International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

Robust Artificial Neural Network Architectures

A. Schuster

Abstract— Many artificial intelligence (AI) techniques are inspired
by problem-solving strategies found in nature. Robustness is a key
feature in many natural systems. This paper studies robustness in
artificial neural networks (ANNSs) and proposes several novel, nature
inspired ANN architectures. The paper includes encouraging results
from experimental studies on these networks showing increased
robustness.

Keywords— robustness, robust artificial neural networks architec-
tures.

[. INTRODUCTION

Robustness, as forthcoming sections are going to show
shortly, is relatively easy to understand via examples. Unfortu-
nately, it is quite difficult to define. Its elusive character, so far,
prevented a generally acknowledged definition. For this reason
this paper adopts a view that is widely shared by saying that:
“A robust system is a system that tolerates faults”. Robustness
is not a new concept. It has been recognized as an omnipresent
feature in many systems, natural and artificial alike, for some
time. It is only recently that scientist are intrigued to study
this interesting concept more rigorously and more formally.
This paper aims to contribute to this effort in several ways.
Its main goals are to identify fundamental strategies (e.g.,
redundancy, granularity, adaptation, repair, and self-healing)
nature applies to make systems robust and to study their value
as general design principles for Al. In order to do so, the
paper has the following structure. Section II continuous with
a general discussion on robustness, explaining, for example,
why robustness is important in nature and how it has found
its way into modern technology and Al. Section III suggests
how traditional ANN architectures may be made more robust,
i.e., more fault tolerant. These proposals are put to the test in
Section IV and Section V. Section VI provides a discussion
and Section VII ends the paper with a summary.

II. ROBUSTNESS

This section intends to highlight, via a small number of
examples, how robustness, as it is found in nature, appears in
modern technology and Al. The observation that robustness
appears on different scales and levels of complexity may be
used as a starting point. For example, a single biological
organism or a collective of biological organisms may show
various types of robustness. A single biological organism may
be called robust if it can recover from injury. For example, in
case of a minor injury such as a cut on the skin, for instance,
an animal may recover by growing a new layer of skin over
a wound. On the other hand, a group of biological organisms
may be called robust for different reasons. The collective may
be called robust if the larger goals pursued by the collective
remains intact or is able to recover from error. Typical exam-
ples include ant colonies or bee swarms, for instance. These

collectives may still be functioning as a whole even though a
number of ants or bees may loose their lives, for example, due
to natural disaster or intrusion of natural foes. An interesting
aspect in this regard may be the loss of the queen in a colony.
In this case, the damage to the colony can be substantial. Very
recently, this proneness to loss of key components in complex
networks has raised considerable interest in various areas of
modern technology. Network theory, for example, involves the
study of so-called random networks and scale-free networks
[1]. For random networks, theory expects a normal distribution
between nodes and the number of connections between nodes.
Basically, most nodes have an average number of connections
and significant deviations from this average number are rare.
On the other hand, for scale-free networks major findings
show that the majority of nodes has a small number of links
only and a small minority of nodes has a huge number of
links. These differences in network topology influence the
dynamic behavior of a network. For example, compared to
random networks scale-free networks seem to be remarkable
resistant or robust to accidental failures. On the flip-side, they
seem to be extremely vulnerable to coordinated attacks. This
behavior bears similarities to the dynamic of collectives of bi-
ological organisms described earlier. Another example, linking
robustness in nature and technology quite well, is the field of
information and coding theory. In nature, the genetic code was
assumed to maximize efficiency and information density for
some time. Nowadays the code is investigated from the point
of view of providing maximum fault-tolerance or robustness
[5]. Analogous, in order to make telecommunication systems
fault tolerant hence robust, telecommunication technology
applies error detection and error correction codes to confirm or
protect information transmitted over communication channels
[8]. Robustness has found its way into Al in various ways
too. Genetic algorithms, for example, generate solutions to
a problem from a pool of potential and similar, but usually
not identical candidate solutions. If one of these candidate
solutions is extremely poor a genetic algorithm may still
produce an acceptable solution in the end. Genetic algorithm
are also quite robust to variations in the number of potential
solutions in a population. A few candidates more or less
in a population usually does not affect the problem-solving
potential of an application. There are many more examples,
particularly amongst soft computing techniques. For instance,
Schuster [11] identified robust behavior in various components
of a robot control system. The components concerned include
a fuzzy logic control unit, a genetic algorithm component, and
a component that uses concepts derived from chaos theory.
Without going into these techniques here, it is sensible to
mention that robustness can be particularly important in safety
critical situations or in environments that are characterized by
limited human oversight. The National Space Administration

