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Abstract—Fourier transform infrared (FT-IR) spectroscopic imag-
ing is an emerging technique that provides both chemically and
spatially resolved information. The rich chemical content of data
may be utilized for computer-aided determinations of structure and
pathologic state (cancer diagnosis) in histological tissue sections for
prostate cancer. FT-IR spectroscopic imaging of prostate tissue has
shown that tissue type (histological) classification can be performed to
a high degree of accuracy [1] and cancer diagnosis can be performed
with an accuracy of about 80% [2] on a microscopic (≈ 6μm)
length scale. In performing these analyses, it has been observed
that there is large variability (more than 60%) between spectra from
different points on tissue that is expected to consist of the same
essential chemical constituents. Spectra at the edges of tissues are
characteristically and consistently different from chemically similar
tissue in the middle of the same sample. Here, we explain these
differences using a rigorous electromagnetic model for light-sample
interaction. Spectra from FT-IR spectroscopic imaging of chemically
heterogeneous samples are different from bulk spectra of individual
chemical constituents of the sample. This is because spectra not
only depend on chemistry, but also on the shape of the sample.
Using coupled wave analysis, we characterize and quantify the nature
of spectral distortions at the edges of tissues. Furthermore, we
present a method of performing histological classification of tissue
samples. Since the mid-infrared spectrum is typically assumed to
be a quantitative measure of chemical composition, classification
results can vary widely due to spectral distortions. However, we
demonstrate that the selection of localized metrics based on chemical
information can make our data robust to the spectral distortions
caused by scattering at the tissue boundary.
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I. INTRODUCTION

Mid-infrared spectroscopy has been used extensively to
measure the chemical composition of specimens [3]. The
vibrational modes of molecules resonate with incident light
at specific frequencies and a pattern of absorption can be
created by analyzing the response of the specimen at a range
of infrared frequencies. These vibrational modes are char-
acteristic of the chemical composition and the mid-infrared
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spectrum of absorption is hypothesized to contain information
that will allow the determination of cell type and disease
state of the tissue. Combining infrared microscopy with FT-IR
spectroscopy is a relatively recent development and has led to
the emergence of FT-IR spectroscopic imaging.[4]

Data acquired from FT-IR spectroscopic imaging can be
represented as a three dimensional cube where the x − y
plane corresponds to images similar to those from an optical
microscope, with the z axis containing the infrared spectrum
of the specimen under consideration. Therefore, we know the
mid-infrared spectrum at every point in the x − y image
and this spectrum is processed to make inferences about the
image. There are a few important differences between FT-IR
spectroscopic imaging and conventional microscopy. Firstly,
no external dyes are needed and the contrast in images is
directly obtained from the chemical differences in tissue.
Secondly, each pixel in the visible image contains RGB values
but in IR imaging contains several thousand values across a
bandwidth (2000 to 14000nm) that is about 40 times larger
than the visible spectrum. This has potentially greater informa-
tion compared to microscopy and extracting this information
is a subject of current research.

Prostate cancer is among the leading causes of cancer-
related deaths among men in the United States. The challenge
in cancer research and practice is to provide accurate, objective
and reproducible decisions. In both cases, conventional optical
microscopy followed by manual examination and recognition
based on morphology has been demonstrated to be inadequate
for this task.[2] One recent development in this field is the use
of FT-IR spectroscopic imaging which uses chemical, rather
than morphologic information for diagnosis.[2]

A fundamental assumption in mid-infrared spectroscopy has
been that the measured spectrum is a function of the chemical
composition alone. This assumption is justified in the analysis
of homogeneous samples consisting of a single molecular
species. However, the assumption breaks down in spatially
heterogeneous, chemically diverse samples, like for example
in human tissue. Spectroscopic imaging provides spatially
resolved spectra and is useful primarily in samples where
there is a non-uniform spatial distribution of chemical species.
Therefore, it is important to understand the relation between
the chemical composition of a sample, the spatial distribution
of chemical species in that sample and the recorded data.
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This understanding is vital to the interpretation of spectra
from mid-infrared spectroscopic imaging. In this work, we
use a rigorous electromagnetic model based on coupled wave
analysis to understand the relation between spectra, chemistry,
and the shapes of samples. This general approach has been
used previously in other problems [5] but has only recently
been applied to microspectroscopy.[6], [7], [8] It has been
empirically observed that spectra from the edges of tissues
are characteristically distorted from chemically similar tissue
in the middle of the same sample. We apply this model to the
analysis of epithelial prostate tissue and explain these spectral
differences using our model.

