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Abstract—Recently, Genetic Algorithms (GA) and Differential 

Evolution (DE) algorithm technique have attracted considerable 
attention among various modern heuristic optimization techniques. 
Since the two approaches are supposed to find a solution to a given 
objective function but employ different strategies and computational 
effort, it is appropriate to compare their performance. This paper 
presents the application and performance comparison of DE and GA 
optimization techniques, for flexible ac transmission system 
(FACTS)-based controller design. The design objective is to enhance 
the power system stability. The design problem of the FACTS-based 
controller is formulated as an optimization problem and both the PSO 
and GA optimization techniques are employed to search for optimal 
controller parameters. The performance of both optimization 
techniques has been compared. Further, the optimized controllers are 
tested on a weekly connected power system subjected to different 
disturbances, and their performance is compared with the 
conventional power system stabilizer (CPSS). The eigenvalue 
analysis and non-linear simulation results are presented and 
compared to show the effectiveness of both the techniques in 
designing a FACTS-based controller, to enhance power system 
stability. 
 

Keywords—Differential Evolution, Flexible AC Transmission 
Systems (FACTS), Genetic Algorithm, Low Frequency Oscillations, 
Single-machine Infinite Bus Power System.  

I. INTRODUCTION 

ERIES capacitive compensation was introduced decades 
ago to cancel a portion of the reactive line impedance and 

thereby increase the transmittable power. Recent development 
of power electronics introduces the use of flexible ac 
transmission systems (FACTS) controllers in power systems 
[1]. FACTS controllers are capable of controlling the network 
condition in a very fast manner and this feature of FACTS can 
be exploited to improve the stability of a power system [2]. 
Subsequently, within the FACTS initiative, it has been 
demonstrated that variable series compensation is highly 
effective in both controlling power flow in the lines and in 
improving stability. Thyristor controlled series compensator 
(TCSC) is one of the important members of FACTS family 
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that is increasingly applied with long transmission lines by the 
utilities in modern power systems. It can have various roles in 
the operation and control of power systems, such as 
scheduling power flow; decreasing unsymmetrical 
components; reducing net loss; providing voltage support; 
limiting short-circuit currents; mitigating subsynchronous 
resonance; damping the power oscillation and enhancing 
transient stability [3]. 

A conventional lead-lag controller structure is preferred by 
the power system utilities because of the ease of on-line tuning 
and also lack of assurance of the stability by some adaptive or 
variable structure techniques. Traditionally, for the small 
signal stability studies of a power system, the linear model of 
Phillips-Heffron has been used for years, providing reliable 
results. Although the model is a linear model, it is quite 
accurate for studying low frequency oscillations and stability 
of power systems [4]. The problem of FACTS controller 
parameter tuning is a complex exercise. A number of 
conventional techniques have been reported in the literature 
pertaining to design problems of conventional power system 
stabilizers namely: the eigenvalue assignment, mathematical 
programming, gradient procedure for optimization and also 
the modern control theory. Unfortunately, the conventional 
techniques are time consuming as they are iterative and 
require heavy computation burden and slow convergence. In 
addition, the search process is susceptible to be trapped in 
local minima and the solution obtained may not be optimal [5-
9].  

Several modern heuristic tools have evolved in the last two 
decades that facilitates solving optimization problems that 
were previously difficult or impossible to solve. These 
techniques are finding popularity within research community 
as design tools and problem solvers because of their versatility 
and ability to optimize in complex multimodal search spaces 
applied to non-differentiable objective functions. 

In view of the above, the main objectives of the research 
work presented in this paper are as follows: 

1. To present a systematic procedure for designing a 
TCSC-based controller under small disturbance 
conditions employing DE and GA. 

2. To compare the performance of DE and GA 
optimization techniques for TCSC-based controller 
design. 

3. To study the dynamic performance of DE and GA 
optimized TCSC-based controller subjected to 
different disturbances over a wide range of loading 
conditions and parameter variations. 

Robust FACTS Controller Design Employing 
Modern Heuristic Optimization Techniques  
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The reminder of the paper is organized in five major 
sections. The investigated system is presented in Section II. 
Power system modeling with the proposed TCSC based 
supplementary damping controller is presented in Section III. 
The design problem and the objective function are presented 
in section IV. In Section V, overview and application of DE 
and GA are presented. The results are presented and discussed 
in Section VI. Finally, in Section VII conclusions are given. 