2148

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:2, No:6, 2008

(NASA), for example, is aware of these considerations and
puts robustness high on its agenda when designing system
architectures for unmanned autonomous space flight systems
that must complete missions with limited human control [4].
It is also important to mention that more recently robustness
has risen to considerable status in the relatively young field
of so-called “New AI” [3]. Of course, New Al is closely
related to traditional Al and it goes without saying that the
two can not be discussed in total separation from each other.
The two may be separated by saying that traditional AI
investigates intelligence and cognition from an algorithmic,
computational point of view, whereas New Al investigates
intelligence from the viewpoint of a creative interplay between
one or more entities, so-called agents, and a complex, real
world environment [10]. For example, chess and checkers are
typical classical Al domains, whereas a project in New Al
may involve a humanoid robot roaming around in a conference
center assisting conference delegates. The key assumption is
that robustness is directly related to the complexity of the
environment in which an agent has to function. The more
complex the environment, the higher the demands in terms of
robustness for an agent one might say. Finally, in an Al context
one thinks of software systems of course, and so, it is possible
to be inclined to think about robust software. This is fine,
but it is necessary to be careful. The literature and a wealth
of real-life experience tell us that robustness is a problem in
almost all large-scale software development projects [6]. The
majority of these projects however do not contain any Al at all.
Crudely, this instance of robustness may be seen as a “software
engineering” problem. Al systems provide an additional layer
of complexity on top of this. Consequently, making Al systems
fault tolerant or robust increases the challenge significantly.

III. ROBUST ARTIFICIAL NEURAL NETWORKS

Figure 1 provides a starting point. Figure 1 illustrates a com-
mon, traditional ANN architecture with one input layer, one
hidden layer, and one output layer. The network has five input
neurons (attributes a; to a4, plus a bias), six neurons in the
hidden layer, and three output neurons (01 to o3). This paper
introduces various basic network architectures. Throughout,
the paper refers to a traditional ANN architecture, such as the
architecture in Figure 1, for example, as architecture “Ag”.

From a higher level view the network in Figure 1 represents
a domain. Attribute values on the input layer represent a
question in this domain, and the output represents an answer
generated by the network for a particular input. The question
this work is interested in here is: “How robust is this network?”
To answer this question imagine the following. ANNs are often
regarded as simplistic models of biological brains. Assume
now, that the network in Figure 1 is part of a biological brain.
Based on this assumption one may be curious about what
happens in a situation where one or more signals arriving at
the input layer are lost (e.g., due to injury) and also, whether
there are mechanisms to compensate any detrimental effects.
One may assume, and rightly so, that in case of errors the
decision making capacity of the network declines. How much,
may depend on the severity of an error (defect, injury, loss).

Hidden Layer
Output

]
\%ft;f«"m
7%

£ ‘gg‘gb "x
Y

ol

bias

Fig. 1. A traditional ANN with network architecture type “Ao”. The question
is: “How robust is this network?”

In extreme cases, the network may deteriorate to a state where
it is entirely useless. This study focuses on these aspects.
The forthcoming sections present various solutions that have
the potential to handle — to some degree — the type of error
just mentioned. These solutions are not meant to outperform
traditional networks (e.g., Figure 1) in terms of classification
quality. The aim is to produce more robust networks, networks
that can deal with the type or error mentioned before to some
degree. This also means that this study is not so interested in
common, potential sources for errors in ANNSs, such as size of
training sets and testing sets, learning rates, etc. These topics
have been dealt with in the literature extensively (see [9], for
example), and this study feels that its aims are fundamentally
different from these. However, another aim of this study
is to produce models bearing some resemblance to natural,
biological neuronal networks.

