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Abstract— Camera calibration is an indispensable step for au§t0]. Unfortunately, in everyday calibration work, sometloé
mented reality or image guided applications where quantitative igcquired images yield significant calibration errors orreve

formation should be derived from the images. Usually, a Cameé?iginate from such ill-posed configurations. Hence, tlisre
calibration is obtained by taking images of a special calibration objec

and extracting the image coordinates of projected calibration markgCessity to carefully examine each of the images.

enabling the calculation of the projection from the 3d world coordi-
nates to the 2d image coordinates. Thus such a procedure exhibits
typical steps, including feature point localization in the acquired

images, camera model fitting, correction of distortion introduced by camera calibration has been studied intensively in the past
the optics and finally an optimization of the model’'s parameters. |n o .
this paper we propose to extend this list by further step concernifg@rs: Starting in the photogrammetry community [1] andemor

the identification of the optimal subset of images yielding the smallggicently in computer vision [9], [8], [10], [3], [4]. Accohg
overall calibration error. For this, we present a Monte Carlo bastd Heikkila and Silen [3], there are four main problems
algorithm along with a deterministic extension that automaticaliyhen designing a whole calibration procedure: control poin
determines the images yielding an optimal calibration. Finally, wWecgjization in the images, camera model fitting, image cor-
ﬂﬁg{,‘édrif,“gﬁmﬂﬁg‘{;”dgi,;ga;etgg.eﬁﬁgﬁfaﬂon can be SIgnIfICamr'%ction fqr _radial gnd tangential distortion and estimgtine
errors originated in these stages. Most of the research has
%een devoted to model fitting and only few works can be
found in the literature about the other stages of the process
such as feature point localization, cf. [5]. Additionalthe
. INTRODUCTION literature neglects the problem of image selection, thabis

Generically, calibration is the problem of estimating \esu determine the images that are likely to result in small model
for the unknown parameters in a sensor model in order fib errors. However, this is an important topic since ill-pds
determine the exact mapping between sensor input and outgahfigurations or poor image quality can negatively inflieenc
A wide range of computer vision applications exist, whickhe calibration procedure and thus lead to significant srror
require an accurate calibration of the visual system. IisgheHence, we suggest to extend Heikkiand Silken's list by
applications, certain quantitative information is extescfrom another task concerning the identification of the images tha
the 2d images and overall performance depends on calibratigeld the best calibration result. In this scope, the workge
accuracy [5]. In the context of three-dimensional machireosest to ours is that of Ouellet et. al. [6] who address
vision, the sensor is represented by the camera includithg problem of predicting the quality of calibration images
its optics. Hence, calibration is the process to determiree tby analyzing their feature points. Ouellet et. al. presemt a
internal camera geometric and optical characteristicdoandacutance-based quality measure [7] for circular calibrati
the 3d position and orientation of the camera frame relativearks that can quickly indicate static or motion blur in the
to a certain world coordinate system [9]. images. This in combination with an interactive assistant

Camera calibration is usually performed by observing taol for geometric camera calibration eliminates the needs
special calibration object, which in most cases is a flateplatarefully examine each of the images and thus facilitate the
with a regular pattern marked on it using colors causing & higalibration process [6].
contrast between the marks and the background. The patterplowever, the proposal of Oullet et. al. focusses on user
is chosen such that the image coordinates of the projeciatkraction and is not able to predict degenerated configura
reference points can be measured with high accuracy. Oniems that typically result in high errors. Therefore, wggest
the relationship between the 2d image coordinates and t3dapply a stochastic and deterministic optimization tége
world coordinates is known, the perspective transformation order to automatically determine the optimal subset ef th
of the visual system can be estimated. To attain this, theol of aquired images yielding the best calibration resith
calibration images must suffice certain constraints in 1ordgespect to the model fit error.
to ensure that the underlying mathmatical algorithms are
well-posed. In the literature, the ill-posed setups areroft
referred to assingularitiesor degenerated configuratiojj,

II. RELATED WORK AND CONTRIBUTION

Keywords— Camera Calibration, Discrete Optimization, Mont
Carlo Method.
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) ) . The characteristics of the imaging system are determined by
The authors are with the Fraunhofer-Institute for IntegplatCir-

cuits (11S), Am Wolfsmantel 33, D-91058 Erlangen, Germanymit: the WeII-.know_n calibration teChn'q_ue by Zhang [10] modreli
stephan.rupp@iis.fraunhofer.de, http://www.iis.fraafer.de) the relationship between the 2d pixel coordinates and 3dtiwor
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coordinates by a projection matrl, which maps points from Due to the fact that the calibration procedure requiresastle
the projection spac#? to the projective plane??: two images (cf. section 1), the power szt of the image set
I needs to be degraded by the empty set and all the singletons.

