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Rheodynamic Lubrication of a Rectangular Squeeze

Film Bearing with an Exponential Curvature

Variation using Bingham Lubricants
K. P. Vishwanath and A. Kandasamy

Abstract—The present work deals with analyses of the effects
of bearing curvature and non-Newtonian characteristics on the load
capacity of an exponential rectangular squeeze film bearing using
Bingham fluids as lubricants. Bingham fluids are characterized by an
yield value and hence the formation of a “rigid” core in the region
between the plates is justified. The flow is confined to the region
between the core and the plates. The shape of the core has been
identified through numerical means. Further, numerical solutions for
the pressure distribution and load carrying capacity of the bearing
for various values of Bingham number and curvature parameter have
been obtained. The effects of bearing curvature and non-Newtonian
characteristics of the lubricant on the bearing performances have been
discussed.

Keywords—rheodynamic lubrication, yield stress, non-Newtonian
fluid, Bingham fluid, exponential squeeze film.

I. INTRODUCTION

L
Ubrication of modern machines has been a challenging

and emerging area of interest for tribologists. Although

the researchers of the past have laid out a foundation of

the squeeze film bearings, modern researchers intend to

use non-Newtonian fluids as lubricants. Few researchers

have used yield-stress fluids such as Bingham, Casson and

Herschel-Bulkley fluids as lubricants. Researchers like Covey

and Stanmore [4], Gartling and Phan-Thien [5], Donnovan

and Tanner [7], Huang et al [6], Batra and Kandasamy [2]

and such others have worked on the Bingham squeeze flow

problem. Cameron [3] has analyzed the load capacity of

a slider bearing with exponential wedge variation using a

Newtonian lubricant but the effect of exponential squeeze

films on the load capacity of the bearing using non-Newtonian

fluids has not been addressed by any of the researchers.

I
N the present work, the problem of a squeeze film bearing

with converging and diverging squeeze films has been

analysed. The effect of the boundary variation on the pressure

distribution and load capacity of the bearing using Bingham

lubricants has been investigated. During the operations of the

bearings, the maximum viscous shearing stresses arise in the

region of the plates. Therefore, there may be a region in
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the film where the shearing stresses do not exceed the yield

value of the lubricant and thereby a core with zero velocity

gradient is formed. The flow occurs only in the region where

the shear stress exceeds the yield value. The flow is confined

to the region between the core and the plates of the bearing.

The shape of the core has been identified through numerical

means. Further, numerical solutions have been obtained for

the bearing performances such as pressure distribution and

load capacity for different values of Bingham number and

for different shapes of the squeeze films. The properties of

exponential squeeze films on the load capacity of the bearing

are investigated through non-Newtonian effects of the fluids.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

Fig. 1. Exponential Squeeze Film Bearing - Diverging type

The geometries of the problem are as shown in fig. 1 and

fig. 2. We consider an isothermal, incompressible, steady flow

of a time independent Bingham fluid squeezed between two

sections of the bearing separated by a distance h∗ such that

h∗ = h0e
αx

∗

L where h0 is the distance between the two

sections at the mid point along the length of the bearing and α

is a constant which determines the curvature of the bearing. Let

2L be the length of the bearing approaching each other with
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Fig. 2. Exponential Squeeze Film Bearing - Converging type

Fig. 3. Shape of the Core - Diverging type

a squeeze velocity v∗

s under a normal load W ∗. We consider

cartesian co-ordinates system (x∗, y∗, z∗) such that v∗

x and v∗

z

represents the components of velocity in the direction of length

and axis respectively and ρ denotes the density of the fluid.

It is assumed that there is no sliding motion between the two

plates.

The constitutive equation of a Bingham fluid is given by,

τij = 2

(

η1 +
η2

I
1

2

)

eij ,

(

1

2
τijτij ≥ η2

2

)

(1)

where τij are the deviatoric stress components, η1 and η2 are

constants, viz., plastic viscosity and yield value respectively,

eij represents the rate of deformation components and I =
2eijeij is strain invariant. Practical examples of such materials

are lubricating greases, colloidal suspensions, starch pastes,

slurries, silicon suspensions and such other fluids.

Applying the basic assumptions of lubrication theory for

thin films, the governing equations for the above squeeze film

system in the non-dimensional form is given by,

∂p

∂x
=

∂τxz

∂z
(2)

∂p

∂z
= 0 (3)

∂vx

∂x
+

∂vz

∂z
= 0 (4)

Fig. 4. Shape of the Core - Converging type

τxz = B +

∣
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∣

∣

(5)

where B =
η2h2

0

Lvsη1

is called the Bingham number.

The above equations (2), (3) and (5) together with the

equation of continuity (4) are to be solved using the non-

dimensional boundary conditions:

vx = 0 at z = −h

2
,
h

2
∂vx

∂z
= 0 at z = 0

vz = 0 at z = −h

2

vz = −1 at z =
h

2
p = pa at x = 1 (6)

and vx and ∂vx

∂z
are continuous at the boundaries of the core,

z = ±hc(x). Here pa is the non-dimensional atmospheric

pressure, h = h∗

h0

and x = x∗

L
.