A. Robust Network Architecture 1

The goal is to propose and test novel, robust ANN architec-
tures. Essentially, the proposal involves two architectures. Both
architectures are inspired by the observation that many natural,
biological systems employ a safety in numbers (redundancy)
strategy for handling errors. For example, an earlier section
mentioned ant colonies and bee swarms where the global goal
of a colony or a swarm remains intact even in cases where
several members of a collective may die due to intrusion
of foes or natural disaster, for example. The strategy also
features in several human senses. For example, the human
skin contains a considerable number of temperature sensors
distributed over it. In case some of these sensors are destroyed,
maybe through a minor injury, it is still possible for a person
to sense temperature to a reasonably good degree. Figure
2, which represents one of the approaches investigated in
this work, illustrates the application of the safety in numbers
(redundancy) aspect just mentioned quite well.

For example, related to Figure 2 it is possible to think of
a human skin. The input layer in Figure 2 may correspond to
the skin surface with a large number of temperature sensitive
nerve cells, and where nearby neurons may receive similar (in
Figure 2 identical) signals. The hidden and output layer may

2149

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

Hidden Layer

Fig. 2. Network architecture type “A1”. The network has a robustness factor
of R Al = 1

be part of a larger nervous system where signals are processed
and interpreted.

In any case, a comparison between the network in Figure
2 and the network in Figure 1 reveals the following. Both
networks have the usual three layers. The network in Figure
2 has two additional neurons in the hidden layer and also one
additional copy of all input attributes (a; to a4) in its input
layer. The bias is not duplicated. The reason for this is that
a bias is usually set to a constant input (e.g., the value 1.0),
and so, it is possible to look at a bias as a pre-set network
architecture component rather than as an external, variable
input signal. Of course, the bias may have been duplicated too,
but this choice, as several others, is a result of the experimental
character of this study. Actually, this experimental, trial and
error character is typical for many ANN studies.

Anyway, with regard to this study, a network architecture
similar to that illustrated in Figure 2 is referred to as archi-
tecture “A;”. When such an architecture is used, the number
of copies of a complete set of input values (excluding bias)
is referred to as the robustness factor “R4;” of the system.
Based on this convention, the network in Figure 2 has R4; =
1, and the traditional network in Figure 1 has R4 = 0.

B. Robust Network Architecture 2

Figure 3 illustrates the second approach investigated in this
work. Similar to the first approach, this approach features the
safety in numbers strategy for error handling or robustness too.

The network in Figure 3 is quite similar to the traditional
network in Figure 1. For example, input layer, hidden layer,
and output layer are identical in both networks. The main
difference in Figure 3 is the additional layer L™ in front of
the original input layer. This additional layer includes several
copies of the original input attributes. For example, in Figure 3
an input neuron (e.g., nl) in the original input layer receives

Hidden Layer

N
N3 NYAK
X

A‘\§ 41‘0
N

\ A
\,/

ERAXS
R
TN
JXIX
XN

N\

Fig. 3. Network architecture type “As”. The network has a robustness factor
of Rpo =4

/
/< Additional
S~ Layer (L)

the original input value al plus k = 4 additional copies of
al. Note that the bias is not duplicated again. In terms of
processing the following happens. For every attribute (e.g.,
al) the value arriving at a neuron in the original input layer
(e.g., nl) is calculated by taking the average of the sum of
the £ + 1 attribute values arriving on layer L. For example,
imagine an attribute value of al = 0.240 in Figure 3, and
where k = 4. In this case, the value arriving on n1 calculates
to: (k’ﬁ?j%ﬂo = 520.240 = (.240. The example indicates that
in the absence of error the network in Figure 3 behaves like
the network in Figure 1. In case of error however, there are
differences. For example, imagine two of the five al inputs in
layer L in Figure 3 receiving an erroneous value of “0.0”. In
this case, taking the value al = 0.240 again, the value arriving
on nl amounts to (kH;i_)fO'MO = 30240 = (144,

Here, a network architecture similar to that illustrated in
Figure 3 is referred to as architecture “A,”, and the number of
“additional” copies for a particular input variable (excluding
bias) as the robustness factor “R 42" of the system, respec-
tively. Based on this convention, the network in Figure 3 has
R 42 =4, and the original network in Figure 1 has R 42 = 0.