Pox, |0 a u 01 0 0 R tw) For an example, let us assume a setof 20 calibration

T . . o
0 0 1 00 1 0 0; 1 images and an estimated average calibration time-e0).5s
N— ——

3 per image. Then the expected tiéor the determination of

A v the global maximum by an exhaustive search will take

The 3 x 3 matrix A, whose four entries are callddtrinsic  (2° —21)-0.5s = 524277.5s that is approximately 146 hours

parametersmodels the imaging process whereas the 4 Of 6 days, and thus will be impracticable for every day use.

displacement matriD,, describes the external orientation of FOr the remainder, we assume theelements of the cal-

the cameraéxtrinsic parameteds ibration image sefl being partially ordered by an arbitrary
The Zhang method requires > 2 shots each containing relation. We identify an element at positiér(the i-th image

the image of the calibration pattern with feature points ¢:) With thei-th unit vector

on it. Each feature point represents a mapping from the 3 i T

world frame to the 2d image frame and yields an equation in“i} €4 — €= (M) i=1...m

a linear equation system that is solved for the components n

of P. These camera model's parameters are then adjustedi model a certain subset by the coordinate vestor

within a non-linear optimization procedure incorporatiag (s; ... s,)?,s; € [0,1], i.e.

correction of radial and tangential lens distortion. Amarit T

functionfor the optimization the meainof all projection errors 5 = (01 .- 0 ... 1) =0ep+ler+...+0e...+1ep.

€i; is considered and its minimization is persued yielding gfere, s; = 1 denotes the containedness of tjh image

au()uoloo()(

improvement of the overall model fitting quality: in the corresponding subset. With this modelling, the subse
X selection is equivalent to the optimization problem
n m U4 Y
_LZZ R el IS RGN BT
T m LwZaf T If Zij Xij
=1 =1 1 1 n o m 2% Y.
2 min €(s), € — Z Z vij | — Ps ZZ‘J‘ 3)
The projection error of a single calibration featueg is ° nm A= 1 1”
defined by the Euclidean distance between its initially ex- 2

tracted image coordinatgs,;, v;;)’ and the corresponding 3dwhere€(s) denotes the mean projection error for the whole
world coordinate$X,;,Y;;, Z;;)’ being projected to the imageinput image set/ with respect to the projection matriR
plane with the projection matri® acquired by the calibration that was obtained by the calibration from the image subset
procedure. The meanof all these errors yields an appropriateepresented by.

measure for the quality of the calibration [10].

A. Monte Carlo Method (MCM)

Due to the huge discrete search space we propose a stochas-
In everyday calibration work, usually a setofnput images tic selection scheme for solving the discrete optimization
I = {u,t2,...,1n} is considered for calibration whereagroblem. We use a Monte Carlo Method (MCM) which is
some of the acquired images may originate from ill-posafspired by the well-known Random Sampling Consensus
configurations. Typically, these images are seldomly knoWRANSAC) [2] and thus makes use of random choices.
beforehand, so that neither considering all thémages nor  The method’s key idea is to randomly choose combinations
a human-made subset selection will in general yield the begtthe input images and keep the combination that yields the

calibration result. minimum mean projection error with respect to all the input
In the following we address this problem and apply thgnages:; € I.

mean projection error in order to determine a subset of isiage In more detail,r unique subsets;, [ = 1..r, are randomly

that yields a minimal overall projection error with respéet choosen from the search spafe = 27\ (I U {#}), that is

the whole image set. We present a Monte Carlo based methhg power set of input images excluding the singletons and

and a deterministic extension in order to identify the oplimthe empty set. In order to completely cover the search space

subset/,ps. and enlarge the convergence range, the jze- ||s;||3 of
Performing an exhaustive search in order to determine tilividual subsets; is also randomly choosen from the closed

global optimum is not feasible since the parameter spBge interval [nmin, 7max] With 2 < nmin < Nmax < |1].

is very large as it consists of alV., possible combinations For each of the subsets the projection matrixPy, is

of then input images with at least two images and hence igetermined by calibration. In our experiments, we apply the

well-known calibration method by Zhang (see section llI).

