
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:2, 2013

293

Robust Coherent Noise Suppression by Point
Estimation of the Cauchy Location Parameter

Ephraim Gower, Thato Tsalaile, Monageng Kgwadi and Malcolm Hawksford.

Abstract—This paper introduces a new point estimation algorithm,
with particular focus on coherent noise suppression, given several
measurements of the device under test where it is assumed that 1)
the noise is first-order stationery and 2) the device under test is
linear and time-invariant. The algorithm exploits the robustness of
the Pitman estimator of the Cauchy location parameter through the
initial scaling of the test signal by a centred Gaussian variable of pre-
determined variance. It is illustrated through mathematical derivations
and simulation results that the proposed algorithm is more accurate
and consistently robust to outliers for different tailed density functions
than the conventional methods of sample mean (coherent averaging
technique) and sample median search.

Keywords—Central limit theorem, Fisher-Cramer Rao, gamma
function, Pitman estimator.

I. INTRODUCTION

In this paper, we introduce a new noise suppression
algorithm for efficient estimation of the linear time invariant
(LTI) response of the device under test (DUT) in the presence
of unknown but first-order stationery noise sources, given
several DUT measurements. The aim is to have a consistent
and more accurate noise suppression technique than the
conventional methods utilizing the sample mean (time
coherent averaging) and sample median estimation of the
LTI response signals [1]-[4] for wide range of noise density
functions. By limiting noise density functions of varying tail
thicknesses to a Cauchy density function as opposed to a
Gaussian, thus overcoming the limitations of the central limit
theorem (CLT) for heavy tailed density functions [5],[6],
the robust and accurate Cauchy location parameter (CLP)
pitman estimator [7], [8] is used to estimate the noise free
(or LTI) signals given several DUT measurements. The
result is a method that is at least as accurate as any of the
two conventional methods depending on the pre-determined
parameters in the DUT testing phase.

In impulse response testing of DUTs, there is usually
some amount of additive noise such that the signal captured
by the transducer is

x(n) = h(n) ∗ s(n) + ε(n), nε[0, N − 1]. (1)

where s(n) is the excitation signal to the DUT of impulse
response h(n), with ∗ as the convolution operator. If the
signal-to-noise ratio (SNR) is adequate then h(n) ∗ s(n) is

E. Gower, T. Tsalaile, and M. Kgwadi are with the Department of Electrical
Engineering, Faculty of Engineering and Technology, University of Botswana.
e-mail: ephraim.gower, tsalaile, and monageng.kgwadi@mopipi.ub.bw

M. Hawksford is with the School of Computer Science and Electronic
Engineering, University of Essex. e-mail: mjh@essex.ac.uk

dominant and the resulting measurement may be an acceptable
reflection of the DUT’s impulse response. However, this is not
always the case and noise suppression methods are required
to enhance the SNR so that the results relate to the system
being measured and not corrupted by extraneous noise sources.
The conventional method for enhancing the SNR given a
LTI impulse response is time coherent averaging of several
measurements [1]-[3]. Let

xm(n) = h(n) ∗ s(n) + εm(n), nε[0, N − 1]

be the m-th measurement signal, for mε[0,M − 1] , where
εm(n) is the additive noise observed for this particular run.
The averaged measurement is

x(n) =
1

M

M−1∑
m=0

[h(n) ∗ s(n) + εm(n)]. (2)

If the noise signals ε0(n), ε1(n), ..., εM−1(n) are indepen-
dent and identically distributed (i.i.d), then it can be shown
that

x(n) = h(n) ∗ s(n) +
√
ε2(n)

M
, (3)

where ε2(n) is the mean squared value of the observed
noise sequence. Thus in general, by increasing the number
of measurements M , the root mean square (RMS) error to the
LTI signal of interest h(n) ∗ s(n) can be reduced. However,
the underlying noise properties are usually unknown and
can be non-stationary at the time of measurement, and this
raises questions as to whether (2) is the most efficient noise
suppression method for any noise density functions.