IV. DATA AND TESTING PROCEDURES

The aim is to compare network architectures A, (Figure
1), A; (Figure 2) and Ay (Figure 3) in terms of robustness.
This section outlines the experimental setup and other details
behind the various studies undertaken in this work.

Test Data: All studies use Fisher’s Iris Plant data set'.
This data set is well-known in the research community.
It contains 150 records. Each record is described by four
attributes (sepal length, sepal width, petal length, and petal
width) of one of three iris classes (Iris-setosa, Iris-versicolor,
and Iris-virginica). Every class contains 50 records. One class
is linearly separable from the other two classes, but the other
two classes are not linearly separable from each other.

'Source: Blake C.L., and Merz C.J.: UCI Repository Of Machine
Learning Databases, University of California, Irvine, Dept. of Information
and Computer Sciences, 1998, http://www.ics.uci.edu/~mlearn/
MLRepository.html.

2150

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

General Testing Procedures: There are three main studies:
Study-0, Study-1, and Study-2. Study-0 investigates archi-
tecture Ay, Study-1 applies architecture A;, and Study-2
concentrates on architecture As. Each study contains sev-
eral tests. Every test uses an ANN with one of the three
main architectures underlaying. In a test a network is trained
and tested according to the well-established “leave-one-out
cross-validation” procedure. In leave-one-out cross-validation
a network is trained with all records in a data set excluding
“one” record (here, 150 — 1 = 149 records). In network
training, a single, sequential presentation of all 149 records to
a network is called an “epoch”. All networks are trained over
200 epochs. After training, the record left out in the training
process is tested for classification. Classification uses standard
ANN procedures such as binary representation for classes, and
thresholds for class membership, for example. This process is
conducted for every record in the data set, and the complete
procedure just explained is called a “cycle”. In order to avoid
one-off outcomes, results are averaged in every study over
100 cycles. Consequently, results generated in a single test
correspond to: 100 cycles * 150 records = 15000 individual
classification tests.

Strategy: Initially error-free networks are tested, and then
networks with increasing, artificially induced error rates. For
example, all tests train a network with 150 - 1 = 149 original,
always error-free Iris Plant records. A trained network is tested
on one record, the record left out in the training process.
In an error-free test this record is unchanged. For example,
one of the Iris Plant records has the following set of values
{0.222, 0.624, 0.067, 0.041}. These values are normalized in
the interval [0, 1], which is typical for ANN applications. In
an error-free test a network tests this record for classification.
In contrast, tests involving erroneous data model an error
in two ways. One approach models a “systematic” error by
replacing one or more values in a record with the value
“0.0”. A second approach creates a “random” error by always
replacing one or more values in a record with a value drawn
from the interval [0, 1]. A random selection procedure decides
in both approaches which values in a record are affected by
an error. For example, a single, systematic error may replace
the second value in the aforementioned record with the value
0.0, producing the erroneous record {0.222, 0.0, 0.067, 0.041}.
Here, the error affects one of four values, which is equivalent
to an error rate of 25%. Finally, because of the special demands
of the various ANN architectures, all programs in this study
are hand-coded using the commercial Delphi programming
software.

V. RESULTS

The forthcoming sections present results for Study-0, Study-
1, and Study-2.

A. Results Study-0

Study-O examines the robustness of the traditional ANN
in Figure 1. Study-0 creates errors of 0%, 25%, 50%, 75%
and 100%, affecting 0, 1, 2, 3, or all 4 values in a record,

Robustness (Architecture A0)

@ R(A0)=0 (sys)
@ R(A0)=0 (rd)

Correct classifications in %

0 25 50 75 100
Artificially induced error in %

Fig. 4. Performance graph for the traditional network in Figure 1. A single
dot represents 15000 individual tests

respectively (the bias is never affected). Table I and Figure 4
illustrate how the network copes with these errors.