II. SYSTEM INVESTIGATED  

The Single-Machine Infinite-Bus (SMIB) power system 
installed with a TCSC as shown in Fig. 1 is considered in this 
study.  In the figure TX and TLX represent the reactance of 
the transformer and the transmission line respectively, TV and 

BV are the generator terminal and infinite bus voltage 
respectively. 
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Fig. 1 Single-machine infinite-bus power system with TCSC 

III. DYNAMIC MODEL OF THE SYSTEM 

The dynamic model of the system is derived neglecting 
resistance of all the components of the system. The TCSC is 
represented as a variable fundamental frequency reactance. 

A. The Nonlinear Equations  

 The non-linear differential equations of the SMIB system 
with TCSC are [5]: 
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 The simplified IEEE Type-ST1A excitation system is 
considered in this work. The diagram of the IEEE Type-ST1A 
excitation system is shown in Fig. 2. The inputs to the 
excitation system are the terminal voltage TV  and reference 
voltage RV . The gain and time constants of the excitation 
system are represented by AK and AT  respectively. 
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Fig. 2 Simplified IEEE type ST 1A excitation system 

B. The Linearized  Model  

 In the design of electromechanical mode damping stabilizer, 
a linearized incremental model around an operating point is 
usually employed. The Phillips-Heffron model of the power 
system with FACTS devices is obtained by linearizing 
equations (1)-(4) around an operating condition of the power 
system. The linearized expressions are as follows: 
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 The modified Phillips-Heffron model of the single-machine 
infinite-bus (SMIB) power system with TCSC is obtained 
using linearized equations (5)-(8). The corresponding block 
diagram model is shown in Fig. 3. In Fig. 3, 

)(sGTCSC represents the transfer function of the TCSC-based 
controller. The initial operating conditions and the equations 
for computing the constants 1K , 2K , 3K , 4K , 5K , 6K , 

PK , QK , and VK  are given in Appendix A and B 
respectively. 
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Fig.  3 Modified Phillips-Heffron model of SMIB with TCSC 
 

IV. DESIGN OF TCSC-BASED CONTROLLER 

A. Structure of TCSC-based Controller  

 The commonly used lead–lag structure is chosen in this 
study as a TCSC-based controller. The structure of the TCSC 
controller is shown in Fig. 4. It consists of a gain block with 
gain TK , a signal washout block and two-stage phase 
compensation block. The phase compensation block provides 
the appropriate phase-lead characteristics to compensate for 
the phase lag between input and the output signals. The signal 
washout block serves as a high-pass filter, with the time 
constant WTT , high enough to allow signals associated with 
oscillations in input signal to pass unchanged. Without it 
steady changes in input would modify the output. From the 
viewpoint of the washout function, the value of WTT  is not 
critical and may be in the range of 1 to 20 seconds [4].  
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Fig.  4 Structure of the TCSC controller 

 
The damping torque contributed by the TCSC can be 

considered to be in two parts. The first part PK , which is 
referred as the direct damping torque, is directly applied to the 
electromechanical oscillation loop of the generator. The 

second part QK  and VK , named as the indirect damping 
torque, applies through the field channel of the generator. 

The damping torque contributed by TCSC controller to the 
electromechanical oscillation loop of the generator is: 

ωωω Δ≅Δ=Δ DTPDD KKKTT 0                               

(9) where, DT  is the damping torque coefficient. 

The transfer functions of the TCSC controller is:  
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where, TCSCu  is the output signal of the TCSC controller and 

y is the input signal to the controller. 

In this structure, the washout time constants WTT  and the 
time constants TT2  and TT4  are usually prespecified [4-9].  In 
the present study, WTT  =10 s and TT2  = TT4  = 0.1 s are used. 
The controller gains TK  and the time constants TT1 and 

TT3 are to be determined. The input signal of the proposed 
TCSC-based controller is the speed deviation ωΔ  and the 
output is the change in conduction angle σΔ . During steady 
state conditions σΔ  = 0 and the effective reactance EffX  is 

given by: )( 0αTCSCTLTEff XXXX −+= . During dynamic 
conditions the series compensation is modulated for damping 
system oscillations. The effective reactance in dynamic 
conditions is given by: )(αTCSCTLTEff XXXX −+= , where 

σσσ Δ+= 0  and )(2 απσ −= , 0α  and 0σ  being initial 
value of firing and conduction angle respectively. 