Let Xn be the variable of the time coherent sample (TCS)
observations at the discrete time index n across all the
M measurement signals of the DUT response. Then, x(n)
in (2) is the TCS-mean μ̂n estimation of the LTI signal
of interest h(n) ∗ s(n), thus we may infer the efficiency
of x(n) by considering properties of the sample mean on
estimating the location parameter of noise density functions
with different tail thicknesses. In [4], it is illustrated via the
use of power exponential density functions that the sample
mean is consistently outperformed by the sample median
for leptokurtic densities (thicker tails than the Gaussian
density). It is also shown that the sample mean is the
minimum-variance estimator for the location parameter of the
Gaussian density function. These results follow directly from
the CLT, where by the law of large numbers it is the i.i.d.
platykurtic variables that usually average out to a Gaussian
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variable [5]. The averaged sum of leptokurtic variables does
not necessarily reduce to a Gaussian variable, but usually
to another leptokurtic variable especially if thier density
functions are heavy tailed [6].

Based on the CLT, it is often assumed that background
noise, which is usually the sum of several noise sources, is
approximately Gaussian and this encourages the use of the
TCS-mean for estimation of the LTI signals. However, it is
possible to have a single (or very few) dominant non-Gaussian
noise sources which by the law of large numbers does not
imply that the net density function is Gaussian. Even if
there are a large number of noise sources, their variances
(say around σ2

ε ) must be bounded and small because by
the Fisher-Cramer Rao (FCR) [4], the lower bound of the
uncertainty associated with the TCS mean is such that

lim
M→∞

[M.var(μ̂n)]→ σ2
ε (4)

In relation to (3), σ2
ε is equivalent to ε2(n) which means that

for noise sources with large variances the RMS error would
be large for the averaging technique. One consistent location
parameter estimator is the sample median [4]. Though robust
to outliers, it is never really the minimum variance estimator
and thus not always the most efficient noise suppression
method.

The major problem here is that different density functions
can have different minimum-variance estimators for their
location parameter estimators, and the underlying net noise
density function is usually unknown and can be non-stationery
during the time of measurement. To address this problem, this
paper is structured as follows: in Section II, we introduce
the proposed noise suppression algorithm where different
noise density functions are approximated to a Cauchy density
function in the time-domain given a LTI impulse response of
the DUT. Section III covers the simulation results comparing
this algorithm to the TCS-mean and TCS-median. Summary
remarks and discussions are presented in Section IV.

II. THE PROPOSED AGORITHM

There are three major steps to estimating the LTI signals
h(n) ∗ x(n), for all nε[0, N − 1].

A. Gaussian Variable Scaling of the Test Signal

For every transducer captured signal xm(n), mε[0,M − 1],
a realization of the Gaussian variable Z ∼ N(0, σ2

z) is used
to scale the test signal such that

xm(n) = zmh(n) ∗ s(n) + εm(n), nε[0, N − 1] (5)

It is important that Z is Gaussian and centred because the
ratio of two centred Gaussians is a Cauchy variable.

B. The Ratio Output Signals

Derive the ratio output signal ym(n), for mε[0,M − 1], as

ym(n) =
xm(n)

zm
= h(n) ∗ s(n) + εm(n)

zm
, nε[0, N − 1]

(6)
Using (6), we can form the matrix

Y =

⎛⎜⎜⎜⎜⎜⎜⎝
Y0
Y1
.
.
.

YM−1

⎞⎟⎟⎟⎟⎟⎟⎠ =
(
Q0 Q1 . . . QN−1

)

where the row variable Ym, for mε[0,M−1], is realized by
sample values of the m-th signal as given by (6). The column
variable Qn, for nε[0, N −1], is realized by the time coherent
values ym(n), for mε[0,M − 1], which is the set of values at
the same discrete time index n from the M output signals as
given by (6). Thus we refer to the Qn as a TCS variable.