Table I and Figure 4 illustrate that the error-free network
classifies around 91% of all test records correctly (90.9%
systematic error and 90.7% random error). The reliability of
these results was verified by applying the commercial data
mining tool DataEngine V.2.0 to the same problem. It was
found that the results generated by the tool are in line with
the results in this paper. Overall, Figure 4 illustrates that the
network performance decreases with increasing error rates. For
example, a systematic error of 25%, which corresponds to
always setting one of the four values in a test record to the
value 0.0, brings classification correctness down from 90.9%
to 47.7%, which is a significant drop. Note that the expression
(1) next to the value 47.7% in Table I indicates that one of
four values (i.e., 25%) in a test record was affected by an error.
In contrast, a random error of the same magnitude reduces
classification correctness down to 59.5%, which is a quite
significant drop of more than 30%. For maxim error (100%)
both types of error converge towards values in the lower 20%
range.

The main observation for Study-O is that a traditional
network architecture can be quite vulnerable to error. Even an
error affecting a single input neuron only, may impact network
performance severely. Study-0 also indicates that there may be
differences between systematic errors and random errors. The
network seems to react better to random errors rather than
to systematic errors. The forthcoming sections query whether
network architectures A; and Ay can do better than this.

B. Results Study-1

Before the start of this analysis consider the expected
outcome in this study. Study-0 found that network performance
breaks down quite significantly around the 25% error region
(see Figure 4). For errors larger than this it is possible to
label the network unreliable. Consequently, two things may
be expected from Study-1. First, compared to the traditional
network in Study-0, the network in Study-1 should react more
positively (robust) to errors in general. Second, a positive

2151

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

TABLE I
STUDY-0 RESULTS. Ag = UNDERLYING NETWORK ARCHITECTURE (FIGURE 1); I, H, O = NEURONS IN INPUT, HIDDEN, OUTPUT LAYER; R 49 =

ROBUSTNESS FACTOR, SYSTEMATIC AND RANDOM ERROR

Ap Error [%]
Rao LHO 0.0 25.0 50.0 75.0 100.0
0, Systematic 5,6,3 909 (0) | 47.7 (1) | 346 (2) | 26.7(3) | 224 (4)
0, Random 5,6,3 90.7 (0) | 595(1) | 39.7(2) | 279 (3) | 204 (4)

reaction for errors up to the 25% mark is particularly welcome.
Larger errors are considered as quite severe again, in which
case the network can not be trusted again.

The paper now refers to the results for network architecture
Aj in Study-1, which are given in Table II, Figure 5, and Fig-
ure 6. Note that the data provided here is a subset of the data
generated overall. This data therefor stands representatively for
the presented work. Table II holds results for architecture A;
networks, robustness factors R4; of 1 and 5, and systematic
errors and random errors. Figure 5 and Figure 6 split the data
in Table II. Figure 5 illustrates the results for systematic errors
and Figure 6 those for random errors only. For clarity, both
figures connect data points via help-lines. To ease comparison,
the figures also include the so-called “base lines” Ra9 = 0
(sys) and R 49 = 0 (rd) from Figure 4 (dotted lines).

Figure 5 illustrates that even the smallest robustness factor,
Ra1 = 1 (sys), immediately contributes to classification
correctness. Up to the 50% mark, R4; = 1 (sys) is always
clearly above base line R40 = 0 (sys). In the same region,
R 41 = 5 (sys) dominates the base line even more clearly.

Robustness Study 1 (Architecture Al)

& R0 (sp)
—a—R(AL)=1 (sy5)
—a—R(AL)=5 (sy5)

Correct classifications [%]

Artificially induced error (systematic) [%]

Fig. 5. Study-1 performance graph; systematic error

An general observation is a significant performance im-
provement associated with robustness factor R4; = 5 (sys)
in the 25% range. For example, for an error of 25%, R41 = 5
(sys) improves performance by 20% from 47.7% to 67.7%.
For a 12.5% error the network does even better, achieving
83.3%, which is relatively close to the error-free 90.9% in
Study-0. Here it is important to mention that in Study-1, for
R a1 =5 (sys), a 12.5% error affects 3 of 24 inputs (see Table
ID). This is important, because in Study-0 an error affecting
three inputs is equivalent to an error-rate of 75%. This study
therefore identifies a second, very important concept related

to robustness, namely the concept of “granularity”. Figure 6
illustrates similar results for random errors.