We then perform classification of tissue samples and demon-
strate that a first-order piecewise-linear correction combined
with the selection of robust spectral features can be used
to successfully classify tissue types despite these spectral
distortions. The tissue type identification and cancer diagnosis
are essentially classification problems. Here, the classification
problem has been formulated as a supervised learning problem
in which several million pixels of accurately labeled data are
available for model training and validation.

II. THEORETICAL MODEL

The general optical setup for the spectroscopic imaging
system working in transmission mode is shown in figure 1.
Cassegrain 1 focuses infrared light on to the sample and light
emerging for the opposite end of the sample is collected by
cassegrain 2. The sample is assumed to be a linear system
consisting of multiple layers of varying (complex) refractive
indices. We separate the problem into the transition between
pairs of homogeneous layers and transition between homoge-
neous and heterogeneous layers.

For homogeneous layers’ interface, since the system is
linear, the electromagnetic field can be described as consist-
ing of a linear combination of plane waves each of which
satisfy Maxwell’s equations at the boundaries. We identify
the response of the system to a single plane wave and finally
obtain the total response as a sum of each of these individual
responses. The electric (E) and magnetic (H) fields at a
position r = (x, y, z)T are represented by their complex
amplitudes. The permittivity and permeability of free space
are denoted by ε0 and μ0 respectively. The real and imaginary
parts (n(ν̄) and k(ν̄)) of the refractive index of each layer can
vary with ν̄, the free space wavenumber. Each plane wave can
be described by Eqn.1

E(r, ν̄, t) = E0 exp(i2πν̄s.r) (1)

H(r, ν̄, t) =

√
ε0
μ0

(s × E0) exp(i2πν̄s.r) (2)

where s = (sx, sy, sz)
T

s2x + s2y + s2z = ε(ν̄) = [n(ν̄) + ik(ν̄)]2 (3)

The temporal dependance of the fields is not explicitly stated
here for convenience. In each layer, the electric field can be
decomposed into a sum of plane waves (angular spectrum)
via the Fourier transform. The field in the mth layer between

Fig. 1. General instrument setup for transmission mode spectroscopic
imaging

z(m−1) and z(m) is given by

E(m)(x, y, z, ν̄) = ν̄

∫ ∫
dsxdsy exp{i2πν̄(sxx+ syy)}

[ B(m)(sx, sy, ν̄) exp{i2πν̄s(m)
z (z − z(m−1))}

+ B̂(m)(sx, sy, ν̄) exp{−i2πν̄s(m)
z (z − z(m))}] (4)

where s
(m)
z =

√
[n(m)(ν̄) + ik(m)(ν̄)]2 − s2x − s2y . The

boundary conditions that relate the fields at the top and bottom
of a boundary are governed by Maxwell’s equations. Using
Gauss’ Law for electricity, ∇ · E(r, ν̄) = 0 we obtain

sxB
(m)
x (sx, sy, ν̄) + syB

(m)
y (sx, sy, ν̄)

+ szB
(m)
z (sx, sy, ν̄) = 0 (5)

sxB̂
(m)
x (sx, sy, ν̄) + syB̂

(m)
y (sx, sy, ν̄)

− szB̂
(m)
z (sx, sy, ν̄) = 0 (6)

Faraday’s law and Ampere’s law would require that the
transverse components of the electric and magnetic field must
be continuous. Consequently,

B(m)
x exp(i2πν̄s(m)

z (z − z(m−1))}) + B̂(m)
x =

B(m+1)
x + B̂(m+1)

x exp(−i2πν̄s(m+1)
z (z − z(m+1))}) (7)

B(m)
y exp(i2πν̄s(m)

z (z − z(m−1))}) + B̂(m)
y =

B(m+1)
y + B̂(m+1)

y exp(−i2πν̄s(m+1)
z (z − z(m+1))}) (8)

(syB
(m)
z − s(m)

z B(m)
y ) exp(i2πν̄s(m)

z (z − z(m−1))})
+ (syB̂

(m)
z − s(m)

z B̂(m)
y ) = (syB

(m+1)
z − s(m+1)

z B(m+1)
y )

+ (syB̂
(m+1)
z − s(m+1)

z B̂(m+1)
y )