IV. SUBSET DETERMINATION

Nex = IP}' =[{X: X CTAT<|X]} Once the projection for a subset has been determined the
= 22\ {0} — |1 (2)  mean projection errok(s;) is calculated for all the images
2" —-1)—n=2"—(n+1). in the input image sef from their correspondences. Finally,
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Algorithm 1 Monte-Carlo-Method based image subset deter-
mination for an image set
Require: 7, Tmin, Nmax, [
Ensure: 2 < Mmin < Mmax < |I|
D=0 /I set of drawn subsets
Sopt = (00 ... 00)
€opt = OO
while » < |D| do
draw a subse$ with s ¢ D andnmin < |[8/|2 < Nmax (a) Iterationc
D=DUs
P, =Calibrates§) Llels  [€]
€s = MeanProjectionErroRs, I)
if €& < eopt then
€opt = €s

Lyl (PRVRIR D

Lyl Ly lylg s

1l P P P

Lyl ls  [€ Loy laslg s Ly

Sopt =S —

end If Ll,ls  [€ Lol lelssls
end while
return  sops

Loy le )

: . . . (b) Iterationc + 1
the subses™ that yields the minimal mean projection error is

choosen as the (sub)optimal combination Fig. 1. Deterministic image selection process en de&ilStarting from a
’ configuration containing the images, ¢4 and s, repeatedly one image is
Once all ther subsets have been evaluated, the CurréRoved and added. The new $et, 14, L6, L5 } yields the smallest projection

combination is considered to be the optimal solutigp, = error and thus is considered for further uispIn a subsequent step, again one
s*. Thus, the calculation of the (locally) optimal solution idmage is removed and added repeatedly, yielding the new optisiattion
determined withVy;cn = r evaluations. {2, 16, 15}

B. Deterministic Extension of the optimal solution. In general, we do not assume any
In order to improve the optimization procedure, we extergPnstraint on the subset and thugi, = 2 and nmax = n
the former approach by a deterministic search strategy tthlds. Again, the score for the selection process is given by
refines a given solution. This strategy starts from an inhitihe mean projection errafs) with respect to the whole input
subset and deterministically adds or removes new elemetitfige set/ (eq. (3)).
in order to identify an improved combination. The selection The start configurations, = s* is determined by the
strategy is a combination of theequential forward selection formerly described, stochastic algorithm (alg. 1). Stayfirom
and sequential backward selectialgorithm, that are briefly such a configuratios,. with k. = [|s.||3 images,(n —k.) new
explained now. configurations with(k.+1) images are created by adding each
In an initial step, thesequential forward selectiostrategy Of the remaining images \ /.. Likewise, k. new configura-
identifies the best element within the setiofelements with tions of sizenyi, < (k. —1) < nnax are set up by repeatedly
respect to a certain score. In a subsequent step, the Bigstoving one image. From thede (n — k.) new config-
combination of two elements is selected by testing this veHfations the new optimal configuration; is determined,
element with the remaining elements. Repeating this untflat is again the one with the smallest projection error. The
all the n elements have been selected, a (locally) optimaglection process terminates as soon as the newly determine

combination has been identified wifiigy evalutions: configuration equals the current configuratiep,( = s.) and
n thus the optimal combinatios,,; = s. has been identified.

Nsp = Z (n—i+1)= M (4) The overall number of evaluations arises from the number

=1 2 Nuewm Of evaluations of the Monte Carlo approach and the

This, in comparision to (2) reduces the effort to identify afimount of evaluationsVp. for the deterministic extension:
optimum significantly.

The sequential backward selectiaigorithm behaves sim- N = Nyem + Npey = +n(n+1) ®)
ilarly, but starts with the whole set of elements and omits 4, Npet = Nsp + Nsg.
repeatedly the elements that do not maximize the overall
score. The number of evaluationgy is equal to that of the
sequential forward algorithm (eq. (4)).

The algorithm presented in this paper makes use of aFor an evaluation of our approach, we calibrated several
combination of both selection strategies. It requires aadted cameras of different resolution and manufacturers. For any
start configurationsy and two parameters,,;, and n,.x given camera we recorded = 20 images of a 14-by-10
(with 2 < npin, Tmax < n) that allow to constrain the size checkerboard (withn = 117 calibration marks) from different

