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Robust Stabilization against Unknown
Consensus Network

Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha

Abstract—This paper studies a robust stabilization problem of a
single agent in a multi-agent consensus system composed of identical
agents, when the network topology of the system is completely
unknown. It is shown that the transfer function of an agent in a
consensus system can be described as a multiplicative perturbation
of the isolated agent transfer function in frequency domain. From an
existing robust stabilization result, we present sufficient conditions for
a robust stabilization of an agent against unknown network topology.
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I. INTRODUCTION

MULTI-AGENT consensus systems have attracted much
attention in control community, due to the fact that

many important physical systems appearing in diverse fields
of science and engineering can be described as multi-agent
systems and as a result control problems of those systems
have significant importance.

One of the most popular topics in various control problems
of multi-agent system is how to economically and effectively
modify overall or collective behaviors of multi-agent systems
by controlling a small number of agents, taking advantages of
inter-agent network and certain communication protocols. For
this challenging problem, the leader-follower approach [1]–[4],
pinning control [5]–[9] and single agent control [10], [11]
have been proposed in literature. Basically those approaches
are motivated by some ideas about how to take advantage
of inter-agent communication of multi-agent systems. In this
sense, existing communication between agents of a multi-agent
system provides a favorable condition from the viewpoint
of a controller designer. This is particularly the case when
multi-agent systems employ a consensus protocol with which
every agent tries to follow the behaviours of its neighboring
agents.

However when a controller designer has either little
or wrong information about the network topology or the
configuration of inter-agent communication, then the very
existence of communication among agents turns into a hard
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obstacle, making the task of a control synthesis for a particular
single agent become much more difficult.

More specifically, suppose we are given a system to be
controlled but have no reliable information on whether or not
this system is a part of a multi-agent consensus system. Or
we know it is an agent of a certain multi-agent system but
we have no information on the topology of the network. A
natural idea in this situation is to robustly stabilize the agent by
regarding the changed dynamics of the agent due to its roles as
an agent in a (unknown) network system as a sort of dynamic
perturbation. This approach motivates a quantitative analysis
on the perturbation caused by inter-agent communication.

In this paper we assume that unknown multi-agent systems
employ a liner consensus protocol and that the dynamics of
every agent in a given multi-agent system is the same as the
agent that is to be controlled by an external controller.
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Fig. 1. Robust stabilization Against Unknown Consensus Network

For an illustration of our problem, let us consider a
multi-agent system shown in Fig. 1. This multi-agent system
consists of eight identical agents labelled 1, · · · , 8 and
each agent has the same linear time-invariant dynamics
characterized by a SISO (single-input single-output) transfer
function g(s).

Suppose that, without any knowledge on the network
topology in Fig. 1, we choose a controller, call it c(s), for
agent 1 to achieve a stable closed loop system defined by
{g(s), c(s)}. However existing consensus networking changes
the dynamics of the agent 1 from the original dynamics g(s)
to a perturbed one, call it g̃1(s). This paper will investigate the
robust stability of the perturbed pair {g̃1(s), c(s)} and provide
sufficient conditions for the robust stability against unknown
consensus networking.
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II. MAIN RESULTS

A. Multi-agent Consensus System

Consider a single-input single-output (SISO) time-invariant
plant whose dynamics is given as a rational transfer function

g(s) =
b(s)

a(s)
(1)

with two coprime polynomials a(s) and b(s).
By regarding the plant g(s) to be controlled as a nominal

plant and its correlation with other agents which are unknown
to a controller designer, as a kind of dynamic perturbation,
the stabilization problem of g(s) can be seen as a typical
robust control problem. For an application of existing robust
control technique, we firstly need an explicit description of
the dynamics of agent when it is a member of a consensus
system. Toward this, let us label agents in a consensus system
with an index set {1, 2, · · · , n}, reserving the agent labelled
1 as the agent to which an external controller will be directly
connected.

We suppose that the consensus system is equipped with a
linear consensus protocol, that is, each agent i is subject to a
consensus command

∑
j∈Ni

(yj−yi) where yi is the output of
agent i and Ni ⊂ {1, · · · , n} denotes the set of agents which
are directly connected to agent i. i.e., neighbouring agents.
Then the overall dynamics of the multi-agent consensus system
can be written as

a(s)

b(s)

⎡
⎢⎢⎢⎣
y1
y2
...
yn

⎤
⎥⎥⎥⎦ = −L

⎡
⎢⎢⎢⎣
y1
y2
...
yn

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
1
0
...
0

⎤
⎥⎥⎥⎦ ue

1 (2)

where the adjacency matrix A and the graph Laplacian L are
defined by

A := (aij) ∈ Rn×n, di := |Ni|,
D := diag.(di) ∈ Rn×n, L := D −A (3)

and aij=1 if agent i is directly connected to an agent j and
aij = 0 elsewhere. Note that the degree di denotes the number
of connections that agent i has.

