
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:7, 2015

390

Robust Batch Process Scheduling in Pharmaceutical
Industries: A Case Study

Tommaso Adamo, Gianpaolo Ghiani, Antonio D. Grieco, Emanuela Guerriero

Abstract—Batch production plants provide a wide range of
scheduling problems. In pharmaceutical industries a batch process
is usually described by a recipe, consisting of an ordering of tasks
to produce the desired product. In this research work we focused
on pharmaceutical production processes requiring the culture of
a microorganism population (i.e. bacteria, yeasts or antibiotics).
Several sources of uncertainty may influence the yield of the culture
processes, including (i) low performance and quality of the cultured
microorganism population or (ii) microbial contamination. For
these reasons, robustness is a valuable property for the considered
application context. In particular, a robust schedule will not collapse
immediately when a cell of microorganisms has to be thrown away
due to a microbial contamination. Indeed, a robust schedule should
change locally in small proportions and the overall performance
measure (i.e. makespan, lateness) should change a little if at all.
In this research work we formulated a constraint programming
optimization (COP) model for the robust planning of antibiotics
production. We developed a discrete-time model with a multi-criteria
objective, ordering the different criteria and performing a
lexicographic optimization. A feasible solution of the proposed
COP model is a schedule of a given set of tasks onto available
resources. The schedule has to satisfy tasks precedence constraints,
resource capacity constraints and time constraints. In particular
time constraints model tasks duedates and resource availability
time windows constraints. To improve the schedule robustness, we
modeled the concept of (a, b) super-solutions, where (a, b) are input
parameters of the COP model. An (a, b) super-solution is one in
which if a variables (i.e. the completion times of a culture tasks)
lose their values (i.e. cultures are contaminated), the solution can be
repaired by assigning these variables values with a new values (i.e.
the completion times of a backup culture tasks) and at most b other
variables (i.e. delaying the completion of at most b other tasks).
The efficiency and applicability of the proposed model is
demonstrated by solving instances taken from a real-life
pharmaceutical company. Computational results showed that
the determined super-solutions are near-optimal.

Keywords—Constraint programming, super-solutions, robust
scheduling, batch process, pharmaceutical industries.

I. INTRODUCTION

microorganism population (i.e. bacteria, yeasts or antibiotics).
In this application context, the main sources of uncertainty are
low performance and quality of the cultured microorganism
population as well as microbial contamination, during
preparation and fermentation phases. For these reasons,
robustness is a key aspect for antibiotic production planning.
When a cell of microorganisms has to be thrown away, a

T. Adamo, G. Ghiani, A. Grieco and E. Guerriero are with the Department
of Engineering for Innovation, University of Salento, Lecce, LE, 73100 Italy

{tommaso.adamo, gianpaolo.ghiani, antonio.grieco,
emanuela.guerriero}@unisalento.it

robust schedule remains feasible or should change locally in
small proportions and the overall performance measure (i.e.
makespan, lateness) should change a little if at all.
A classification of problems in terms of plant configurations
for pharmaceutical industry is given by [1]. Due to the
different plant configurations and process specifications, a
wide variety of optimization models, mainly Mixed Integer
Linear Programming (MILP) models, have been proposed in
the batch process engineering literature. In [2] Maravelias
and Grossmann proposed a general hybrid MILP/CP
iterative algorithm for the scheduling of multipurpose plants
exploiting the strong points of Mathematical and Constraint
Programming. Graph based methods usually can be used in
order to fit more to the combinatorial nature of scheduling
problems. In contrast to the infeasibility problems which
may arise with MILP based models, graph based methods
never provide infeasible solutions [3]. In this research work
we formulated a constraint programming optimization (COP)
model for the robust planning of antibiotics production.
We developed a discrete-time model with a multi-criteria
objective, ordering the different criteria and performing a
lexicographic optimization.
The paper is organized as follows. In Section 2 we describe
the antibiotics production process in terms of phases and the
required resources, taking into account of the priority among
activities. In Section 3, we define the problem statements and
we give a mathematical formulation for the problem.

II. ANTIBIOTICS PRODUCTION PROCESS

Although most antibiotics are available in nature, such
microorganisms are not normally produced in the quantities
necessary for large-scale demand. For this reason, each
pharmaceutical industry has to design and implement a
specific process, typically referred to as fermentation process
[4], for each antibiotic. This process (in Fig. 1) involves
isolating a desired microorganism, fueling growth of the
culture and refining and isolating the final antibiotic product.
It is important that sterile conditions be maintained throughout
the manufacturing process, because contamination by foreign
microbes will ruin the fermentation.