C. Noise Suppression using the CLP Pitman Estimator

In (6), h(n)∗x(n) is invariant throughout the TCS values of
Qn . It is εm(n) and zm that can change from sample value
to sample value. Let ξn := {ε0(n), ε1(n), ..., εM−1(n)} be
the TCS noise variable at the discrete time index n, then the
density function of Qn is defined by the ratio sample Rn = ξn

Z
shifted by the constant h(n) ∗ x(n).
The most efficient location parameter estimator for Qn is de-
termined by the type of density function of Rn. If the location
parameter of Rn is μn, then for Qn it is μn+h(n)∗x(n). For
fisrt-order stationary noise, the location parameters of the Qn
are shifted by the same amount μn. Therefore, without loss
of generality let με = 0 (thus μz = 0) such that the location
parameter for Qn is the LTI value h(n) ∗ x(n). As already
pointed out, there are two types of noise density functions to
consider:

1) Platykurtic Noise Densities: As the sum of i.i.d.
platykurtic variables tend to a Gaussian variable, for this
class of noise densities averaging is an effective method
for noise suppression. Since h(n) ∗ x(n) is a constant
throughout the TCS variables, the efficiency of the Cauchy
location parameter’s (CLP) Pitman estimator is determined
by its uncertainty in estimation of the location parameter
of Rn, whereas that for the TCS-mean and TCS-median is
determined by their estimation of the location parameter of
the TCS noise variable ξn. Therefore, in the performance
analysis the value of interest h(n) ∗ x(n) for each TCS
variable shall be left out.

Theorem 1: The CLP Pitman estimator ĉn for the location
parameter of the TCS ratio variable Rn = ξn

Z , where ξn is
the sum of i.i.d. platykurtic variables and Z ∼ N(0, σ2

n), is
at least as efficient as the sample mean μ̂n estimation of the
location parameter of ξn for σ2

z ≥ 2.

Proof : By the CLT, ξn tends to a Gaussian variable of
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mean με = 0 and variance σ2
ε . The density function of the

ratio sample Rn is given by

p(rn) =

∫ ∞

−∞
|z|.p(z, εn) dz.

Since p(z, εn) = p(z)p(εn) = p(z)p(rnz), then

p(rn) =

∫ ∞

−∞
|z|.p(z)p(rnz) dz.

Substituting for the Gaussian densities results in

p(rn) =
1

2πσzσε

∫ ∞

−∞
|z|.e−z

2( 1
2σ2

z
+

r2n
2σ2

ε
)
dz

=
1

πσzσε

∫ ∞

0

z.e
−z2( 1

2σ2
z
+

r2n
2σ2

ε
)
dz

Using the integral
∫∞
0
z.e−az

2

dz = 1
2a ,

p(rn) =
σε

σz

π[(
σ(ε

σz
)2 + r2n]

which means that Rn is a centred Cauchy variable of scale
parameter un = σε

σz
ε(0,∞). From [7], let the CLP Pitman

estimator ĉn for the location parameter of Rn be defined as

ĉn =

M−1∑
m=0

rn,m
�(Ψn,m)∑M−1
m=0 (Ψn,m)

, (7)

where �(Ψn,m) denotes the real part of

Ψn,m =
∏
l �=m

[
1

(rn,m − rn,l)2 + 4u2n

][
1− 2un

(rn,m − rn,l)
√−1

]
,

(8)
and rn,m is m-th sample value from the variable Rn, for

mε[0,M−1]. In [7], it is shown that the uncertainty associated
with the CLP Pitman estimator is bounded by 2u2

n

M , therefore
by the law of large numbers the uncertainty associated with
the Pitman estimator for the Cauchy variable Rn is such that

lim
m→∞[M.var(ĉn)]→ 2u2n =

2σ2
ε

σ2
z

(9)

From (4) and (9), the relative efficiency Φ(ĉn, μ̂n) of ĉn
with respect to the sample mean μ̂n is

Φ(ĉn, μ̂n) = lim
m→∞

[
var(ĉn)

var(μ̂n)

]
=

2

σ2
z

. (10)

By the result of (10), for σ2
z = 2 the CLP Pitman estimator

for the location parameter of Rn is as asymptotically
efficient as the sample mean estimation of the location
parameter of ξn, and for σ2

z ≥ 2 the Pitman estimator is
more efficient than the sample mean. This completes the proof.