Robustness Study 1 (Architecture Al)

-4+ R(A0)=0 (1d)
——RAL-1 ()
—a—R(ALS (id)

Correct classifications [%]

Avtificially induced error (random) [%]

Fig. 6. Study-1 performance graph; random error

For example, Figure 6 illustrates immediate improvement
for R41 = 1 (rd). In the critical 25% error range R 41 = 5 (rd)
indicates the desired, significant performance improvement.
For example, for an error-rate of 25%, R 41 = 5 (rd) improves
performance by 17.7% from 59.5% to 77.2%. For 12.5% error
the network achieves 86.9%, which is quite close to the error-
free 90.7% in Study-0.

The main findings in Study-1 are as follows. Study-1
indicates differences between systematic errors and random
errors again. The network seems to react better to random
errors rather than to systematic errors. The most important
finding however is that the approach behind Study-1 leads to
significant performance improvements and hence significantly
more robust networks in general. This is an important finding!

C. Results Study-2

Table III, Figure 7, and Figure 8 illustrate results for Study-
2. Table III holds results for architecture A, networks, robust-
ness factors R 45 of 1, 10, and 100, and systematic and random
errors. Figure 7 and Figure 8 illustrate a subset only of the
Table III data. Both figures contain their corresponding base
line (dotted lines) from Figure 4. Data points are connected
by help-lines again.

In many ways Study-2 repeats the findings in Study-1. For
example, Figure 7 illustrates the immediate, positive impact
on classification correctness provided by a robustness factor
of one, i.e., Ra2 =1 (sys).

Larger robustness factors lift performance up to even higher
values. For example, for a systematic error of 25%, R 42 = 100

2152

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

TABLE 11
STUDY-1 RESULTS. A1 = UNDERLYING NETWORK ARCHITECTURE (FIGURE 2); I, H, O = NEURONS IN INPUT, HIDDEN, OUTPUT LAYER; R A1 =

ROBUSTNESS FACTOR, SYSTEMATIC AND RANDOM ERROR

Ay Error in % and neurons affected
Ra1 1 H O 0.0 12.5 25.0 375 50.0 62.5 75.0 87.5 100.0
1, Systematic 9 11 3 924 (0) | 71.8(1) | 57.8 (2) | 49.6 3) 40.4 (4) 32.9 (5) 25.7 (6) 21.1 (7) 18.4 (8)
5, Systematic | 25 27 3 90.7(0) 833 (3) | 67.7(6) | 51.6(9) | 382 (12) | 262 (15) | 229 (18) | 19.6 (21) 15.9 (24)
1, Random 9 11 3 924 (0) | 79.6 (1) | 66.4(2) | 55.0(3) 44.2 (4) 36.0 (5) 29.5 (6) 254 (7) 20.5 (8)
5, Random 25 27 3 90.7 (0) | 86.9(3) | 77.2(6) | 645 (9) | 49.2(12) | 382 (15) | 30.3 (18) | 259 (21) | 229 (24)
TABLE III

STUDY-2 RESULTS. Ao = UNDERLYING NETWORK ARCHITECTURE (FIGURE 3); I, H, O = NEURONS IN INPUT, HIDDEN, OUTPUT LAYER; R0 =
ROBUSTNESS FACTOR, SYSTEMATIC AND RANDOM ERROR