III. SOLUTION TO THE PROBLEM

The integral form of the continuity equation, also called the

equation of squeeze motion, is given by

∫ h

2

0

vxdz =
x

2
(7)

Now, equation (3) infers that pressure is independent of z

and hence equation (2) can be integrated as,

τxz =
dp

dx
z + c1 (8)

Substituting for τxz from equation (8) into equation (5)

and integrating the resulting equation using the boundary

conditions (6), we get the velocity distribution in the upper

half of the schematic representation as follows:

vx =

(

dp

dx

)[

(z − hc)
2

2
− (h − 2hc)

2

8

]

in hc(x) ≤ z ≤ h

2
(9)

and the velocity in the plug core region can be written as,

vc =

(

dp

dx

) [

− (h − 2hc)
2

8

]

in 0 ≤ z ≤ hc(x) (10)
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Considering the equilibrium of an element of the core in

the fluid, we get,
dp

dx
= −B

hc

(11)

where 2hc is the thickness of the rigid core in the squeeze

flow region.

Evaluating the equation of squeeze motion (7) by substitut-

ing equations (9) and (10), we get the pressure gradient in the

axial direction as given below:

dp

dx
= − 12x

4h3
c − 3e2αxhc + e3αx

(12)

Eliminating dp

dx
from equations (11) and (12), re-arranging

the resulting equality and substituting for h, we get,

h3

c − 3

(

e2αx

4
+

x

B

)

hc +
e3αx

4
= 0 (13)

Equation (13) is called the equation of core thickness where

hc = hc(α, x, B) and can be evaluated using any numerical

iterative technique.

Further, integrating equation (12) between the limits x and

1 by substituting the numerical values of hc obtained from

equation (13), we get

p − pa =

∫

1

x

12x

4h3
c − 3e2αxhc + e3αx

dx (14)

where equation (14) can be integrated using any quadrature

formula and hence the pressure distribution along the axial

direction can be obtained.

Again, the non-dimensionalised load carrying capacity of

the bearing can be obtained by the integral formula,

w =

∫

1

0

(p − pa)xdx (15)

IV. RESULTS AND DISCUSSIONS
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Fig. 5. Core Thickness in the axial direction when α > 0

The behavior of core thickness hc for various values of

α and Bingham number B along the axial direction x is
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Fig. 6. Core Thickness in the axial direction when α < 0
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Fig. 7. Pressure Distribution in the axial direction when α > 0

computed and the results are depicted in figs. 5-6. When α

is positive, the core thickness is maximum at the periphery

and minimum at the center. The thickness and shape of the

core is found to increase along the axial direction for a

particular Bingham fluid. hc is found to increase with the

increase in Bingham number but the rate of increase in hc

with respect to the Bingham number decreases with increase

in curvature parameter α. Again, hc increases with increase

in α for a particular Bingham fluid. When α < 0 is negative,

the core thickness is maximum at the center and minimum

at the periphery. The thickness and shape of the core is

found to decrease along the axial direction for a particular

Bingham fluid. Again, hc is found to increase with the increase

in Bingham number and the rate of increase in the core

thickness with respect to the Bingham number decreases with

the decrease in curvature parameter α. Again, hc decreases

with the decrease in α for a particular Bingham fluid.

The pressure distribution along the axial direction has been

computed for different values of the curvature parameter and
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Fig. 8. Pressure Distribution in the axial direction when −0.1 ≤ α ≤ −0.3
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Fig. 9. Pressure Distribution in the axial direction when α ≤ −1.0

Bingham number and the results are as shown in figs. 7 - 9.

The pressure distribution decreases from a maximum to zero

along the axial direction. When α is greater than zero, it can be

observed that pressure decreases with the increase of curvature

parameter α for a constant Bingham number and the rate of

decrease of pressure with respect to the Bingham number is

found to be significant only for lower values of α as shown

in fig. 7. When α is less than zero, it can be observed that

pressure increases with the decrease of curvature parameter

α for a constant Bingham number. Further, pressure increases

with the increase in Bingham number for both types of squeeze

film bearings as shown in figs. 7 and 8.

The results of load carrying capacity for various values of

curvature parameter α and Bingham number are tabulated in

tables I and II. From these results, we observe that the load

capacity of the bearing decreases with the increase in curvature

for a particular Bingham fluid. Further, it can be seen that

fluids with high Bingham number infer a squeeze film bearing

with high load carrying capacity.

TABLE I
LOAD CAPACITY VALUES FOR BEARINGS OF CONVERGING TYPE

α → -1.5 -1.0 -0.5
B ↓

10 84.0527 29.2497 12.4774
20 99.3984 39.1317 18.7715
30 114.3700 48.6461 24.8033

TABLE II
LOAD CAPACITY VALUES FOR BEARINGS OF DIVERGING TYPE

α → 0.5 1.0 1.5
B ↓

10 3.8866 2.5925 1.8673
20 6.5285 4.3657 3.0852
30 9.0495 6.1008 4.2834

To the best of our knowledge, no work is available for

exponential squeeze film bearing with time-independent non-

Newtonian fluids with yield stress. The computed results of

the load capacity corresponding to α = 0 are found to be

in agreement with the results obtained by Kandasamy [2]

(corresponding to the case of Reynolds number, Re = 0) and

Vishwanath and Kandasamy [8] (corresponding to the case of

Reynolds number, Re = 0 and power law index, n = 1.0).

V. CONCLUSION

From the investigation, we can conclude that the curvature

effects of the bearing contribute significantly to the load

capacity of the bearing and fluids with high Bingham number

and very low value of curvature parameter α (α < 0) will

have a high bearing load capacity.
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