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Abstract—In this paper, a method to detect multiple ellipses is 
presented. The technique is efficient and robust against incomplete 
ellipses due to partial occlusion, noise or missing edges and outliers. It 
is an iterative technique that finds and removes the best ellipse until no 
reasonable ellipse is found. At each run, the best ellipse is extracted 
from randomly selected edge patches, its fitness calculated and 
compared to a fitness threshold. RANSAC algorithm is applied as a 
sampling process together with the Direct Least Square fitting of 
ellipses (DLS) as the fitting algorithm. In our experiment, the method 
performs very well and is robust against noise and spurious edges on 
both synthetic and real-world image data. 

Keywords—Direct Least Square Fitting, Ellipse Detection, 
RANSAC 

I. INTRODUCTION

HE ellipse detection is one of the key areas in shape 
analysis. It is a challenging problem to detect this geometric 

primitive in real-world images.  Incomplete ellipse due to partial 
occlusion, noise or missing edges and outliers are typical in such 
images. Moreover, accurately detecting multiple intersecting 
ellipses is a complex task that requires a large computational 
resource. It is still a challenging task to solve all these problems. 

A number of techniques have been proposed to detect or fit 
ellipses to edge data. They can be divided into two main groups: 
voting-based and searching-based techniques. The first group 
employs the idea of selecting model parameter based on the 
number of data supports. It is robust to outliers and noises, and 
can detect multiple ellipses simultaneously. However, the group 
suffers inaccuracy in the result and demands a huge 
computational resource. Hough transform (HT) and its variants 
such as Randomize Hough transform (RHT) [1], [2], the 
combinatorial Hough transform [3], the probabilistic Hough 
transform [4], the dynamic generalized Hough transform [5] are 
the main members of the group. 

The searching-based category relies on finding model 
parameters that optimize its objective function. The objective 
function selected is normally based on how well the model fits 
to the data and how likely the model is an acceptable ellipse. 
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The main benefits of the method are accuracy of the fitted 
model and efficiency; however, it only fits to one ellipse. There 
are also chances of getting local minima solutions, in other 
words chances that the most reasonable ellipse is undetected. To 
alleviate the problem, global search methods were proposed by 
some researchers. An example is the genetic algorithm for 
ellipse detection by Lutton and Martinez [6]. Techniques in this 
group normally introduce a scheme to make it capable of 
detecting multiple ellipses; however, this comes with an 
additional computing expense. For example, Yao [7] proposed a 
multiple populations Genetic Algorithm (GA) to detect multiple 
ellipses. Recently, to reduce computational complexity and 
local minima problems, some researchers turn to the idea of 
selecting good model candidates from sample of data instead of 
independently selecting a configuration to suit the data. 
Soetedjo and Yamada [8] introduced a method called 
“geometric fragmentation” to select a good set of boundary 
fractions for road sign detection; however, it is doubtful how the 
method could deal with partial occlusions. Kawaguchi and 
Nagata [9] selected good data set called “line-support regions” 
using gradient orientation in combination with GA. However, 
fault grouping and eliminating of line-support regions may 
result in undetected ellipses. Song and Wang [10] presented a 
Pseudo Random Sample Consensus (PRANSAC) method to 
detect ellipses. Only three sampling points are selected from one 
connected curve to find an ellipse parameter. The main 
weakness of the method is the ability to detect intersecting 
ellipses.  

In this paper, a novel method to detect multiple ellipses is 
presented. It is based on randomly selecting good data set to fit 
an ellipse. RANSAC algorithm [11] is applied as a sampling 
process together with the Direct Least Square fitting of ellipses 
(DLS) [12] as the fitting algorithm. Nevertheless, our ellipse 
fitting framework is very close to PRANSAC [10], however, 
with an additional support for intersecting ellipses. Comparison 
results are in Experimental Results section. 

II. PROPOSED METHOD

An overview of our method is shown in Fig. 1. It is an 
iterative method that finds and removes the best ellipse until no 
reasonable ellipse is found. An edge map is supplied as the input 
data set for our algorithm. At each run, the best ellipse is 
extracted, its fitness calculated and compared to a fitness 
threshold. If the fitness value exceeds the threshold, data points 
close to the identified ellipse (within a prespecified distance) are 
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removed.  The process stops when the best fitness value of the 
last run falls below the threshold. 

