put, get and disconnect will allow us
to operate with the channels. These operations internally
interconnect with component CTupleChannel described
below.

C. Using the Tuple Channel Component
A Tuple Channel is a priority queue structure that allows

both one-to-many and many-to-one communication schemes.
Both communication schemes are carried out in a single-hop
way. Here, the priority issue affects tuples. A tuple is a
sequence of fields with the form: (t1, t2, ..., tn) where each field
ti can be:

• a TC identifier.
• a value of any established data type of the host

language where the model is integrated.
Entities access a TC by means of four primitives:

 component CTupleChannel {
 typedef sequence<any> tuple;
 interface ITupleChannel {
 void connect(in string mode);
 // Producer (mode = P) Consumer (mode =C)
 void disconnect();
 void put(in tuple t);
 void get(in short timeout, out tuple t);
 }
 input ITupleChannel;
 }

Before an entity can send/receive information through/from
a TC, it must establish a connection by means of the connect
primitive. When it no longer needs a channel, it executes the
disconnect primitive in order to disable the TC connection.

A producer will use the put primitive to send information
through a channel. Each time a put operation is executed, a
new tuple is added to the channel. The way this tuple is
treated and ordered inside the channel is depending on the
specified attributes. A consumer will use the get primitive to
receive information (tuples) from a channel.

IV. APPLYING THE METHODOLOGY
In order to show how real WSAN applications can be

developed by using the methodology proposed in this paper,
we have developed a prototype where laptops play the role of
actors and Crossbow family motes [18] are used as sensors.
The laptops run Linux OS and the motes run TinyOS. The
functionality which the application must provide is the sensing
of the temperature and noise levels inside the three buildings
constituting our Faculty in the University of Malaga and the
generation of alarms in case the data sensed becomes critical.

Fig. 4 shows the layout of the application, where we can see
that three regions which have been created, one per each
building; we will have only one actor in each cluster which
will receive all the measurements from the sensors displayed
in the building. The motes send the sensed data to the actors

which must maintain a constant temperature for each building
and trigger an alarm in case the level of noise sensed is higher
than usual.

In Fig. 3, the design of the framework can be seen, as it is
structured in layers. As it has been explained above, we are
using TC-WSAN to satisfy the coordination requirements of
WSANs applications and UM-RTCOM to specify the
software components needed. In order to connect physically
with the motes, the Interaction Agent component uses the
MoteIf interface supplied by the TinyOS operating system.

In order to implement each component designed with UM-
RTCOM, we will use Java. We will provide a mapping for
each component designed with UM-RTCOM which will result
in a single JAVA class for each component provided; this
mapping process could be done by an automatic mapping tool
which we are currently developing.

Fig. 3 Framework: Layered Design

Depending on the component provided, it will be mapped

to a Java thread (in case it is an active UM-RTCOM
component) or to a Java class (in case it is a passive UM-
RTCOM component). Fig. 5 shows a component diagram
which shows the component architecture we have used in the
application. As it can be seen, there are some differences with
Fig. 2, in which the architecture of the framework was shown.
As it has been said before, the components provided by the
methodology will be used by the actor and sensor components
(specified by the user of the framework) in order to achieve
the sensor-actor and actor-actor coordination requirements in
WSANs.

The actor component will be responsible for creating the
cluster by using the region component and will create a many-
to-one tuple channel using the tuple channel space component
primitives; this channel will allow the actor to receive the data
sensed by the sensors. When it comes to defining the sensor
component, it must be said that we have split the sensor
component functionality in two, Noise Reader and
Temperature Reader. This is done this way to clarify that
noise reading will be more prioritary than the temperature
readings.

Both components will use the find primitive provided by
the tuple channel space in order to have access to the channel
created by the actor component. Once they find it, they will
connect to it as producers and then send the sensed data in the
motes by using the put primitive of the tuple channel space
component.

In Fig. 6, a sequence diagram is shown where all the
components in the application and their interactions can be
seen. These objects are the actor which will be the leader of
the region (cluster) and so, will create it and ask the tuple

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

590

channel space (tcs) to create a tuple channel which enables it
to communicate with the temperature reader and the noise
reader. Then the actor will connect to the tuple channel as a
consumer, so that it can receive the data written in the channel
by the NoiseReader and TemperatureReader components.
Once the channel is created, both the NoiseReader and the
TemperatureReader component will call the find primitive of
the tcs in order to find the appropriate tuple channel which
allows them to communicate with the actor component.

After finding the appropriate channel, both of them will
connect to it as producers, so they can write the data sensed by
the sensor network to the channel. Once they have connected
to the channel, they will write the tuples in the channel with
their priority, depending on each component (remember noise
tuples will have a higher priority that the temperature ones),
this will be done by using the put primitive. The actor will
read the tuples from the tuple channel using the get primitive;
once it has read its value, it must check if the tuple read
corresponds to a temperature or a noise tuple and then read its
value and in case the value sensed is higher than usual, trigger
an alarm.