B. Objective Function  

 It is worth mentioning that the TCSC-based controller is 
designed to minimize the power system oscillations after a 
disturbance so as to improve the stability. These oscillations 
are reflected in the deviation in the generator rotor speed 
( ωΔ ). In the present study, an integral time absolute error of 
the speed deviations is taken as the objective function J, 
expressed as: 

∫ ⋅⋅Δ=
=

=

1

0
||

tt

t
dttJ ω                                            (11) 

In the above equations, | ωΔ  | is the absolute value of the 
speed deviation and 1t  is the time range of the simulation. 
With the variation of TK , TT1 , TT3 , the TCSC-based 
controller parameters, J will also be changed. For objective 
function calculation, the time-domain simulation of the power 
system model is carried out for the simulation period. It is 
aimed to minimize this objective function in order to improve 
the system response in terms of the settling time and 
overshoots. 
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 Tuning a controller parameter can be viewed as an 
optimization problem in multi-modal space as many settings 
of the controller could be yielding good performance. 
Traditional method of tuning doesn’t guarantee optimal 
parameters and in most cases the tuned parameters need 
improvement through trial and error. In GA and DE based 
method, the tuning process is associated with an optimality 
concept through the defined objective function and the time 
domain simulation. Hence these methods yield optimal 
parameters and the methods are almost free from the curse of 
local optimality. In both DE and GA techniques, the designer 
has the freedom to explicitly specify the required performance 
objectives in terms of time domain bounds on the closed loop 
responses. In view of the above, in the present study, both DE 
and GA optimization techniques are employed to solve this 
optimization problem and search for optimal TCSC Controller 
parameters. 

V. APPLICATION AND COMPARISON OF GA AND DE  

A. Overview of Genetic Algorithm  
 Genetic algorithm (GA) has been used to solve difficult 
engineering problems that are complex and difficult to solve 
by conventional optimization methods. GA maintains and 
manipulates a population of solutions and implements a 
survival of the fittest strategy in their search for better 
solutions. The fittest individuals of any population tend to 
reproduce and survive to the next generation thus improving 
successive generations. The inferior individuals can also 
survive and reproduce [10].Implementation of GA requires the 
determination of six fundamental issues: chromosome 
representation, selection function, the genetic operators, 
initialization, termination and evaluation function. Brief 
descriptions about these issues are provided in the following 
sections [6-7]. 

1. Chromosome representation   

 Chromosome representation scheme determines how the 
problem is structured in the GA. Each individual or 
chromosome is made up of a sequence of genes. Various types 
of representations of an individual or chromosome are: binary 
digits, floating point numbers, integers, real values, matrices, 
etc. Generally natural representations are more efficient and 
produce better solutions. Real-coded representation is more 
efficient in terms of CPU time and offers higher precision with 
more consistent results. 

2. Selection function 

 To produce successive generations, selection of individuals 
plays a very significant role in a genetic algorithm. The 
selection function determines which of the individuals will 
survive and move on to the next generation. A probabilistic 
selection is performed based upon the individual’s fitness such 
that the superior individuals have more chance of being 
selected. There are several schemes for the selection process: 
roulette wheel selection and its extensions, scaling techniques, 
tournament, normal geometric, elitist models and ranking 
methods. 
 The selection approach assigns a probability of selection Pj 
to each individuals based on its fitness value. In the present 

study, normalized geometric selection function has been used. 
In normalized geometric ranking, the probability of selecting 
an individual Pi is defined as: 
 ( ) 1' 1 −−= rqqPi                    (12) 

 Pq
qq

)1(1
'

−−
=                                        (13) 

where,  
 q = probability of selecting the best individual 
 r  = rank of the individual (with best equals 1) 
 P = population size 