For certain applications such as loudspeaker testing, the
advantages of σ2

z > 2 can be exploited since their dynamic
range (DR) is usually large. For DUTs with a narrow DR, one
can always reduce the variance of the test signal s(n) such
that after scaling with Z ∼ N(0, σ2

z > 2), the amplitudes of
zms(n) do not drive the DUT into non-linear distortions.

Corollary 1: The CLP Pitman estimator ĉn of the location
parameter of ratio sample Rn = ξn

Z , where ξn is the sum
of centred i.i.d. platykurtic variables and Z ∼ N(0, σ2

z), is
more efficient than the sample median d̂n estimation of the
location parameter ξn of for σ2

z ≥ 2.

Proof : From [4], var(μ̂n) < var(d̂n) for estimating the
location parameter of platykurtic variables. By transitivity, it
follows that var(ĉn) < var(d̂n).

From Theorem 1 and Corollary 1, the performance of the
CLP Pitman estimator can be expected to be relatively better
than the conventional methods, and consequently a better
noise suppression method for platykurtic noise densities given
σ2
z > 2.

2) Leptokurtic Noise Densities: For leptokurtic densities,
σ2
ε can be unbounded or too large which means that the

uncertainty associated with the TCS-mean as given by
(4) is large as well. This is because the averaged sum of
i.i.d. leptokurtic variables does not necessarily reduce to a
Gaussian, but usually to another leptokurtic variable [6].
Consequently, Rn = ξn

Z is not necessarily a Cauchy variable.
From [4], the sample median is a more efficient estimator
than the sample mean for leptokurtic variables.

Lemma 1: By the law of large numbers, as the scale
parameter un → 0 then the CLP Pitman estimator ĉn
approximates to the sample median for symmetric density
functions, and if un is sufficiently large then ĉn approximates
to the sample mean.

Proof : As un → 0, then

lim
un→0

Ψn,m →
∏
l �=m

[
1

(rn,m − rn,l)2
]
.

If r̂n,l is the mode of the density function p(rn), then
the most probable Euclidian distance is (r̂n,m − rl,m) = 0,
which means that Ψn,m →∞ . For values around the mode,
the distance (rn,m − rn,l)

2 ≈ 0 and thus Ψn,m may still
be significantly large around these sample values. If rn,m is
significantly greater or less than most other sample values
(located at the tails), then (rn,m − rn,l)

2 will frequently
evaluate to large values, and by the law of large numbers
Ψn,m → 0. Therefore, to a good approximation

lim
un→0

Ψn,m → δ( ̂r(n,m)),

where δ( ̂r(n,m)) is the Dirac-delta function located at the
mode of the density function, and this is the sample value
weighting function of the sample median (the sample-median
is determined solely by the middle values in an ordered set).
For un large then

Ψn,m →
∏
l �=m

1

4u2n
.

[
1− 2un

(rn,m − rn,l)2
√−1

]
.

Substituting into (7) results in ĉn ≈ 1
M

∑M−1
m=0 rn,m, which

is an expression for the sample mean. This results follows
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from the fact that 4u2n 
 (rn,m − rn,l)
2, meaning that

the Euclidian distance between the sample values is almost
irrelevant and all values weigh equally towards the estimation
of the location parameter.

Lemma 2: If the probability density function p(rn) of
the variable Rn is heavy-tailed, then the weighted function
�(Ψn,m)p(rn,m), for all mε[0,M − 1], is platykurtic for un
sufficiently small.

Proof : From lemma 1, if un is small then the tails of the
weight function �(Ψn,m) decay to zero, which means that
the heavy tailed function p(rn) is reduced to a platykurtic
function �(Ψn,m)p(rn,m), for all mε[0,M − 1].

Theorem 2: The CLP Pitman estimator ĉn for the location
parameter of Rn = ξn

Z , where ξn is a leptokurtic variable and
Z ∼ N(0, σ2

z), is more efficient than the sample median d̂n
estimation of the location parameter of ξn for un small.