A. Fermentation Process Description

The antibiotic is the output of a production process
consisting of four main activities described in the following. In
order to better understand the relations between the activities
and the resources, we report in Fig. 2 an IDEF0 model.
The fermentation process takes place using a culture medium

I N pharmaceutical production industry, batch
production typically requires the culture of a

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:7, 2015

391

Fig. 1. Fermentation process

and a charge of living matter. The culture medium and
the charge of living matter are firstly prepared by a mixer
and a pre-fermentor, respectively (preparation). The prepared
culture medium is firstly transferred to a tank for dilution, then
passed through a sterilizer and finally loaded into a fermentor
using a load collector (culture medium inoculum). Once the
culture medium is cooled (cooling), the pre-fermented charge
is transferred from the pre-fermentor to a fermentor through a
transfer collector (living charge inoculum). Then, the growth
of the obtained culture is monitored and fueled (fermentation)
and, after a given amount of time, the antibiotic is isolated
(harvest).

1.1

Preparing the
charge of living

matter

1.2

Preparing the
culture

medium

Prefermentor

Mixer

2.2

Living charge
inoculum

2.1.1

Dilution

2.1.2

Continuous
sterilization

3.1

Cooling

3.2

Fermentation

4

Harvest

Tank Sterilizer FermentorLoad
collector

Transfer
collectorcollector

Fig. 2. IDEF0 process model

III. PROBLEM STATEMENTS AND MATHEMATICAL
MODELING

We modeled antibiotic production planning as a project
scheduling problem as follows. We supposed that the planning
horizon is partitioned into N time slots. We denoted with
F the set of antibiotic types (i.e. project types), and K the
set of resource types (i.e. fermentor, sterilizer, etc.). For each
antibiotic type f ∈ F , we defined a work breakdown structure,
modeled as a directed graph Gf = (Tf , Pf) where Tf and Pf

represent, respectively, the set of tasks and the precedence
constraints. For each task t ∈ Tf , we defined a fixed duration
st and a set of requirements Πt ⊂ K, such that if k ∈ Πt, then
the resource type k is required to execute task t. Each task t
has a sets of time windows W s

t (W e
t), representing the feasible

values for its start time (end time). A boolean parameter mt

states if the execution of task t is mandatory or not.
The set R represents the available resources and each r ∈ R

is associated with a resource type kr ∈ K. For each resource
r ∈ R, it is defined a set Br of forbidden time windows,
during which resource r is unavailable (i.e. maintainance).
We supposed a non-preemptive operating mode and a unit
processing capacity.

A set of products orders O represents the antibiotics
demand, in particular each o ∈ O refers to only one antibiotic
type fo ∈ F . Finally for each order o ∈ O, it is defined an
earliest (latest) dmin

o (dmax
o) ending time for the harvest task.

In the following we refer to dmax
o as the duedate of order

o ∈ O.

A. A Constraint Programming Model

Let altotr be an interval variable representing the starting
and ending times of task t, if assigned to resource r ∈ R,
with o ∈ O, t ∈ Tfo and kr ∈ Πt. The proposed constraint
programming model aims to determine the optimal values of
alt variables, minimizing the total lateness with respect to
order duedates. In order to model lateness and precedence
constraints, we denote with:

• start(var) the starting time for a given interval variable
var;

• end(var) the ending time for a given interval variable
var;

• presence(var) a boolean value equal to true if the
interval variable var is scheduled, false otherwise.

Let taskot interval variable, representing the start and end
processing times of task t ∈ Tfo , o ∈ O. Let δo denote the
lateness of order o, that is

δo = max {0, end(taskoHo)− dmax
o } ,

where Ho is the harvest task for the order o ∈ O.
Given an antibiotic type f ∈ F , precedence constraints have

been partitioned into three types i.e. P 1
f ∪ P 2

f ∪ P 3
f = Pf .

Each type of precedence constraints corresponds to one of the
following set of linear constraints.

• StartAtEnd constraints: for each (i, j) ∈ P 1
f ,

task j has to be started exactly τij time units after the
ending of task i, that is

end(i) + τij = start(j).