Fig. 4 Application Layout Fig. 5 Component Diagram: Application

Actor1 TCS TC MTReader MNReader MIAgent

Create new

chanid_Actor

Connect
Connect

Find

chanid_Actor

Find

chanid_Actor

Connect

Connect
Connect

Connect
Read(TEMPERATURE)

temperatureput(temperature)

Read(NOISE)

noise
put(noise)

get(chanid_Actor,newtuple)

get(newtuple)
Fig. 6 Sequence Diagram: Application

The following code shows the Actor component. The
Actor_Location components periodically read from the
channel associated to their respective buildings (by using tcs)
to get data from the sensors. Note that the components which
operations will be called are defined with the keyword
output.

When we want to use a operation provided by an ‘external’
component, we use the keyword call. Note that the actor

component will use the Tuple Channel Space as it was
explained above in order to create a channel which attributes
must be specified (in this case, we specify a many-to-one
communication type channel and the location which could be
any of the three buildings of the faculty, depending on the
parameter location). Every time we read a tuple from the
channel by using the get primitive provided by the tcs, we
will use the Tuple component so that we know which type the
tuple is (noise or temperature) and its value.

component Actor {
 output ITupleChannelSpace with tcs;
 output ITuple with t;
}
component implementation Actor {
 Active Actor_Location {
 short chanid_Actor;
 Actor_Location (string Location) {
 channel_attributes ca; ca.length(2);
 ca[0].name="com_type";
 ca[0].value="many_to_one";
 ca[1].name="location";
 ca[1].value=Location;
 call tcs.create(ca,&chanid_Actor);
 call tcs.connect(chanid_Actor,"C");
 }
 void execute() {
 string type;
 int value;
 call tcs.get(chanid_Actor,INFINITE,&t);
 call t.GetType(t,&type);
 call t.GetValue(t,&value);
 if (type == “temperature”)
 {
 if (value>MAX_TEMP)
 }
 if (type == “noise”)
 {
 if (value>MAX_NOISE)
 }

 }
}

In order to achieve the implementation for the actor
component, we show its mapping to a Java class. As the actor
component is an active UM-RTCOM component, it must be
mapped to a Java thread. All the components provided by the
framework will be mapped to Java classes as they are passive
UM-RTCOM components and every operation supplied by
the UM-RTCOM components will be implemented as Java
methods. So when we want to use an operation defined by an
‘external’ component, all we have to do is create instances of
the classes we want to use and then call the appropriate
method by using the classic ‘.’ Java operator. The interaction
among different objects in the application is shown in the
sequence diagram shown above (Fig. 6).

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

591

class Actor implements Runnable
{
 TupleChannelSpace tcs;
 Tuple t;
 Int priority;
 Thread actorThread;

Actor(string Location, int prioActor)
{

 channel_attributes ca; ca.length(2);
 ca[0].name="com_type";

 ca[0].value="many_to_one";
 ca[1].name="location";
 ca[1].value=Location;
 priority = prioActor;
 tcs.create(ca,chanid_Actor);
 tcs.connect(chanid_Actor,"C");
 actorThread = new Thread(this);
 PriorityParams prioParams =
 New PriorityParams(priority);
 actorThread.SetSchedulingParameters(prioParams);

}
public void Run()
{

 string type;
 int value;
 tcs.get(chanid_Actor,INFINITE,&t);
 t.GetType(t,&type);
 t.GetValue(t,&value);
 if (type == “temperature”)
 {
 if (value>MAX_TEMP)
 }
 if (type == “noise”){
 {
 if (value>MAX_NOISE)
 }

}
public void start()
{
 actorThread.Start();
}

}

The components MoteTemperature and MoteNoise get the

channel associated to their location (find) and periodically
send the sensed data by using the MoteTemperatureReader
and MoteNoiseReader active components. Note that the
priority attribute allows us to establish the priority of the
tuple (remember we considerered the noise tuples to be more
prioritary than the temperature ones). As the implementation
of both is very similar, only the MoteNoise component will be
shown.

component MoteNoise {
 output ITupleChannelSpace with tcs;
 output ITuple with tuple noise;
 output MoteInteractionAgent with miagent;
}

component implementation MoteNoise {
 short chanid_Actor;
 Int priority
 MoteTemperature(Int prio) {
 // Location and Connection to Actor
 channel_attributes fa; fa.length(1);
 priority = prio;
 fa[0].name="Location"
 fa[0].value=Get_Location();
 call tcs.find(fa,&chanid_Actor);
 call tcs.connect(chanid_Actor,"P");
 }
 Active MoteNoiseReader {
 void execute() {
 // Get data from environment
 call miagent.Read(SENSOR_NOISE, &noise);
 call noise.SetPrio(priority);
 call tcs.put(chanid_Actor,noise);
 }

MoteTemperatureReader nReader with period 50;
}

As this is an active UM-RTCOM component, it will also

mapped to a Java thread in order to implement it. In a very
similar way as we did with the actor component, we obtain the
following Java class:

class MoteNoise extends Thread
{
 TupleChannelSpace tcs;
 MoteInteractionAgent miagent;
 Short chanid_Actor;
 Int priority;
 Thread noiseThread
 MoteNoise(Int prio){
 channel_attributes fa;
 fa.length(1);
 fa[0].name="Location"
 fa[0].value=Get_Location();
 tcs.find(fa,&chanid_Actor);

tcs.connect(chanid_Actor,"P");
priority = prio;
noiseThread = new Thread(this);
PriorityParameters prioParams =
New PriorityParameters(priority);

noiseThread.SetSchedulingParameters(prioParams);
 }
 public void Run()
 {
 tuple noise;
 // Get data from environment
 miagent.Read(SENSOR_NOISE, &noise);
 tcs.put(chanid_Actor,noise);
 }
 public void start()
 {
 noiseThread.Start();
 }
}