× exp(−i2πν̄s(m+1)
z (z − z(m+1))}) (9)

(s(m)
z B(m)

x − sxB
(m)
z ) exp(i2πν̄s(m)

z (z − z(m−1))})
− (s(m)

z B̂(m)
x + sxB̂

(m)
z ) = (s(m+1)

z B(m+1)
x − sxB

(m+1)
z )

− (s(m)
z B̂(m+1)

x + sxB̂
(m+1)
z )

× exp(−i2πν̄s(m+1)
z (z − z(m+1))}) (10)

The field at the first layer is determined by the light incident
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from cassegrain 1. The light at the input end of the first
cassegrain can be assumed to be uniform and the light incident
on the sample is directly related to this input via the cassegrain
transfer function [9]. The field exiting from the last (Lth) layer
exits via cassegrain 2 and does not come back. Therefore,

B̂(L)
x (sx, sy, ν̄) = 0 = B̂(L)

y (sx, sy, ν̄) = B̂(L)
z (sx, sy, ν̄) (11)

The above set of equations completely describes the interaction
of the sample and light at the boundary of a pair of homoge-
neous layers. Knowing the refractive indices and thicknesses
of each layer would allow us to completely solve the system of
equations. Therefore, the electric and magnetic fields at every
point in the sample can be determined. The field on a detector
is a magnified version of the field exiting cassegrain 2 and the
total light intensity (I(ν̄)) at the detector is the square the field
on the detector.

Now consider a homogeneous-heterogeneous layer bound-
ary. The region of transverse heterogeneity is assumed to be of
finite area and therefore we can approximate the structure of
the object by its two dimensional Fourier series. Each layer is
characterized by its complex refractive index or equivalently
its permittivity (3). Truncating the Fourier series to a finite
number of coefficients gives

ε(x, y, ν̄) ≈
NU−1∑
p=−NU

NW−1∑
q=−NW

φp,q(ν̄) exp[i(pUx+ qWy)] (12)

The periodic nature of the sample implies that the spatial
frequencies after scattering are restricted to shifts from the
incident frequency by integer multiples of frequencies (con-
stants) U and W .

up = pU + δ (13)
wq = qW + σ (14)

Each component of the electric and magnetic field can be
written in a Fourier decomposition of the form

E(m)(x, y, z, ν̄) =
∑
p

∑
q

⎛
⎝

Xp,q(z, ν̄)
Yp,q(z, ν̄)
Zp,q(z, ν̄)

⎞
⎠

× exp[i(upx+ wqy)] (15)

H(m)(x, y, z, ν̄) =

√
ε0
μ0

∑
p

∑
q

⎛
⎝

Ip,q(z, ν̄)
Jp,q(z, ν̄)
Kp,q(z, ν̄)

⎞
⎠

× exp[i(upx+ wqy)] (16)

Maxwell’s equations relate E(x, y, z, ν̄) and H(x, y, z, ν̄) giv-
ing

∇× E(x, y, z, ν̄) = i2πν̄

√
μ0

ε0
H(x, y, z, ν̄) (17)

∇× H(x, y, z, ν̄) = −i2πν̄

√
ε0
μ0

ε(x, y, z, ν̄)E(x, y, z, ν̄) (18)

Expanding the above equations using Eqn.15 and Eqn.16

yields

dXp,q(z, ν̄)

dz
= i2πν̄Jp,q(z, ν̄) + iupZp,q(z, ν̄) (19)

dYp,q(z, ν̄)

dz
= −i2πν̄Ip,q(z, ν̄) + iwqZp,q(z, ν̄) (20)

dKp,q(z, ν̄)

dz
= 1/(i2πν̄)[upYp,q(z, ν̄)− wqXp,q(z, ν̄)] (21)

dIp,q(z, ν̄)

dz
= −i2πν̄

∑
p′,q′

φp−p′,q−q′(ν̄)Yp′,q′(z, ν̄)

+ iupKp,q(z, ν̄) (22)
dJp,q(z, ν̄)

dz
= i2πν̄

∑
p′,q′

φp−p′,q−q′(ν̄)Xp′,q′(z, ν̄)

+ iupKp,q(z, ν̄) (23)
dKp,q(z, ν̄)

dz
= −1/(i2πν̄)

∑
p′,q′

φp−p′,q−q′(ν̄)

× [up′Jp′,q′(z, ν̄)− wq′Ip′,q′(z, ν̄)] (24)

These equations can be organized in the form of a matrix
differential equation.