The multi-agent system (2) can be associated with a
mathematical (undirected) graph where each agent represents
a vertex and a bi-directional inter-agent connection is regarded
as an edge.

A graph is called connected if every pair of vertices can be
connected by a sequence of edges. In this paper we assume
that graphs associated with multi-agent systems are connected.
Moreover, for simplicity, we call a multi-agent system (2)
connected if the corresponding graph is connected.

B. Robust Stabilization

For an exogenous control input ue
1 = c(s)(r − y1) with

some controller c(s) and a measurement of agent output y1,

the transfer function g̃1(s) from the input ue
1 to agent output

y1 is given as

g̃1(s) := eT1

(
1

g(s)
In×n + L

)−1

e1, e1 :=

⎡
⎢⎢⎢⎣
1
0
...
0

⎤
⎥⎥⎥⎦ . (4)

Let μ1 > μ2 > · · · > μm be the distinct eigenvalues of
the Laplacian matrix L. Then the spectral factorization of L
allows one to show that the transfer function g̃1(s) has the
following representation

g̃1(s) =
y1(s)

ue
1(s)

=
m∑

k=1

b(s)

a(s) + μkb(s)
α2
k (5)

where
α2
k :=< e1, Pke1 > (6)

and Pk denotes the orthogonal projection operator onto the
μk-eigenspace of the matrix L.

Lemma 1: For a connected graph, it holds that

α2
m =

1

m
and

m∑
k=1

α2
k = 1 (7)

Proof: It is a standard fact in spectral graph theory that
every connected graph has a smallest simple eigenvalue μm =
0 and a corresponding eigenvector vm =

[
1 · · · 1

]
/
√
m.

The first result comes from the fact Pm = vmvTm. The second
result is a consequence of the fact that Pk (k = 1, · · · ,m) is
a projection operator.

Making use of the representation (5) with simple algebras,
the agent transfer function g̃1(s), corresponding to an agent
serving as a member of a certain consensus system, can be
seen as a perturbation of the original (isolated) agent transfer
function g(s) as follows;

g̃1(s) = (1 + Δ(s)) g(s) (8)

where the multiplicative perturbation Δ(s) is given by

Δ(s) =
m∑

k=1

μkg(s)

1 + μkg(s)
α2
k (9)

Theorem 1: Suppose that, for each k = 1, · · · ,m − 1, the
transfer function μkg/(1 + μkg) is stable and the following
condition holds ∥∥∥∥ μkg(s)

1 + μkg(s)

∥∥∥∥
∞

≤ 1. (10)

If a controller c(s) stabilizing g(s), satisfies the bound∥∥∥∥ c(s)g(s)

1 + c(s)g(s)

∥∥∥∥
∞

≤ 1, (11)

then the controller c(s) also stabilizes the agent transfer
function g̃1(s) of a consensus network.

Proof: As μkg/(1 + μkg) is stable, so is Δ(s) in
(9). Moreover, from (7), it is clear that Δ(s) is a convex
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combination of a stable transfer functions {μkg/(1+μkg)|k =
1, · · · ,m}, and thus we have

‖Δ‖∞ = sup
ω≥0

|Δ(jω)| = sup
ω>0

∣∣∣∣∣
m∑

k=1

g(jω)μk

1 + g(jω)μk
α2
k

∣∣∣∣∣
≤

m∑
k=1

∥∥∥∥ g(s)μk

1 + g(s)μk

∥∥∥∥
∞

α2
k ≤

m∑
k=1

α2
k ≤ m− 1

m
< 1 (12)

From the strict inequality ‖Δ‖∞ < 1 and the hypothesis
(11), it easily follows from the small-gain theorem, see e.g.
Theorem 9.7 of [12], that the closed loop system defined by
{c(s), g̃1(s)} is stable.

C. An Application of Spectral Graph Theory

In the field of spectral graph theory, there are several known
bounds on the largest Laplacian eigenvalue, e.g. see [13]. For
example, the simplest one might be that the largest eigenvalue
is less than the number of agents in a consensus system, that
is,

μ1 ≤ n. (13)

Another known bound of μ1 is given in terms of the degrees
(number of neighbours) of agents as follows;

μ1 ≤ max
i,j

{di + dj ; i ∈ Nj} (14)

which says that the largest eigenvalue is bounded by the
maximal sum of two degrees of adjacent (directly connected)
agent pair.

Now, for a given agent dynamics g(s), define

γ∗
g := sup

{
γ ≥ 0

∣∣∣ gγ

1 + gγ
is stable,

∥∥∥∥ gγ

1 + gγ

∥∥∥∥
∞

≤ 1

}
.

(15)
Note that if the quantity γ∗

g is greater than the right hand
side of either (13) or (14), then the condition (10) in Theorem 1
holds. As a result, in this case, the sole condition (11) which is
independent of the network topology of a consensus system, is
sufficient for the robust closed loop stability against consensus
network.