Ag Error in % and neurons affected

Ra2 H O 0.0 12.5 25.0 375 50.0 62.5 75.0 87.5 100.0

1, Systematic 9 6 3 90.9 (0) 70.0 (1) 56.6 (2) 494 (3) 41.6 (4) 34.4 (5) 27.1 (6) 23.7 (7) 22.5 (8)
10, Systematic 45 6 3 90.9 (0) 80.4 (6) 674 (11) 53.9 (16) 404 (22) 31.7 (28) 27.5 (33) 25.5 (38) 22.4 (44)
100, Systematic | 405 6 3 90.9 (0) | 83.9(50) | 67.2 (101) | 53.3(152) | 38.3(202) | 31.7 (252) | 29.2 (303) | 25.8 (354) | 22.5 (404)
1, Random 9 6 3 90.4 (0) 77.3 (1) 64.4 (2) 52.3 (3) 43.1 (4) 34.5 (5) 28.5 (6) 23.9 (7) 20.7 (8)
10, Random 45 6 3 90.5 (0) 85.7 (6) 75.3 (11) 60.2 (16) 444 (22) 35.2 (28) 31.7 (33) 30.3 (38) 29.1 (44)
100, Random 405 6 3 90.6 (0) | 88.6 (50) | 80.2 (101) | 60.0 (152) | 41.2(202) | 33.7 (252) | 33.1 (303) | 33.1 (354) | 33.0 (404)

Robustness Study 2 (Architecture A2)

++@-- R(AD)=0 (sy5)
—A—R(A2)=1(sys)
—B—R(A)=100 (sy5)

Correct classifications [%]

Artificially induced error (systematic) [%4

Robustness Study 2 (Architecture A2)

<-4+ R(A0)=0 (1d)
—4—R(A)=1 (1))
— = R(A=100 (d)

Correct classifications [%]

0 10 20 30 40 50 60 70 80 90 100

Artificially induced error (random) [%]

Fig. 7. Study-2 performance graph; systematic error

(sys) lifts classification correctness by 19.5% from 47.7%
to 67.2%. For a systematic error of 12.5%, classification
correctness goes up to 83.9%, which is not too far away from
the 90.9% in the error-free network in Study-0. As in the
previous studies, Study-2 also reveals a difference in behavior
between systematic errors and random errors. Table III and
Figure 8 illustrate that Ay networks seem to cope better with
random errors again.

For example, for a random error of 25%, R 42 = 100 (rd)
improves classification correctness by 20.7% from 59.5% to
80.2%. For a random error of 12.5%, classification correctness
goes up to 88.6%, which is really close now to the 90.7% in
the error-free network in Study-O0.

A summary for Study-2 is similar to the findings in Study-1.
There are differences between systematic errors and random
errors, and the network seems to react better to random errors
again. The most important finding in Study-2 is that the
approach behind the study leads to significant performance

Fig. 8. Study-2 performance graph; random error

improvements and hence significantly more robust networks.

VI. DISCUSSION

The results in this paper are quite positive overall. They
indicate that, for particular errors, it is possible to significantly
increase the robustness of traditional ANN architectures. The
work presented in the paper shows that this gain in perfor-
mance is due to specific network topologies. These topologies
are inspired by design principles found in nature, a finding
which is crucial for this work. The paper identifies two major
design principles at work; “redundancy” is the obvious one,
but there is also “granularity”. The two principles seem to
stand in an inverse relationship. For example, a character-
istic of Study-1 are relatively small robustness factors (low
redundancy), but the study involves larger networks (high
granularity) to train. Study-2, on the other hand, always uses
the basic network structure in Figure 1 (low granularity), and
seems to attain its robustness via the many (high redundancy)