⎛
⎜⎜⎜⎝

dX(z,ν̄)
dz

dY (z,ν̄)
dz

dI(z,ν̄)
dz

dJ(z,ν̄)
dz

⎞
⎟⎟⎟⎠ = i2πν̄Δ

⎛
⎜⎜⎝

X(z, ν̄)
Y (z, ν̄)
I(z, ν̄)
J(z, ν̄)

⎞
⎟⎟⎠ (25)

The above above matrix equation couples the electric and
magnetic fields. We can decouple these equations by com-
puting the eigenvalues and eigenvectors of Δ = GΛG−1.
Consequently, we can find X(z, ν̄), Y (z, ν̄), I(z, ν̄), J(z, ν̄)
in terms of the eigenvalues and eigenvectors. Using boundary
conditions of the form in Eqns.7-10, we can find the fields
E(m)(x, y, z, ν̄) and H(m)(x, y, z, ν̄) in every layer m.

III. BAYESIAN CLASSIFICATION

Classification of tissue types based on spectral signature is
performed using a naive Bayes’ model. Biopsy samples in a
commercially-available tissue micro-array (TMA) are imaged
using a Perkin-Elmer Spotlight 300 mid-infrared imaging
system. Neighboring tissue sections are subjected to a panel of
histology stains in order to discern cell type. Spectra associated
with specific cell types are then labeled in the mid-infrared
image by an experienced pathologist, providing a significant
sampling of spectra representing ten different tissue types that
are important in prostate diagnosis. The epithelial cell type is
particularly important, since epithelial cells are the source of
most tumors that occur in the prostate. It is this cell type that
is considered in this paper.

After ground-truth spectra are identified, an experienced
spectroscopist identifies features in the spectra that can be used
to identify these unique classes. These features are selected
with a particular focus on making them robust to noise and
spectral distortions due to scattering. Each spectral feature is
based on two nearby baseline points that are assumed to have
zero absorbance due to chemistry. This baseline is used as a
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first-order correction to reduce the distortion in the absorbance
spectrum due to scattering. Selected features include (a) peak
ratios, (b) area under a peak, and (c) the center of gravity
under the spectrum between two points.

The posterior probability and prior probabilities are deter-
mined using the training set, which consists of a ground-truth
class and feature vector for each spectrum. This allows the
computation of the joint posterior probability p(C|x), which is
used to select the class for any input spectrum. This technique
has been demonstrated for mid-infrared classification in tissue
samples previously, [1] achieving an average area under the
receiver operating characteristic curve of 0.991 for epithelium.

IV. RESULTS

In this section, we simulate the distortions found at the
interface of epithelial tissue with air placed on a homogeneous
barium fluoride substrate. The raw absorbance spectrum for
epithelial tissue is derived from mid-infrared spectroscopic im-
ages far away from an interface that causes spectral distortions.
The imaginary component of the refractive index is derived
from this spectrum via Eqn. 26. Here ρ is the concentration
of the absorbing species and is taken to be unity since there
is only one species. The real part of refractive index is then
computed via Kramers-Kronig relations.

a(ν̄) = 4πνk(ν̄)/(2.303ρ) (26)

The specimen absorbance is computed at several intervals
on either side of the epithelium-air interface (Fig. 2). The
epithelial layer thickness is 10 μm and the barium fluoride
layer is assumed to be 2 mm. The complex refractive index
of epithelium is used to create a heterogeneous layer with an
edge at d = 0 and this heterogeneous layer is decomposed
into its Fourier series according to Eqn. 12. Twenty Fourier
coefficients were used to represent the edge and the shape of
this edge is as shown in Figure 2. It may be noted from Figure
2 that spectral distortions in the higher-wavenumber regions of
the spectra increase as the interface is approached from within
the epithelium tissue region. These distortions are significant
at edges and the absorbance values can vary as much as
60%. It is important to note that these spectral differences
are not because of chemical differences (since we have only
one absorbing chemical species, namely, epithelium), but
due to optical effects alone. In FT-IR imaging it has been
fundamentally assumed that spectral differences are due to
chemistry alone. These spectral results indicate the dependance
of spectral data on the shape of the object (i.e. the presence
of an edge). Moreover, there is a predictable relation between
the position at which light is incident and the shape of the
spectrum that can be calculated using our model.