• StartAfterEnd constraints: for each (i, j) ∈
P 2
f , the minimum (the maximum) delay between the end

of task i and the start of task j is τmin
ij (τmax

ij):

end(i) + τmin
ij ≤ start(j) ≤ end(i) + τmax

ij

• StartAfterStart constraints: for each (i, j) ∈
P 3
f , the minimum (the maximum) delay between the start

of task i and the start of task j is τmin
ij (τmax

ij):

start(i) + τmin
ij ≤ start(j) ≤ start(i) + τmax

ij

Given a resource r ∈ R, we modeled changeover times as
follows. Firstly, we defined a decision variable σrn denoting

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:7, 2015

392

the state of resource r ∈ R during time slot n ∈ N . In
particular, a resource r ∈ R can be either ready to process
an antibiotic type, i.e. σrn = f ∈ F , or not available due to
setup operations, i.e. σrn = nil. Let F = F ∪ {nil} be the
domain of σrn, with r ∈ R and n ∈ N . The setup cost Mr��′

represents the setup time required if a state transition occurs
from � ∈ F to �′ ∈ F on resource r ∈ R.

In order to generate fault tolerant solutions and ensure
robustness, we follow the reformulation approach suggested
in [5] to build a super-solution.

A solution to a Constraint Satisfaction Problem is (a, b)
super-solution iff the loss of the values of at most a variables
can be repaired by assigning other values to these variables,
and modifying the assignment of at most b other variables.

In this work we build super-solutions via reformulation with
the duplication of some variables. The duplicate variables have
the same domain as the original variables, and are linked by
the same constraints. The assignment to the original variables
is a super-solution, where the repair for each variable is given
by its duplicate (see Fig. 3).

Fig. 3. Reformulation approach

In our approach, firstly we generate a feasible plan that
minimizes the total lateness, then we enrich (if it is possible)
the schedule of each order with some additional tasks which
can be interchanged with the original ones. If there is some
kind of breakage or contamination, a repair plan will be
easily generated by simply switching tasks. In this case study,
the main source of contamination problems is the living
charge preparation. Therefore, the duplicate variables model
the preparation task of some additional living charges, also
called backup charges. For each order o ∈ O, we defined
the set Bcko ⊆ Tfo of non-mandatory tasks, representing the
production of backup charges.

In the proposed model, the optimization criteria were (in
lexicographical order):

1) the minimization of the total lateness, min
∑

o∈O

δo;

2) the maximization of the minimum number of scheduled
backup charges, maxmin

o∈O

∑

t∈Bcko

presence(taskot).

B. Mathematical Formulation

minimize
∑
o∈O

δo, (1)

maximize min
o∈O

∑
t∈Bcko

presence(taskot) (2)

s.t.
end(taskoi) + τij = start(taskoj)

o ∈ O, (i, j) ∈ P 1
fo

(3)

end(taskoi) + τmin
ij ≤ start(taskoj) ≤ end(taskoi) + τmax

ij

o ∈ O, (i, j) ∈ P 2
fo

(4)

start(taskoi) + τmin
ij ≤ start(taskoj) ≤ start(taskoi) + τmax

ij

o ∈ O, (i, j) ∈ P 3
fo

(5)

dmin
o ≤ end(taskoHo) ≤ δo + dmax

o , o ∈ O (6)

alternative(taskot,
⋃

r∈R:kr∈Πt

altotr),

o ∈ O, t ∈ Tfo (7)

noOverlap(
⋃

o∈O,t∈Tfo :
kr∈Πt

altotr), r ∈ R (8)

a ≤ start(taskot) ≤ b, o ∈ O, t ∈ Tfo , (a, b) ∈ W s
t (9)

a ≤ end(taskot) ≤ b, o ∈ O, t ∈ Tfo , (a, b) ∈ W e
t (10)

start(taskot) ∈ N, end(taskot) ∈ N, o ∈ O, t ∈ Tfo (11)
end(taskot)− start(taskot) = st, o ∈ O, t ∈ Tfo (12)

mt ⇒ presence(taskot), o ∈ O, t ∈ Tfo (13)
end(altotr) < a ∨ start(altotr) > b,

o ∈ O, t ∈ Tfo , r ∈ R, (a, b) ∈ Br : kr ∈ Πt (14)
σrn = fo, o ∈ O, t ∈ Tfo , r ∈ R

n ∈ [start(altotr), end(altotr)] ∩N : kr ∈ Πt (15)