3. Genetic operators 

 The basic search mechanism of the GA is provided by the 
genetic operators. There are two basic types of operators: 
crossover and mutation. These operators are used to produce 
new solutions based on existing solutions in the population. 
Crossover takes two individuals to be parents and produces 
two new individuals while mutation alters one individual to 
produce a single new solution. The following genetic 
operators are usually employed: simple crossover, arithmetic 
crossover and heuristic crossover as crossover operator and 
uniform mutation, non-uniform mutation, multi-non-uniform 
mutation, boundary mutation as mutation operator. Arithmetic 
crossover and non-uniform mutation are employed in the 
present study as genetic operators. Crossover generates a 
random number r from a uniform distribution from 1 to m and 
creates two new individuals by using equations: 
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Arithmetic crossover produces two complimentary linear 
combinations of the parents, where r = U (0, 1): 

 
−−−

−+= YrXrX )1('                                (16) 

 
−−−

−+= XrYrY )1('                                    (17) 
 Non-uniform mutation randomly selects one variable j and 
sets it equal to an non-uniform random number. 
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 r1, r2 = uniform random nos. between 0 to 1. 
 G = current generation. 
 Gmax = maximum no. of generations. 
 b = shape parameter.  
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4. Initialization, termination and evaluation function 

 An initial population is needed to start the genetic algorithm 
procedure.  The initial population can be randomly generated 
or can be taken from other methods.The GA moves from 
generation to generation until a stopping criterion is met. The 
stopping criterion could be maximum number of generations, 
population convergence criteria, lack of improvement in the 
best solution over a specified number of generations or target 
value for the objective function. Evaluation functions or 
objective functions of many forms can be used in a GA so that 
the function can map the population into a partially ordered 
set. The computational flowchart of the GA optimization 
process employed in the present study is given in Fig. 5. 

Start

Specify the parameters for GA

Generate initial  population

Time-domain simulation of
power system model

Find the fitness of each
individual in the current

population

Gen. > Max. Gen.? Stop

Apply GA operators:
selection,crossover and

mutation

Gen.=1

Gen.=Gen.+1
Yes

No

 
Fig. 5  Flowchart of GA optimization process to optimally tune the 

controller parameters 
 

B. Overview of Differential Evolution Algorithm  

 Differential Evolution (DE) algorithm is a stochastic, 
population-based optimization algorithm introduced by Storn 
and Price in 1996 [11]. DE works with two populations; old 
generation and new generation of the same population. The 
size of the population is adjusted by the parameter NP. The 
population consists of real valued vectors with dimension D 
that equals the number of design parameters/control variables. 
The population is randomly initialized within the initial 
parameter bounds. The optimization process is conducted by 
means of three main operations: mutation, crossover and 
selection. In each generation, individuals of the current 
population become target vectors. For each target vector, the 
mutation operation produces a mutant vector, by adding the 
weighted difference between two randomly chosen vectors to 

a third vector. The crossover operation generates a new vector, 
called trial vector, by mixing the parameters of the mutant 
vector with those of the target vector. If the trial vector obtains 
a better fitness value than the target vector, then the trial 
vector replaces the target vector in the next generation. The 
evolutionary operators are described below [12-13]: 

1. Initialization 

 For each parameter j with lower bound L
jX  and upper 

bound U
jX , initial parameter values are usually randomly 

selected uniformly in the interval [ L
jX , U

jX ]. 

2. Mutation 

 For a given parameter vector GiX , , three vectors 
( GrX ,1 GrX ,2 GrX ,3 ) are randomly selected such that the 
indices i, r1, r2 and r3 are distinct. A donor vector 1, +GiV  is 
created by adding the weighted difference between the two 
vectors to the third vector as: 

  ).( ,3,2,11, GrGrGrGi XXFXV −+=+             (20) 

Where F is a constant from (0, 2). 

3. Crossover 

Three parents are selected for crossover and the child is a 
perturbation of one of them. The trial vector 1, +GiU  is 
developed from the elements of the target vector ( GiX , ) and 
the elements of the donor vector ( GiX , ).Elements of the donor 
vector enters the trial vector with probability CR as: 
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With ijrand , ~ U (0,1), Irand is a random integer from 
(1,2,….D) where D is the solution’s dimension i.e number of 
control variables. Irand ensures that  GiGi XV ,1, ≠+  

4. Selection 

The target vector GiX , is compared with the trial vector 

1, +GiV  and the one with the better fitness value is admitted to 
the next generation. The selection operation in DE can be 
represented by the following equation: 

⎪⎩

⎪
⎨
⎧ <

=
++

+ .
)()(

,

,1,1,
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where ],1[ PNi ∈ . 
The computational flowchart of the DE optimization process 
employed in the present study is given in Fig. 6. 
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fitness of parents ?
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Gen. > Max. Gen ?