A prostate tissue biopsy core from a TMA is imaged and
spectral samples are shown from epithelial tissue selected by
a pathologist. Spectral samples are taken at varying distances
from an edge and plotted in Figure 3. Note the comparable
distortions found in both the experimental and simulated spec-
tra. We then compute the feature vector xi corresponding to
each simulated spectrum (Sec. III) and perform classification
using the Naive Bayes classifier. The joint posterior probability

Fig. 2. Spectral distortions at specified distances from the epithelium-
substrate interface. Positive values indicate spectra taken from epithelial tissue.
Negative values indicate spectra taken from a homogeneous barium fluoride
substrate. A distance of d = 0 indicates the center position of the interface.

Fig. 3. Scattering distortions shown for spectral samples taken from
experimental data. The inset shows a ≈1mm prostate biopsy core imaged
with a 6.25μm pixel size and placed on a 2mm barium fluoride slide. Sample
spectra are taken at varying distances from the tissue-air interface. Note the
significant difference in absorption as the sampled spectra approaches the
edge.

is then computed and plotted in Figure 4. The joint posterior
probability inferred by the Naive Bayes’ classifier implies the
presence of epithelium up to and including the interface, but
not beyond. Our classifier uses specific spectral metrics as
described in section III and also utilizes the fact that air has
no spectral signature in the mid-infrared. This demonstrates
that the classification is robust to severe distortions introduced
into the spectra by scattering caused by nearby edges.
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Fig. 4. Joint posterior probability p(E|xi) of the Bayesian classifier as
a function of distance from the epithelium-air interface. The selection of
robust metrics and first-order scattering correction is sufficient to properly
characterize the tissue class up to the interface (specified by the red line).

V. CONCLUSION

In this paper, we propose a model for understanding distor-
tions related to object shape and scattering at object interfaces
in mid-infrared spectroscopic images of tissue samples. We
show that spectra of epithelial tissue are not only a function of
the underlying chemistry as conventionally assumed, but also
a function of their proximity to a lateral tissue-air interface. A
naive Bayes classifier is trained on spectra labeled by a pathol-
ogist using features selected by an expert spectroscopist. These
features are selected based on chemical characteristics of the
spectra with a particular focus on robustness to distortions.
This robustness is demonstrated on simulated data, where
spectra simulated up to the epithelium interface are classified
with a high joint posterior probability. Automated histological
classification of prostate tissue using FT-IR spectroscopic
imaging is robust to severe spectral distortions.

REFERENCES

[1] D. Fernandez, R. Bhargava, S. Hewitt, and I. Levin, “Infrared spectro-
scopic imaging for histopathologic recognition,” Nature biotechnology,
vol. 23, no. 4, pp. 469–474, 2005.

[2] R. Bhargava, Analytical and bioanalytical chemistry, vol. 389, no. 4, pp.
1155–1169, 2007.

[3] C. Craver, “The coblentz society desk book of infrared spectra,” DTIC
Document, Tech. Rep., 1977.

[4] E. Lewis, P. Treado, R. Reeder, G. Story, A. Dowrey, C. Marcott, and
I. Levin, “Fourier Transform Spectroscopic Imaging Using an Infrared
Focal-Plane Array Detector,” Anal. Chem., vol. 67, no. 19, pp. 3377–
3381, 1995.

[5] M. Moharam and T. Gaylord, JOSA, vol. 71, no. 7, pp. 811–818, 1981.
[6] B. Davis, P. Carney, and R. Bhargava, “Theory of midinfrared absorption

microspectroscopy: I. homogeneous samples,” Anal. Chem., vol. 82, no. 9,
pp. 3474–3486, 2010.

[7] ——, “Theory of mid-infrared absorption microspectroscopy: Ii. hetero-
geneous samples,” Anal. Chem., vol. 82, no. 9, pp. 3487–3499, 2010.

[8] R. Reddy, B. Davis, P. Carney, and R. Bhargava, “Modeling fourier trans-
form infrared spectroscopic imaging of prostate and breast cancer tissue
specimens,” IEEE International Symposium on Biomedical Imaging, pp.
738–741, 2011.

[9] B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems.
II,” Proceedings of the Royal Society of London. Series A, vol. 253, no.
1274, pp. 358–379, 1959.