V. EXPERIMENTS AND RESULTS
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I TABLE |
0.17852 I ViCM 1
[___Jenh.MCM THE COMPUTATION TIME IN SECONDS FOR BOTH APPROACHES ALONG
0.1785 | = WITH THE NUMBER OF EVALUATIONS AS WELL AS THE OPTIMIZATION
017848 ITERATIONS FOR THE DETERMINISTIC ENHANCEMENT FOR DIFFEREN
’ RANDOM SAMPLES”. THE TABLE DEPICTS THE AVERAGED RESULTS OF
0.17846 - 1 100EXPERIMENTS
0.17844 - g T tMeM tEnh.MCM N ‘ Npet Optimizations
10 1.06 11.32 86.8 | 76.8 4.0
0.17842 1 25 2.40 11.68 87.4 | 62.4 3.2
50 5.33 13.88 110.5| 60.5 3.1
0.1784 1 100 10.48 18.70 159.0| 59.0 3.0
250 63.36 81.36 300.9| 50.9 2.6
0.17838 I I I 1 500 | 123.27 140.00 549.0f 49 2.5
1000 | 259.15 272.34 1036.2 36.2 1.8
ose M N0 M Ho B B WO
10 25 50 100 250 500 1000

Fig. 2. The mean projection error for varying random samplesvdrusing emphasis is on the stochastic or the deterministic part, the

the Monte-Carlo (dark) and the enhanced Monte-Carlo methgtit With — tota] number of evaluations that is needed to achieve ansiimo

increasing numbers of random samples both methods converged®whe . . .

global optimum. However, the enhanced method converges mueh.fas ~ OPtimal result is orders of magnitude lower than the numifer o
evaluationsN,, = 1048555 needed for an exhaustive search.
All the exemplary results are with respect to images with

directions whereas some of them originated from ill-poseld)24 x 768 pixel that have been aquired with a Matrox CV-

configurations. M50 camera.

With these images we determined the globally optimal In addition to the former experiments, we asked different
solution for subsets of fixed size. For this, we performegersons with a background in computer vision to calibrate
an exhaustive search of the search space and identified tthe cameras and compared their calibration results withetho
minimum projection errors for the configurations that coisgr that have been obtained with our unconstrained Monte Carlo
of two images, three images and so on up to 20 imagesethod with deterministic refinement. Again, we took the
Starting with configurations of only two images is due to theean projection error as a metric for the comparison and
Zhang method that requires at least two different views ef thiepeatedly applied our algorithm. Table Il exhibits thag th
calibration pattern. In contrast to taking the minimum nemb automatic approach yields better results than calibratioom
of images, considering all images corresponds to the pumeedimage subsets that have been selected by human-made de-
typically persued in everday calibration work. cision and that the optimal solution does not emerge when

In the following, the Monte-Carlo approach with and withconsidering all the images in the input image set. The number
out deterministic refinement has been applied to the imagkimages in the last two rows of Table Il are referred to
set and subsets of varying size were considered. For tihe minimum mean projection error identified within the 100
optimizations random choices = 10, 7o = 25, r3 = 50, experiments and counts178365 and0.178367 respectively.
ry = 100, r5 = 250, r¢ = 500 andr, = 1000 samples have Following an intuitive approach - that is choosing all the
been considered. In order to get statistically represestatacquired images - will likely results in large projectioras
results, the experiment for a given setup was repeated 1066 Table II, rowAll image9. Likewise, considering only the
times and the resulting projection errors were arithmégica minimum number of images will not yield optimal solutions.
averaged. For this reason, the method proposed in this paper is not

Figure 2 depicts the projection errors for the identified RANSAC method, since such methods draw samples of
optimal solutions whereas Table | shows the computationainimal size in order to determine the model's parameters
effort for the chosen sample numbers achieved on a 3Ghiad rate outliers. In contrast, we vary the size of the sasnple
Pentium IV workstation machine. Table Il also exhibits thand allow non-minimal sample sizes which in turn enables the
minimal projection error 0f0.178320 pixel for the globally algorithm to identify optimal solutions. However, due te it
optimal solution that has been identified with the exhaestisimilarity we claim our approach to be inspired by RANSAC.
search strategy.

Apparently there is a trade-off between processing time VI. DISCUSSIONAND CONCLUSION
(number of evaluations) and the solution’s quality. Theref In this paper, we addressed the problem to automatically
we considerr = r5; = 250 as most suitable for everydaydetermine the optimal subset of the pool of aquired calimat
practice. images yielding the best calibration result. We presented a