Gen. = Gen+1

Stop

Yes

No

Gen.=1

Yes

No

Yes
Size of new population <

Old population ?

No

 
Fig. 6 Flowchart of DE optimization process to optimally tune the 

controller parameters 

C. Application of GA and DE Algorithms  

 Implementation of GA requires the determination of six 
fundamental issues: chromosome representation, selection 
function, the genetic operators, initialization, termination and 
evaluation function. Various types of representations of an 
individual or chromosome are: binary digits, floating point 
numbers, integers, real values, matrices, etc. Similarly, there 
are several schemes for the selection process: roulette wheel 
selection and its extensions, scaling techniques, tournament, 
normal geometric, elitist models and ranking methods. There 
are two basic types of genetic operators; crossover and 
mutation. Crossover takes two individuals and produces two 
new individuals while mutation alters one individual to 
produce a single new solution. The following genetic 
operators are usually employed: uniform mutation, non-
uniform mutation, multi-non-uniform mutation, boundary 
mutation and simple crossover, arithmetic crossover and 
heuristic crossover. For the implementation of GA, normal 
geometric selection, arithmetic crossover and non uniform 
mutation are employed in the present study. Also, random 
initialization and specified generations are used for 
initialization and termination process. Normal geometric 
selection is a ranking selection function based on the 
normalized geometric distribution is employed in the present 
study. Arithmetic crossover takes two parents and performs an 
interpolation along the line formed by the two parents. Non 
uniform mutation changes one of the parameters of the parent 

based on a non-uniform probability distribution. This 
Gaussian distribution starts wide, and narrows to a point 
distribution as the current generation approaches the 
maximum generation. 
 Differential Evolution (DE) algorithm is a stochastic, 
population-based optimization algorithm recently introduced 
[11]. DE works with two populations; old generation and new 
generation of the same population. The size of the population 
is adjusted by the parameter NP. The population consists of 
real valued vectors with dimension D that equals the number 
of design parameters/control variables. The population is 
randomly initialized within the initial parameter bounds. The 
optimization process is conducted by means of three main 
operations: mutation, crossover and selection. In each 
generation, individuals of the current population become 
target vectors. For each target vector, the mutation operation 
produces a mutant vector, by adding the weighted difference 
between two randomly chosen vectors to a third vector. The 
crossover operation generates a new vector, called trial vector, 
by mixing the parameters of the mutant vector with those of 
the target vector. If the trial vector obtains a better fitness 
value than the target vector, then the trial vector replaces the 
target vector in the next generation. 
 The objective function comes from time domain simulation 
of power system model shown in Fig. 3. The objective 
function is evaluated by simulating the system dynamic model 
considering a 5% step increase in mechanical power input 
( mP ) at t = 1.0 s. The objective function J attains a finite value 
since the deviation in rotor speed is regulated to zero. 
Optimization process is repeated 20 times for both GA and 
DE. The best, the average and the worst among the final 
fitness values and the related standard deviation obtained in 
the 20 runs of DE and GA are shown in Table I. It is clear 
from the summary of the results shown in Table I that, the 
performance of both DE and GA is almost similar in terms of 
the best fitness value obtained in the 20 runs which is almost 
same.  

TABLE I 
COMPARISON OF RESULTS FOR 20 RUNS OF DE AND GA TECHNIQUES  

Values DE GA 

Best 1.74722 1.74724 

Average 1.75135 1.80279 

Worst 1.76554 1.85946 

Standard deviation 0.00433 0.03504 

 
TABLE II 

BEST SOLUTIONS FOR DE AND GA IN 20 RUNS 

Technique/ Parameters 
TCSC-based controller parameters 

KT T1T  T3T 

Differential evolution 62.5107 0.1176 0.1111 

Genetic algorithm 63.5247 0.1134 0.1163 

 
 

However, DE performs better compared to GA in terms of 
the average and the worst fitness values and the standard 
deviation. Table II shows the best final solution found in the 
20 runs of DE and GA. 
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VI. RESULTS AND ANALYSIS 

To evaluate the capability of the DE and GA optimized 
TCSC-based controllers on damping electromechanical 
oscillations of the example electric power system, simulations 
are carried out. To assess the effectiveness and robustness of 
the controllers, different loading conditions and parameters 
variations as given in Table III are considered. 