Fig. 1 System Flow Chart 

At each run, the best ellipse is extracted by a K-repetition 
process of randomly selecting two patches, fitting them to find a 
model estimate and computing the model fitness. K is the 
expected number of iterations required to obtain the best model 
parameter as described in section A. The fitting procedure and 
the fitness calculation are explained in sections B and C 
respectively. 

A. Randomization 

The algorithm for sampling edge points in our work is the 
RANSAC [11]. RANSAC is an algorithm for robust fitting of 
models in the presence of data outliers. In our method, K
randomizations taken in each run, are obtained from (1).  is the 
probability of at least one random sample is free from outliers, 
err is the proportion of outliers, and s is the minimum points for 
model fitting requirement. 

log(1 )

log(1 (1 ) )s
K

err

−
=

− −
 (1) 

At each iteration, two points from the input data are randomly 
selected.  The distance between the points must exceed 2r to 
proceed to the next step; otherwise, the points are reselected. 
Then all connected edge points to each of the selected points, 
which have their distances to their corresponding selected point 
within radius r, are chosen for the ellipse fitting explained in the 
next section. 

B. irect Least quare itting of Ellipse 

The irect Least quare itting of Ellipse (DLS) was first 
proposed by Andrew et al. [12]. Halif and Flusser [13] further 
elaborated the DLS mathematic for more stability. It is an 
efficient method to obtain an accurate fitting result. The 
mathematic form used in DLS is (x)=ax2+bxy+cy2+dx+ey+f 
= 0 which is a linear form of general conic equation. It can be 
hyperbola, parabola, circle or ellipse, depending on parameter 
conditions.  The ellipse constrain is b2 4ac < 0.  Fitzgibbon et al. 
[12] developed a least squares fitting algorithm of ellipse by 
applying an equal constraint 4ac-b2=1 as (2). D (n x 6) is the 
design matrix, n is a number of sampling points in each 
sampling data set, is the parameter vector of conic equation, 
and C (constraint matrix) is the integrated-ellipse-constraint 
matrix (6x6). 
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The solution can be determined by solving an eigenproblem 
to find the solutions (λ ) of  

2 T T=D D D (4) 

Eigenvector k, corresponding to the minimal positive 
eigenvalue λk is the solution of (2). 

C. itness Calculation  

The ellipse fitting at each iteration is verified by calculating a 
fitness value. This value can be regarded as the ratio of 
non-occluded edge length to the ellipse perimeter. The fitness is 
computed from (5). N  is the number of data points with 
shortest (perpendicular) distances to the ellipse perimeter of less 
than d. 

=
perimeter of ellipse

N
fitness  (5) 

III. EXPERIMENTAL RESULTS

In this section, we present performance of our method and 
PRANSAC in terms of speed and accuracy of the solution on 
synthesis data and real-world images. The numbers of sampled 
points (s) for PRANSAC is 3, while ours is 5 (f =1).  In addition, 
the other parameters of PRANSAC and ours are =0.99 and 
err=0.50. Therefore, the numbers of iterations of PRANSAC 
and ours are 35 and 146, consequently. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4250

A. roposed Method versus RAN AC 

Frameworks of proposed method and PRANSAC are shown 
in Table I.  

TABLE I 
PRANSAC AND PROPOSED METHOD FRAMEWORKS

PRANSAC Proposed Method 
1.Edge Detection 
2.Component Labeling  
3.Parallel Thinning 
4.Ellipse Fitting (Randomizations 

3-points, 35 iterations) 
• Three Tangent Direction 

Calculation 
• Center of Ellipse Approximation 
• Least Square Fitting 

5.Fitness Calculation

1.Edge Detection 
2.Ellipse Fitting (Randomizations 

5-points, 146 iterations) 
• DLS fitting 

3.Fitness Calculation 
4.Data Support Removing

Processing times of PRANSAC and our technique which are 
tested by images in Fig. 5 are shown in Table II. From 
experimental results, in case of a small image size, PRANSAC 
is faster. In other cases, our approach is faster than PRANSAC. 
Although, the number of iterations in Ellipse Fitting step of 
PRANSAC is lower (35 iterations), pre-processing of 
PRANSAC (Component Labeling and Parallel Thinning) takes 
the computational time more than post-processing of our 
method (Data Support Removing). In other words, the 
computational times of Component Labeling and Parallel 
Thinning depend on complexity of texture and the image size 
consequently, while the computational time of our proposed 
technique is constant. Moreover, the main drawback of 
PRANSAC is the incapability to resolve intersecting ellipses. 