2153

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

additional copies of its input values. The redundancy versus
granularity interplay is not a new discovery. It can be found in
many shapes in biology, but also in technology. An example in
biology may be a pride of lions and an ant colony. Lions are
larger (granularity) beasts than ants, but an ant colony contains
many more individuals (redundancy). The interplay between
granularity and redundancy however makes both groups robust
in the sense of survival, and so, the granularity-redundancy
interplay may be viewed as a survival strategy. An analogous
example in technology is software design, which is an area
where other, related terms such as “high cohesion” and “low
coupling” also play important roles [7]. It may be important
again to emphasize the difference in which robust topologies
accommodate minor errors. In the traditional network the
smallest possible error, the failing of one single input, already
represents an absolute error of 25.0%. Alternatively, for Study-
2 As topologies with robustness factors of 100, failure of one
single neuron represents an absolute error of about one percent
only. From this perspective, it is worthwhile mentioning that
the presented work addresses the IT philosophy of “graceful
degradation” [2]. For instance, compared to traditional ANN
architectures, robust ANNs behave more stable in case of
minor errors and degrade more gracefully when larger errors
occur. Finally, despite an awareness that the presented study
is specific, it is fair to suggest that the work has some general
value for Al. For example, autonomic computing, ambient
computing, and pervasive computing all entertain the analogy
between (hugely complex) intelligent systems equipped with
a multitude of sensors, actuators, etc. and biological brains.
With some imagination it may be possible to view the ANNs
in the various studies as mini brains (systems) where each
attribute going into an ANN may be a sensor reading. The
presented work contributes to the robustness of such systems,
but how the approach extrapolates to larger systems is an open
question at this stage.

VII. SUMMARY

This paper investigated robustness as it is found in nature as
a design principle for Al. The paper provided a discussion on
robustness as it is found in nature and highlighted how robust-
ness appears in modern technology and AI. The paper then
studied the robustness of several novel ANN architectures.
When compared to traditional ANN topologies the paper found
that these novel topologies can be significantly more robust. A
discussion reflected on the presented work in a wider context.
Current work studies robustness more comprehensively in
other Al areas.

REFERENCES

[1] A.L. Barabdsi and E. Bonabeau, “Scale-free networks,” Scientific Amer-

ican, vol. 288, pp. 55-59, May 2003.

P. Bentley, “Investigations into graceful degradation of evolutionary

developmental software,” Natural Computing, vol. 4, pp. 417-437, 2005.

[3] H. Brighton and H. Selina, Introducing Artificial Intelligence. Icon Books
UK, 2003.

[4] D. Dvorak, G. Bollella, T. Canham, V. Carson, V. Champlin, B. Gio-
vannoni, M. Indictor, K. Meyer, A. Murray, and K. Reinholtz, “Project
golden gate: Towards real-time Java in space missions,” in Proc. Tt"
IEEFE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2004), IEEE Computer Society, Vienna, Austria,
2004, pp. 15-22.

[2

[5] B. Hayes, “Ode to the code,” American Scientist, vol. 92, pp. 494-498,
November-December 2004.

[6] M.N. Huhns and V.T. Holderfield, “Robust software,” IEEE Internet
Computing, vol. 6:2, pp. 80-82, March-April 2002.

[7] D. Jackson, “Dependable software by design,” Scientific American, vol.
294, pp. 58-65, June 2006.

[8] G.A. Jones and M.J. Jones, Information and Coding Theory. Springer
Verlag London, 2000.

[9] K. Mehrotra, C.K. Monan, S. and Ranka, Elements of Artificial Neural
Networks. The MIT Press, 1997.

[10] R. Pfeifer, “Embodied artificial intelligence: trends and challenges,”
in Embodied Artificial Intelligence, Lecture Notes in Computer Science
LNCS, vol. 3139, F. Iida, R. Pfeifer, L. Steels, and Y. Kuniyoshi, Eds.
Springer-Verlag Berlin, Heidelberg, New York, 2003, pp. 1-26.

[11] A. Schuster, “A hybrid robot control system based on soft computing
techniques,” in Advances in Applied Artificial Intelligence, Lecture Notes
in Artificial Intelligence LNALI vol. 4031, A. Moonis and D. Richard Eds.
Springer Verlag, Berlin, Heidelberg, New York, 2006, pp. 187-196.

Alfons Schuster is a Lecturer in the School of Computing and Mathematics
at the University of Ulster at Jordanstown, in Northern Ireland. He was
awarded a DPhil in Computer Science from the University of Ulster in 1998,
and a BSc in Applied Physics from Munich University of Applied Sciences
in Munich, Germany, in 1990. He has worked in industry for several years
as an engineer. His research concerns artificial intelligence, robotics, soft
computing, theory of computing, and natural computing. He has published
43 research papers in these areas.

2154