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

592

V. CONCLUSION
In this paper we have presented a methodology to develop

WSANs applications focusing on the coordination
mechanisms and the real time requirements. The methodology
proposed meets the component-based paradigm and uses UM-
RTCOM, a component model which allows us to specify the
software components constituting our framework.

We have applied the proposed methodology to a real
example of a WSAN application in which the levels of noise
and temperatures are sensed in the three different buildings
constituting our faculty in the University of Malaga. In case
the data sensed in higher than usual, the actors will trigger
alarms. We have used laptops as actors and Crossbow motes
as sensors. We have deployed several actors on each building
and a single actor on each building.

As future work, we are currently developing automatic
tools to map UM-RTCOM specifications to Java and we are
also interested in using the Real Time Specification for Java.

REFERENCES
[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “Wireless

Sensor Networks: A Survey”, Computer Networks Journal, vol. 38, no.
4, pp. 393–422, 2002.

[2] Sensor Networks Applications, Special Issue of IEEE Computer, vol. 37,
no. 8, pp. 50–78, 2004.

[3] Wireless Sensor Networks, Special Issue of Communications of the
ACM, vol. 47, no. 6, 2004.

[4] I.F. Akyildiz, I.H. Kasimoglu, “Wireless Sensor and Actor Networks:
Research Challenges”, Ad Hoc Networks J., vol. 2, no. 4, pp. 351–367,
2004.

[5] D. Estrin, R. Govindan, J. Heidemann, S. Kumar, “Next Century
Challenges: Scalable Coordination in Sensor Networks”, in Proc.
MobiCom 1999, 1999, pp. 263–270.

[6] J. Blumenthal, M. Handy, F. Golatowski, M. Haase, D. Timmermann,
“Wireless Sensor Networks - New Challenges in Soft. Engineering”, in
Proc. ETFA 2003.

[7] G.T. Heineman, W.T. Councill, Component-Based Software
Engineering: Putting the Pieces Together, Addison Wesley, 2001.

[8] M. Díaz, D. Garrido, L. Llopis, B. Rubio, J. M. Troya, A Component
framework for Wireless Sensor and Actor Networks. 11th IEEE
International Conference on Emerging Technologies and Factory
Automation. IEEE Computer Society Press, pp. 300-307. Prague (Czech
Replubic), September 2006.

[9] J. Barbarán, M. Díaz, I. Esteve, D. Garrido, L. Llopis, B. Rubio, A Real-
Time Component-Oriented Middleware for Wireless Sensor and Actor
Networks. International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS-2007).to appear. IEEE Computer
Society Press. Vienna (Austria), April 2007.

[10] J.Barbarán, M.Díaz, I. Esteve, D. Garrido, L. Llopis, J.M. Troya and B.
Rubio, TC-WSANs: A Tuple Channel based Coordination Model for
Wireless Sensor and Actor Networks IEEE Symposium on Computers
and Communications (ISCC'07) to Appear. IEEE Computer Society
Press. Aveiro (Portugal), July 2007.

[11] M. Díaz M., D. Garrido, L. Llopis, F. Rus, J.M. Troya, “Integrating
Real-Time Analysis in a Component Model for Embedded Systems” in
Proc of the 30th IEEE Euromicro Conference. 2004, pp. 14-21.

[12] M. Díaz, B. Rubio, J.M. Troya, “TCMote: A Tuple Channel
Coordination Model for Wireless Sensor Networks”, in Proc. ICPS
2005, 2005, pp. 437–440.

[13] M. Díaz, B. Rubio, J.M. Troya, “A Coordination Middleware for
Wireless Sensor Networks” in Proc SENET 2005, 2005, pp. 377–382.

[14] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler, “The
nesC Language: A Holistic Approach to Networked Embedded
Systems” in Proc PLDI 2003.

[15] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A.L. Murphy, G.P. Picco,
“TinyLime: Bridging Mobile and Sensor Networks through
Middleware” in Proc. PerCom 2005, 2005, pp. 61–72.

[16] T. Melodia, D. Pompili, V.C. Gungor, I.F. Akyildiz, “A Distributed
Coordination Framework for Wireless Sensor and Actor Networks” in
Proc. Mobihoc 2005, 2005.

[17] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C.
Gruenwald, A. Torgerson, “MANTIS OS: An Embedded Multithreaded
Operating System for Wireless Micro Sensor Platforms”, Mobile
Networks and Apllications J., vol. 10, no. 4, pp. 563-579, 2005.

[18] Crossbow TechnologyInc: http://www.xbow.com.
[19] The Real Time Java Specification(RTSJ) http://www.rtsj.org.