In addition, Figure 2 shows that the enhanced Montstochastic selection scheme in order to identify combina-
Carlo approach is especially usefull when only a few sampléens of input images that yield a small projection error.
are drawn { < 100), because of its fast convergence. Iridditionally, we proposed a deterministic algorithm for an
contrast, using many random selections % 100) only a improvement of optimal solutions that have been found with
few deterministic evaluations and optimization iteraticare the stochastic approach.
necessary due to the almost optimal results achieved in thé&experiments comparing the algorithms’ performance with
stochastic step and vice versa (cf. Table ). No matter if thibe global optimium as well as with human-made decisions
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TABLE Il
COMPARISON OF HUMAN-MADE SELECTIONS WITH THE SUBSETS THAT
HAVE BEEN IDENTIFIED WITH THE PROPOSED APPROACH AND = 250
RANDOM SAMPLES. THE MEAN PROJECTION ERRORS IS GIVEN IN PIXEL
AND CALCULATED WITH RESPECT TO THE WHOLE INPUT IMAGE SETTHE
NUMBER OF IMAGES IN THE CHOSEN OPTIMAL SUBSEBopt IS RELATED
TO THE IMAGES THAT WERE USED FOR CALIBRATION
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Method Average  # Images Std. Dev. e A
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Expert 5 0.178818 18 A
Expert 6 0.182151 4 /
Expert 7 0.178678 7 /
Expert 8 0.178643 9 /
All Images 28.2622 20 . Matthias Elter received the Master of Sci-
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experience or time-consuming trial and error.

Michael Breitung received the diploma degree in
Electrical Engineering from the University of Ap-
plied Sciences (Fachhochschule) Fulda, Germany in
October 2005. His major subjects are information
and communication technology. The diploma thesis
was concerned with the "implementation and test
of algorithms for calibrating camera systems”. Since
November 2005 he is with the Multimedia-Transport

REFERENCES

[1] Edward Mikhail Chris McGlone Manual of PhotogrammetryASPRS,
5 edition, 2004.

[2] M. A. Fischler and R.C. Bolles. Random sampling consensiis
paradigm for model fitting with applications to image analyaisd
automated cartographgomm. of the ACM24:381 — 395, 1981.

[3] Janne Heikkih and Olli Silvéen. A four-step camera calibration procedure
with implicit image correction.IEEE Conference on Computer Vision Group of the Audio & Multimedia department at
and Pattern Recognitigrpages 1106-1112, June 1997. Fraunhofer-Institute for Integrated Circuits (IIS) in

[4] Janne Heikkia and Olli Siken. Geometric camera calibration using Erlangen, Germany.
circular control points. IEEE Transactions on Pattern Analysis and
Machine Intelligence22(10):1066 — 1077, October 2000.

[5] G.G. Mateos. A camera calibration technique using targstcircu-
lar features. 5th lbero-America Symposium On Pattern Recognition
(SIARP) 2000.

[6] Jean-Nicolas Ouellet and Patrickeblert. Developing assistant tools for
geometric camera calibration: Assessing the quality of inmaiges. In
ICPR (4) pages 80-83, 2004.

[7]1 Rangaraj M. Rangayyan, N. M. El-Faramawy, J. E. Leo Dedaptind
Onsy Abdel Alim. Measures of acutance and shape for classificaf
breast tumors|EEE Trans. Med. Imagingl6(6):799-810, 1997.

Walter Zink received the diploma degree in Electri-
cal Engineering from the Friedrich-Alexander Uni-
versity Erlangen-Nuremberg, Germany, in 2000. His
major subjects are image processing, communi-
cations engineering and digital signal processing.
Since January 2001 he works as a scientist at the

[8] Peter Sturm and Steve Maybank. On plane-based cametratdi: Fraunhofer-Institute for Integrated Circuits (IIS) in
A general algorithm, singularities, applications.|EEE Conference on Erlangen Germany. His main research interests are
Computer Vision and Pattern Recognitigrages 432—-437, June 1999. algorithms for object detection and camera calibra-

[9] Roger Y. Tsai. A versatile camera calibration techniqae high- tion.

accuaricy 3d machine vision metrology using off-the-shelt&meras
and lenses.IEEE Transactions on Robotics and Automatidn323 —
344, August 1987.

[10] Zhengyou Zhang. A flexible new technique for camera catibn.
IEEE Transactions on Pattern Analysis and Machine Intelige

22(11):1330-1334, 2000. Christian K Ublbeck studied physics from 1987

to 1993 in Wirzburg, Germany. Since 1995 he is
working at the Fraunhofer-Institute for Integrated
Circuits (IIS) in Erlangen. Emphasis of his work
lies in the field of automized optimization of image
processing techniques. In this field he made his PhD
in 1999. Since 1999 Dr. #blbeck is leading the
group "intelligent systems” and conducts research
in the field of 2d- and 3d-image analysis.

2313