σrn �= σrn′ ⇒ n′ − n ≥ Mrσrnσrn′ ,

n, n′ ∈ N : n′ > n, r ∈ R (16)
σrn ∈ F , r ∈ R,n ∈ N (17)

σrmin{N} = σ0
r , r ∈ R (18)

δo ∈
[
0, δmax

fo

]
∩ N, o ∈ O (19)

First objective function (1) is the total lateness, whilst
second objective function (2) is the robustness. Constraints
(3), (4) and (5) are the precedence constraints described in
the previous section. For each order o ∈ O, constraint (6)
states that the end of the harvest task Ho has to occur
in [dmin

o , dmax
o + δo]. Constraint (7) models the relationship

between the alt and the task variables. Constraint (8)
represents the unit processing capacity for each resource
r ∈ R. Constraints (9) and (10) model time windows W s

t

and W e
t . Constraint (11) defines the domain of the task

variables, while constraint (12) states their duration. Constraint
(13) imposes the schedule of mandatory operations. For each
resource r ∈ R, constraint (14) models the forbidden time
windows Br. Constraints (15) and (16) model state transitions
applying the changeover times. We consider by convention
that the changeover time from or to the nil status is equal to
zero. Constraints (17) and (18) state respectively the domain
and the initial value of states variables. Constraint (19) states
an upper bound for the lateness.

IV. COMPUTATIONAL RESULTS

The efficiency and applicability of the proposed model
was demonstrated by solving instances taken from a real-life
pharmaceutical company. In Fig. 4 and 5 we reported the Gantt
charts corresponding to the output of one instance. We used
one different color for each f ∈ F . On the left, the labels refer
to resources r ∈ R. In particular, labels Fk refer to fermentors
that are the main bottlenecks (see Fig. 4).

When our research team began to deal with this decision
problem, the production planning was determined by applying
an earliest duedate heuristic (EDD). The production manager
was wondering if their monthly throughput could be increased.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:7, 2015

393

Fig. 4. Gantt chart: minimizing total lateness

The computational results pointed out that throughput can be
increased only by adding one more fermentor. It is worth
noting that adding one fermentor is a strategic decision since
it requires huge investments (about one million dollars).

Fig. 5. Gantt chart: minimizing lateness and maximizing robustness

As far as robustness is concerned, Fig. 5 reports the Gantt
chart obtained when we optimized in lexicographical order
lateness and robustness: seven backup charges were added with
respect to solution of Fig. 4. In general, our computational
results showed that the proposed model was equivalent in
terms of robustness, but provided a gain on lateness of 20%
on average with respect to EDD heuristic. Finally, the EDD
heuristic has a granularity of a day, whilst our model provides
hourly details on the operational activities.

V. CONCLUSIONS

This work presents a constraint programming framework
for the antibiotics production planning problem. We proposed
a model for minimizing in lexicographical order total lateness
and robustness, taking into account precedence, time and
resource capacity constraints. Instances from a real-life
pharmaceutical company showed a gain on lateness of 20%
on average. The adoption of an automated tool for production
scheduling is a way to improve productivity and to promote
integration among strategic and operational decision making
layers. This kind of vertical integration is a key step of Industry
4.0 [6]. In particular, this research work showed that robust
constraint programming is an effective and efficient tool for
planning industrial production of microorganism cultures.

REFERENCES

[1] C. T. Maravelias and I. E. Grossmann, “Using milp and cp for the
scheduling of batch chemical processes,” in Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems. Springer, 2004, pp. 1–20.

[2] T. Maravelias and I. E. Grossmann, “A hybrid milp/cp decomposition
approach for the scheduling of batch plants,” in Proceedings of CP-AI-OR,
2003.

[3] M. Hegyháti, T. Majozi, T. Holczinger, and F. Friedler, “Practical
infeasibility of cross-transfer in batch plants with complex recipes:
S-graph vs milp methods,” Chemical Engineering Science, vol. 64, no. 3,
pp. 605–610, 2009.

[4] W. T. Hess, A. Kurtz, and D. Stanton, “Kirk-othmer encyclopedia of
chemical technology,” John Wiley & Sons Ltd., New York, 1995.

[5] E. Hebrard, B. Hnich, and T. Walsh, “Super solutions in constraint
programming,” in Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems. Springer, 2004,
pp. 157–172.

[6] “Project of the future: Industry 4.0,” http://www.bmbf.de/en/19955.php.