Proof : Let Ψn,m, ∀mmε[0,M − 1] , be derived from the
observations of Rn . By definition, the CLP Pitman estimator
is the sample mean of the weighted values rn,mRe(Ψn,m),
or the weighted density function �(Ψn,m)p(rn,m), for all
mε[0,M − 1], which by Lemma 2 is platykurtic for un small.

Define a new density function �(Ψn,m)p(εn,m), for
all mε[0,M − 1], and let d̂n,Ψ be the sample median
estimation of the this weighted noise density function of the
leptokurtic noise variable ξn. Since �(Ψn,m)p(rn,m), for all
mε[0,M − 1], is platykurtic for un small, it follows that
�(Ψn,m)p(εn,m), for all mε[0,M − 1], is platykurtic as well
because the ratio sample Rn is more heavy tailed than ξn
[9]. For p(εn) symmetric, then p(rn) is symmetric and thus
�(Ψn,m), for all mε[0,M − 1], as well. It follows that the
sample median d̂n estimation of the location parameter of
ξn coincides with d̂n,Ψ. It is known that the variance of the
sample median decreases with decreasing tail thickness [4],
and thus var(d̂n,Ψ)� var(d̂n).

The asymptotic variance of the sample median is fairly
consistent for different platykurtic densities albeit slightly
larger than that of the sample mean (or Pitman estimator
of weighted samples). Therefore, var(ĉn) ∼= var(d̂n,Ψ),
which means that var(ĉn) < var(d̂n) for leptokurtic density
functions. This completes the proof.

Corollary 2: The CLP Pitman estimator ĉn for the location
parameter of Rn = ξn

Z , where ξn is a leptokurtic variable and
Z ∼ N(0, σ2

z), is more efficient than the sample mean μ̂n
estimation of the location parameter of ξn for un small.

Proof: From [4], var(d̂n) < var(μ̂n) for leptokurtic
variables. From Theorem 2, var(ĉn) < var(d̂n) therefore
var(ĉn) < var(μ̂n).

Based on Theorem 2 and corollary 2, even though Rn is

not necessarily a Cauchy variable, the weight function Ψn,m,
for all mε[0,M − 1] , allows the proposed algorithm to be
more efficient than either the TCS-mean or TCS-median for
leptokurtic noise densities as well. This means that the RMS
error in estimating h(n) ∗ s(n) can be expected to be less
than that of the conventional methods.

Remark: The use of the Pitman estimator assumes that the
scale parameter un is known, but this is not the case even for
platykurtic densities because σ2

ε is unknown. From Lemma
1, it can be deduced that un controls the selectivity of the
Pitman estimator, which determines its robustness to outliers.
While a reasonably accurate estimation of un is essential,
minimum-variance estimation is not of primary importance
due to possible computational complexities. For simplicity, one
can use half the inter-quartile range (IQR) as an estimate for
un.

III. RESULTS AND ANALYSIS

From [4], we can write the generalized density function for
the power exponential family as

p(εn|γ) = c(γ)e−|εn−με|γ (11)

where με is the location parameter, γε(0,∞) controls the
thickness of the tails and c(γ) is a normalization constant in
γ such that p(εn|γ) is a density function for different values
of γ. Decreasing γ results in heavy-tailed density functions,
while increasing it leads to thin-tailed density functions. For
example, when γ = 2 then p(εn|γ = 2) is Gaussian and if
γ = 1 we have the double exponential function. Therefore,
leptokurtic densities are defined for γ < 2 and platykurtic
densities occur when γ > 2, making (11) ideal for robustness
analysis of location parameter estimators. The noise location
parameter has no influence on the variance of the different
estimators, and is thus left as με = 0. For even values of
k ≥ 0,

E(ξkn) =

∫ ∞

−∞
εkn.c(γ).e

−|εn|γdξn

= 2c(γ)

∫ ∞

0

εkn.e
−εγndεn

Using the Gamma function Γ(t + 1) =
∫∞
0
yte−ydy, for

y = ξγn it follows that:

E(ξkn) = 2c(γ)Γ(
k + 1

γ
)/γ.