TABLE II 
TIMES FITTING OF PRANSAC AND OUR ALGORITHM WITH AN ELLIPSE BY 

VISUAL C++ 6.0 (PENTIUM IV 2.4 GH ., 1 GB. MEMORY) 
Image Resolution 

(pixels) 
PRANSAC  

(Milliseconds.) 
Proposed Method  

(Milliseconds.) 
250x323 
480x640 
580x480 

100 
194 
265 

142 
142 
142 

B. Ellipse fitting Results 

In all experiments presented in this work, the bound of 
shortest distance to the ellipse perimeter in (4) was set to two 
pixels and the fitness threshold fth to 0.5. The settings mean 
noises allowed in edge location are upto two pixels and the 
ellipses to be detected must not be occluded more than 50%. 
The parameters of the randomization process are =0.99, 
err=50%, s=6, and r=10. 

The accuracy of our algorithm is tested by synthesis images. 
The results on the synthesis images of ellipse with isolated noise 
are shown in Fig. 2, 3 and Table III. 

  (a)             (b) 
Fig. 2 (a) The synthesis ellipses with isolated noise, 

(b) The result superimposed on the image data. 

(a)             (b) 
Fig. 3 (a) The synthesis ellipses with isolated noise, 

(b) The result superimposed on the image data. 

TABLE III 
THE ACCURACY OF DETECTION ALGORITHM IS TESTED WITH SYNTHESIS 

ELLIPSE. 
Synthesis parameters 

(h k a b θ)
Detected parameters 

(h k a b θ) 
1 200,10,50,30,45o 

200,10,50,30,30o

100,30,80,50,35o 

200.5, 10.6, 49.4, 29.8, 44.3o

200.6, 9.3, 49.5, 29.9, 30.5o

100.2, 29.3, 79.9,49.7, 35.4 o 

2 250,10,50,30,17 o

220,10,70,30,30 o

100,30,80,50,35 o

250.3, 9.7, 50.1,29.6, 17.2o 

220.0, 10.4, 69.9, 29.8,29.9o

100.8, 29.6, 80.0, 49.0,35.9 o

Table III shows the accuracy and time consumption to detect 
the ellipses. Another set of testing image is real-world images. 
Gaussian filter (size= 5, σ2=1) and Canny edge detection are 
applied to gray scale images to obtain an edge map from these 
images.  

An image of kitchen-wares is used to show the process of our 
algorithm as in Fig. 4 and 5. 

(a)       (b)       (c) 
Fig. 4 (a) Three cup image,  

(b) Edge map of (a), 
(c) The result superimposed on the image data. 

It can be seen from the results that the method performs very 
well and is robust against noise and spurious edges. However, 
small ellipses such as the number “100” and the bicycle wheels 
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inside the traffic signs in the last two image sets are not detected. 
This is because their major axes are less than 20 pixels; 
therefore, their samples do not pass the distance test of 2r in the 
Randomization process. From separate running a number of 
experiments (results not shown in this paper), the major axes of 
ellipses detected were ranging roughly between 20-300 pixels. 
This parameter determines detectable ellipses from our method. 
The fitness is the second important variable. It is used to classify 
good or bad models by the number of supporters around the 
ellipse perimeter. 

  

   
 (a)           (b) 

Fig. 5 (a) Edge maps of different road sign images,  
(b) Results superimposed on the brightness-scaled images. 

IV. CONCLUSION 

In this paper, a novel method to detect multiple ellipses was 
presented. It is an iterative technique that finds and removes the 
best ellipse until no reasonable ellipse is found. At each run, the 
best ellipse is extracted, its fitness calculated and compared to a 
fitness threshold. RANSAC algorithm is applied as a sampling 
process together with the Direct Least Square fitting of ellipses 
(DLS) as the fitting algorithm. The method performs very well 
and is robust against noise and spurious edges. There are also 
some adjustable parameters affecting the size and completeness 
of ellipses detectable by our method. The selected area 
parameter (r) of two selected points for an ellipse fitting is an 
important parameter.  Each selected area is likely to contain 
pixels from the same underlying curve. Thus, the result for the 
ellipse fitting is more accurate than PRANSAC which has no 
selected area. Although, the framework of the proposed method 

is close to PRANSAC, our algorithm is more efficient. 
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