 
TABLE III 

LOADING CONDITIONS AND PARAMETER VARIATIONS 
 

Loading condition (P,Q) pu Parameter variation 

Nominal  (0.9,0.469) No parameter variation 

Light (0.4,0.1446) 50% increase in line reactance 

Heavy (1.02, 0.5941) 10% decrease in line reactance 
5% increase in terminal voltage 

 

A. Eigenvalue Analysis   

The system eigenvalues without control, with DE optimized 
TCSC controller (DETCSC) and with GA optimized TCSC 
controller (GATCSC) at all the loading conditions are given in 
Tables IV-VI respectively, where the first row represents the 
electromechanical mode eigenvalues and their damping ratios. 
For comparison, these tables also show the system eigenvalues 
with CPSS.  

 
TABLE IV 

SYSTEM EIGENVALUES AT NOMINAL LOADING 

Without 
control 

With CPSS  With 
DETCSC  

With 
GATCSC  

+0.2681 ± 
4.9487i 

_ 0.9043 ± 
4.6902i 

_ 4.7908 ± 
2.5761i 

_ 4.7587 ± 
2.3606i 

_ 10.3053 ± 
1.19529i 

_ 5.1452 ± 
6.2315i 

_ 6.6967 ± 
2.9764i 

_ 6.776 ± 
3.1735i 

_ _ 17.9725 _ 17.7925 _ 18.0247 

_ _ _ 9.2013 _ 9.1299 

_ _ _ 0.1039 _ 0.1039 

 
It is clear that the open loop system is unstable at all loading 

conditions because of the negative damping of 
electromechanical mode (s = 0.2681, 0.0445 and 0.2879 for 
nominal, light and heavy loading respectively). With CPSS, 
the system stability is maintained as the electromechanical 
mode eigenvalues shift to the left of the line in s-plane in all 
cases (s = -0.9043, -0.4842 and -1.1251 for nominal, light and 
heavy loading respectively). It is also clear that both DETCSC 
and GATCSC shift substantially the electromechanical mode 
eigenvalues to the left of the line in the s-plane (s = -4.7908, -
2.8435, -5.627 for DE and -4.7587, -2.8529, -5.7335 for GA 
for nominal, light and heavy loading respectively). Hence 
compared to the CPSS, both DETCSC and GATCSC greatly 
enhance the system stability and improve the damping 
characteristics of electromechanical mode. 

 
 

TABLE V 
SYSTEM EIGENVALUES AT LIGHT LOADING 

Without 
control 

With CPSS  With 
DETCSC  

With 
GATCSC  

+0.0445 ± 
4.7285i 

_ 0.4842 ± 
4.6163i 

_ 2.8435 ± 
2.8435i 

_ 2.8529 ± 
2.7923i 

_ 10.0864 ± 
3.4026i 

_ 6.6916 ± 
5.4432i 

_ 9.9944 ± 
3.3918i 

_ 9.9944 ± 
3.396i 

_ _ 15.7307 _ 14.4264 _ 14.6947 

_ _ 0.3349 _ 9.4266 _ 9.3828 

_ _ _ 0.1034 _ 0.1035 

 
 

TABLE VI 
SYSTEM EIGENVALUES AT HEAVY LOADING 

 

Without 
control 

With CPSS  With DETCSC  With GATCSC  

+0.2879 ± 
5.3194i 

_ 1.1251 ± 
5.1439i 

_ 5.627 ± 
4.3346i 

_ 5.7335 ± 
0.8472i 

_ 10.3239 ± 
1.5872i 

_ 4.8094 ± 
6.141i 

_ 5.8523± 
0.8676i 

_ 5.7988 ± 
4.3217i 

_ _ 18.2002 _ 18.4654 _ 18.7092 

_ _ 0.3362 _ 9.1613 _ 9.0826 

 

B. Simulation Results   

In order to verify and compare the effectiveness of the 
optimized controllers, the performance of the DETCSC and 
GATCSC controller are tested for a disturbance in mechanical 
power input. A 5% step increase in mechanical power input at 
t =1.0 s is considered. The system responses for the above 
contingency at the nominal loading condition are shown in 
Figs. 7-10.   
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Fig. 7 Power angle response for 5% step increase in mP  at nominal loading 