For k = 0 we obtain the normalization function

c(γ) =
γ

2Γ( 1γ )
,

and from k = 2 and k = 4 the kurtosis expression is

β =
Γ( 5γ )Γ(

1
γ )

Γ2( 3γ )
.

Kurtosis measures the thickness of the tails of a given
density function. It can be shown that for 6 ≤ γ < ∞ then
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1.8 < β ≤ 2, and for γ ≤ 0.2, β is very large. Therefore
we shall constrain our analysis to 0.2 ≤ γ ≤ 6. The FCR
lower uncertainty bounds associated with the sample mean
and sample median can also be evaluated using the gamma
function as discussed in [4]. This is not possible for the CLP
Pitman estimator because the moments of the Cauchy density
function are either undefined or infinite. We resort to the
use of random number generators to provide synthetic noise
for comparing the three methods. Consider the cumulative
distribution function of (11):

P (εn < 
) =

∫ �

−∞
p(εn|γ)dεn.

For 
 > 0, then

P (εn < 
|
 > 0) =
1

2
+

1

2Γ( 1γ )

∫ �

0

e−ε
γ
ndεn,

due to symmetry of the power exponential density functions.
With y = εγn, then

P (εn < 
|
 > 0) =
1

2
+

1

2Γ( 1γ )

∫ �γ

0

y
1
γ −1.e−ydy

Noting that the integral is the lower incomplete gamma
function Γ( 1γ , 


γ), it follows that

P (εn < 
|
 > 0) =
1

2
+

1

2
Γ̃

(
1

γ
, 
γ

)
(12)

where Γ̃

(
1
γ , 


γ

)
is the regularized lower incomplete

gamma function. Since P (εn < 
|
 > 0) + P (εn < 
|
 <
0) = 1,

P (εn < 
|
 < 0) =
1

2
− 1

2
Γ̃

(
1

γ
, 
γ

)
(13)

Based on the fact that P (εn < 
)ε[0, 1], if an observation
vmε[0, 1] from the uniform density function is assumed to be
a realization of P (εn < 
), then from (12) and (13) we have
the power exponential random generator

εn,m =

{ {Γ̃−1[ 1γ , (2vm − 1)]} 1
γ , for vm > 1

2

{−Γ̃−1[ 1γ , (1− 2vm)]} 1
γ , for vm ≤ 1

2

(14)

where Γ̃−1[ 1γ , v] is the regularized lower inverse
incomplete gamma function from zero to v (implemented
as ”gammaincinv” in MATLAB). Fig.1 is a summary of the
RMS errors of the sample mean, sample median and the CLP
Pitman estimator on estimating the location parameter of (11)
for 0.2 ≤ γ ≤ 6 observed in 105 trials for a fixed number
of samples per trial M . For the CLP Pitman estimator three
different values of σ2

z are used. When σ2
z = 2 the asymptotic

efficiency Φ(ĉn, μ̂n) −→ 1 for platykurtic densities, which
helps to illustrate the inherent advantage of the CLP Pitman
estimator over the sample mean and median for leptokurtic
noise densities. As previously discussed, the only way to
increase the SNR via the sample mean or median is to
increase the number of measurements. The variances σ2

z = 4
and 16 are used to demonstrate an alternative to increasing

the SNR without increasing the number of measurements for
the proposed algorithm.

With regard to the sample mean, sample median and the
CLP Pitman estimator for σ2

z = 2, the least RMS error results
in Table I are shown in bold between the three estimators.
It is observed that the CLP algorithm is more efficient than
both the sample mean and median for leptokurtic densities
as predicted by Theorem 2 and Corollary 2. For platykurtic
variables Φ(ĉn, μ̂n) −→ 1, which is as expected because of
the CLT.