For example, let us consider an integrator agent g(s) = 1/s
which has widely appeared as a model of agent dynamics in
many important multi-agent systems. In this case, we have
a stable transfer function gγ/(1 + gγ) = γ/(s + γ) for all
positive real number γ ≥ 0 and the bound (10) is satisfied
as ‖gγ/(1 + gγ)‖∞ = 1 holds. If we choose a proportional
controller c(s) = k > 0, for example, then the condition (11)
holds as we have∥∥∥∥ g(s)c(s)

1 + g(s)c(s)

∥∥∥∥
∞

=

∥∥∥∥ k

s+ k

∥∥∥∥
∞

= 1 (16)

Hence, from Theorem 1, we conclude that a proportional
controller can stabilizes an integrator agent, irrespective of
a consensus system in which the controlled agent is serving
as a member, provided that the graph describing the network
topology is connected.

III. A NUMERICAL EXAMPLE

Let us consider a second order system

g(s) =
2

s2 + 4s+ 2
. (17)

For this (isolated) system the following stabilizing controller
has been designed ;

c(s) =
10

s+ 10
. (18)

Now suppose that the system g(s) is not isolated but it
serves as an agent of the consensus system in Fig. 1. Our
question then is whether or not the stability of the closed loop
system defined by the pair {g(s), c(s)} is preserved against
the un-modelled consensus behavior of the controlled agent.

Toward an application of Theorem 1, firstly, we note that
the second order system g(s) has an infinity gain margin and
hence the transfer function gγ/(1 + gγ) is always stable for
γ ≥ 0. In addition, numerical computation revealed that∥∥∥∥ g(s)γ

1 + g(s)γ

∥∥∥∥
∞

≤ 1 (19)

for all γ ≤ 7 as shown in Fig. 2, i.e., we have γ∗
g = 7.

In addition, the Laplacian matrix corresponding to
consensus network of Fig. 1 has eight distinct eigenvalues and
the coefficients {α2

k} of transfer functions are given in Table I.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

γ

||γ
 g

 / 
(1

+
 γ

 g
)|

| ∞

∞
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∥∥
∞

Now, since all conditions of Theorem 1 hold, we conclude
that the closed loop stability is preserved even after the
controlled agent becomes a member of the consensus network
of Fig. 1.

Moreover, from the fact γ∗
g = 7 and (13), it also follows

that the closed loop stability is preserved not only for the
particular network of Fig. 1, but also any arbitrary consensus
system composed of less than six agents.

A numerical simulation of the step responses of the two
closed loop systems : the nominal pair {g(s), c(s)} and the
perturbed (because of a consensus network) pair {g̃1(s), c(s)},
in Fig. 3 show the closed loop stability.

Fig. 2. H norm versus γ ≥ 0
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TABLE I
TRANSFER FUNCTION PARAMETERS OF THE CONSENSUS SYSTEM OF FIG. 1

k 1 2 3 4 5 6 7 8
μk 5.4740 3.8965 3.3682 2.5889 1.3485 0.8974 0.4265 0
α2
k 0.0417 0.0435 0.1715 0.2650 0.1315 0.1411 0.0806 0.1250
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Fig. 3. Step responses of isolated and networked agent

IV. CONCLUSION

From an explicit representation of agent transfer function of
a consensus multi-agent system, it was shown that the dynamic
perturbation of an agent caused by consensus communication
with other agents in a consensus system can be described
as a multiplicative perturbation of an isolated original agent
dynamics in frequency domain. This result, combined with
existing theory on robust stability, allowed us to develop
sufficient conditions for the robust stability of an agent
serving as an agent in unknown consensus systems. From
mathematical results in spectral graph theory, it was also found
that the robust stability of an agent is closely related to the
network topology of a consensus system such as the size and
degree distribution of a graph corresponding to the consensus
system.
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[8] W. Yua, G. Chena, and J. Lü, “On pinning synchronization of complex
dynamical networks,” Automatica, vol. 45, pp. 429–435, 2009.

[9] J. Zhou, Q. Wu, and L. Xiang, “Pinning complex delayed dynamical
networks by a single impulsive controller,” IEEE Transaction on Circuits
and Systems I, vol. 58, no. 12, 2011.

[10] M.-G. Yoon, “Single agent control for multi-agent dynamical consensus
systems,” IET Control Theory & Applications, vol. 6, no. 10, p.
14781485, 2012.

[11] ——, “Single agent control for cyclic consensus systems,” International
Journal of Control, Automation, and Systems, vol. 11, no. 2, pp.
243–249, 2013.

[12] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. New
Jersey: Prentice Hall, 1996.

[13] R. Merris, “Laplacian matrices of graphs: A survey,” Linear Algebra
and Its Applications, vol. 197-198, pp. 143–176, 1994.