In these Figs., the responses with conventional power 
system stabilizer, proposed DE optimized TCSC controller 
and proposed GA optimized TCSC controller are shown with 
legends CPSS, DETCSC and GATCSC respectively. It can be 
observed from Figs. 7-10 that, both DETCSC and GATCSC 
outperform the CPSS. The responses with DETCSC and 
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GATCSC are much faster, with less overshoot and settling 
time compared to CPSS. Also, the responses of DETCSC are 
almost similar to that of GATCSC. The first swing in the δ  , 
ω and aP  is significantly suppressed and the voltage profile is 
greatly improved with the proposed DETCSC and GATCSC. 
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Fig. 8 Speed deviation response for 5% step increase in mP  with 

nominal loading 
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Fig. 9 Accelerating power response for 5% step increase in mP  with 

nominal loading 
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Fig. 10 Terminal voltage deviation response for 5% step increase in 

mP  with nominal loading 
Figs. 11-13 show the system responses for the above 

disturbance at the light loading conditions with 50% increase 
in line reactance. These Figs. illustrate the advantage of the 
DETCSC and GATCSC compared to CPSS. It can be seen 
that, the proposed controllers outperform CPSS in all cases 
and enhance greatly the first swing stability and provide good 
damping characteristics for light loading conditions with wide 
variation in line reactance. 
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Fig. 11 Power angle response for 5% step increase in mP  at light 

loading 
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Fig. 12 Speed deviation response for 5% step increase in mP  with 

light loading 
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Fig. 13 Accelerating power response for 5% step increase in mP  with 

light  loading 
 

Figs. 14-16 show the system responses for the above 
disturbance at the heavy loading conditions with the parameter 
variation given in Table III. It is clear from these Figs.  that, 
the controllers perform satisfactorily at heavy loading 
conditions with line reactance and terminal voltage variations. 
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Fig. 14 Power angle response for 5% step increase in mP  at heavy 

loading 
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Fig. 15 Speed deviation response for 5% step increase in mP  with 

heavy  loading 
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Fig. 16 Terminal voltage deviation response for 5% step increase in 

mP  with heavy loading 
 

For completeness, the effectiveness of the proposed 
controllers is also tested for a disturbance in reference voltage 
setting. The reference voltage is increased by a step of 5% at t 
=1 s. Figs. 17-20 show the system responses for the above 
contingency for all the three controllers at the nominal loading 
condition. These positive results of the proposed DETCSC and 
GATCSC can be attributed to its faster response with less 
overshoot compared to that of CPSS. Further, it is also clear 

that both DETCSC and GATCSC give almost similar 
responses. 
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Fig. 17 Power angle response for 5% step increase in refV  with 

nominal loading 
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Fig. 18 Speed deviation response for 5% step increase in refV  with 

nominal loading 
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Fig. 19 Accelerating power response for 5% step increase in refV  

with nominal loading 
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Fig. 20 Terminal voltage deviation response for 5% step increase in 

refV  with nominal loading 

 
It can be seen from all the Figs. that the controllers have 

good damping characteristics to low frequency oscillations 
and stabilize the system much faster. This extends the power 
system stability limit and the power transfer capability. 

VII. CONCLUSIONS 

 Techniques such as DE and GA are inspired by nature, and 
have proved themselves to be effective solutions to 
optimization problems. The objective of this research is to 
compare the performance of these two optimization techniques 
for a FACTS-based controller design. To compare the 
performance, the design problem of a TCSC-based controller 
is considered and both DE and GA optimization techniques 
are employed for tuning the parameters of TCSC-based 
controller. The proposed controllers are tested on a weakly 
connected power system under different disturbances. The 
eigenvalue analysis and the simulation results show the 
effectiveness of the proposed controllers and their ability to 
provide good damping of low frequency oscillations and 
improve greatly the system voltage profile.  
 Overall, the results indicate that both DE and GA 
algorithms can be used in the optimizing the parameters of a 
FACTS-based controller. DE algorithm seems to perform 
better in terms of best, average and mean fitness values in 
multiple runs.  and arrive at its final parameter values in fewer 
generations than the GA.  However, control parameters and 
objective function are involved in these optimization 
techniques, and appropriate selection of these is a key point 
for success. 
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