The results for σ2
z = 4 and 16 show that as the variance of

the Gaussian sample Z is increased, the uncertainty associated
with the CLP Pitman estimator is reduced. In fact, based on
the FCR lower bound of the CLP Pitman estimator 2

σ2
ε

σ2
z

, one
can expect an SNR improvement of 3dB for every doubling
of σ2

z . As an example, from Table I to achieve a sample mean
RMS error of less than 0.17 given Gaussian noise requires
M = 20 measurement signals, whereas for the CLP Pitman
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Fig. 1. The rms error curves for the CLP Pitman estimator (σ2
z = 2) illustrate better consistency than those of the sample mean and sample median as

they are more flat for different tail thicknesses. The CLP Pitman estimator performs as well as the sample mean given the same asymptotic efficiency for
platykurtic density functions.

estimator one can use M = 5 measurements and σ2
z = 4.

The largest possible value of σ2
z is application dependent and

should be such that the DUT is not driven into non-linearity.
In general, it can be observed that the accuracy of all three
estimators increase with increasing γ due to reduced tail
thickness.

On the left-hand side of Fig.1 are the rms error plots of
the three location estimators for 0.5 ≤ γ ≤ 6 and M = 3
and 10 to illustrate which is the most consistent for different
tailed densities. The γ = 0.2 values are left out because they
are much larger and make it difficult to visualize the estimator
performance for other values. The CLP Pitman estimator plots
(σ2
z = 2) have the least variation for different values of

γ as illustrated by the more flat curves, followed by the
sample median and lastly the sample mean. On the right-hand
side of Fig.1 are the platykurtic rms errors (2 ≤ γ ≤ 6)
for the location estimators. There is almost no difference
between the sample mean and the CLP Pitman estimator as
predicted by Theorem 1. The sample median is least efficient
for these densities. Here, the only advantage of the CLP
Pitman estimator over the sample mean is the possibility of
using larger values of σ2

z as reflected by Table I.

IV. CONCLUSIONS

A new algorithm for noise suppression given several DUT
measurements has been introduced. Prior to DUT excitation,
the test signal is scaled by realizations of a Gaussian variable

of zero mean and pre-determined variance such that the DUT
is not driven into non-linearity. The ratio of the captured
measurements to the Gaussian sample is grouped into TCS
ratio variables whose location parameters are shifted by the
LTI convolution of the DUT impulse response and the test
signal. Based on the CLT, the ratio sample for platykurtic
noise densities tends to a Cauchy sample for which the
CLP Pitman estimator is the minimum-variance location
estimator. Therefore, the proposed algorithm performs as well
as the sample mean and better than the sample median for
platykurtic noise variables given the same FCR lower bound.

For leptokurtic densities, we used Theorem 2 to illustrate
how the weighting functions of the CLP Pitman estimator
reduce the heavy-tailed densities to platykurtic densities, for
which subsequent averaging (as the CLP Pitman estimator
does) is more efficient than the sample median of the heavy-
tailed densities. Consequently, the CLP Pitman estimator is
more efficient than the sample mean for leptokurtic densities.
Therefore by Theorem 1 and 2, the CLP Pitman estimator is a
more consistent and robust noise suppression algorithm than
either the sample mean or median for different tailed noise
density functions. Another major advantage of the proposed
algorithm is that instead of noise suppression by increasing the
number of measurements (as with the conventional methods),
one can increase the variance of the scaling signal. If both
the number of measurements and the variance of the scaling
signal are increased, the CLP Pitman estimator is even more
efficient than the sample mean and median as illustrated by
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the simulation results in Section III. In conclusion, the results
suggest that it is more reliable to use the CLP algorithm for
noise suppression of unknown and first-order stationery noise
sources given its lower uncertainties and better consistency
over a wider range of different tailed density functions.

V. FUTURE WORK

It is clear that the scaling parameter of the Cauchy density
function plays a major role on the selectivity of CLP Pitman
estimator. In this paper, this value was estimated as half the
IQR of the given samples. It is possible that for leptokurtic
variables a certain range of values would yield better results
and it would be better to use them instead of half the IQR.
In future, an analysis of the effects of the scaling parameter
with respect to other parameters will be investigated to help
improve the convergence of the proposed algorithm.
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