International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:7, 2016

Reusing Assessments Tests by Generating
Arborescent Test Groups Using a Genetic Algorithm

Ovidiu Domsa, Nicolae Bold

Abstract—Using Information and Communication Technologies
(ICT) notions in education and three basic processes of education
(teaching, learning and assessment) can bring benefits to the pupils and
the professional development of teachers. In this matter, we refer to
these notions as concepts taken from the informatics area and apply
them to the domain of education. These notions refer to genetic
algorithms and arborescent structures, used in the specific process of
assessment or evaluation. This paper uses these kinds of notions to
generate subtrees from a main tree of tests related between them by
their degree of difficulty. These subtrees must contain the highest
number of connections between the nodes and the lowest number of
missing edges (which are subtrees of the main tree) and, in the
particular case of the non-existence of a subtree with no missing edges,
the subtrees which have the lowest (minimal) number of missing edges
between the nodes, where a node is a test and an edge is a direct
connection between two tests which differs by one degree of difficulty.
The subtrees are represented as sequences. The tests are the same (a
number coding a test represents that test in every sequence) and they
are reused for each sequence of tests.
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[. INTRODUCTION

HE usage of informatics notion in different domains is not

a novel approach and the results of this usage are known
and beneficial to the domain. The inclusions of informatics
notions in education can be classified in inclusions on methods
and methodologies and inclusions on education itself (the actual
process of education and, particularly, in the process of
assessment). New methods and techniques of assessment with
higher relevance and better effects on a longer term on the
process of learning have been studied and discovered, such as
the ones presented in [1]. However, due to the nature of the
human learning, the usage of these technologies is somehow
controversial, numerous papers taking into account the effects
of this inclusion in the educational domain and in the
assessment process. Some of them study the students and
teachers perceptions over online evaluation [2], [3]. Other
directions of research study the effects of ICT on learning and
evaluation [4] or comparisons between traditional methods of
assessment and the ones based on new technologies [5]. Other
papers present a new approach of ICT inclusion in education:
styles in [6] and [7] and models of an e-learning platform in [8]
and [9]. New strategies and approaches on the assessment
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process are presented in [10] and [11].

These effects refer to the mechanisms of these processes and
less to the processes themselves. Thus, in the case of this paper,
the accent falls on the generation of tests and not on the tests
themselves or the modalities of testing. Even if the paper does
not focus on the assessment process itself, the focus on the
mechanism (the generation) influences the process of
assessment and the evaluation itself. In these cases, such as the
one presented in this paper, the benefits are obvious, because
the manual selection of tests would consume time and energy.
This inclusion is applied to a mechanism and not to the way of
evaluation.

This paper brings into discussion the generation of tests from
a battery of arranged in a tree structure based on their degree of
difficulty. The tests are reused, in the way that a number coding
a test represents it for all the sequences of tests. In this matter,
the same tests are used to build numerous sequences of tests.
The algorithm used for solving this issue output firstly the
distinct sequences of tests directly related with edges. If such a
sequence does not exist, the algorithm finds the sequences
which have the lowest number of missing edges between the
tests, this number consisting in the fitness function. The
sequences of tests are output in the form of sequences of
numbers, each test being codified by a number from 1 to the
total number of tests and being reused for every sequence. A
similar problem was described in the paper [12], but with a
different fitness function and another type of algorithm.
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Fig. 1 Example of a tree used in the algorithm showing the
arborescent structure of the relations between the tests
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The arborescent structure was chosen to show the
classification of tests on degrees of difficulty. This kind of
structure is very useful in these cases of arborescent relations
between the components of the structure and can lead to fast
and reliable solutions for a problem waiting to be solved. A
genetic type of algorithm was chosen for solving the purposed
problem because of its runtime, its lower usage of resources and
its more convenient modality of outputting the solutions.

Theories and findings from informatics domain have an
extraordinary versatility and a multitude of appliances in
various domains. If we refer strictly to the types of structures
used in this paper, we will give examples for tree structures and
genetic algorithms.

For example, trees are used in a variety of fields, such as
management, education, sorting and searching [13], the process
of decision [14] and other domains which use arborescent
structures. Due to the nature of the arborescent structures, the
trees are used in cases of hierarchical structures, where the
elements are in a relation of subordination or succession or
classified by different criteria (degree of difficulty, number
order etc.).

As for genetic algorithms, their usage extends more and more
in a multitude of areas. This fact can be deducted from their
reliability and the similarities between the structures used
within the algorithm and the ones within the issues wanted to
be solved, as well as for their high probability of outputting in
a reasonable time more accurate solutions for large sets of input
data. Thus, the genetic algorithms are used in network-related
issues (traffic [15], IT and Internet), design and artistic domains
([16] and [17]), web applications [18] and [19], chemistry [20],
agriculture [21], education and scheduling [22] etc.

II. DEFINING THE PROBLEM

The paper studies a quite challenging problem, given the
complexity of the used algorithm. Given a number of tests
grouped in a battery of tests used for evaluation (the total set of
tests is called in the paper the battery of tests) with different
degrees of difficulty, thus forming an arborescent structure, the
algorithm presented in this paper searches a subtree formed
from a given number of nodes which keeps the property of
arborescence. This property means that the nodes (tests) are
related to each other in a connection of difficulty (a difficulty
order, which means that an edge connects one test with a more
difficult test). A condition of this search is that a node can be
reached only through its parent node.

This issue can be solved by coding each test with an integer
from 1 to the total number of tests and applying the algorithm
described in Section IIl. In order to fully understand the
problem, we will take a short example. Given a total number of
10 tests and the parent node array T, alongside the number of
the nodes wanted in the subtree, the user wants to find a subtree
which can keep the property of arborescence. The algorithm
generates all these types of subtrees and the ones which are
close with that type of subtree (with one node missing, then two
and so on). The subtree is graphically shown in Fig. 1.

The solutions are output in a form of sequences of numbers,
which shows the nodes which form the subtrees. In the

example, a generated sequence canbe 4 569 8or 1249 10.
In the first case, the sequence forms a subtree and all the five
nodes form a subtree (0 nodes missing). For the second
sequence, a single node is needed to form a subtree (the node
5), which means that 1 node is needed to form a subtree. These
missing nodes are actually the values of fitness function for
each sequence. These values are ordered and the first sequences
are the ones with 0 nodes missing.

The generation can be made using several methods. But,
given the fact that the problem is NP-complex, it can be solved
using algorithms that are exponential. Although, the
backtracking type of algorithm can be used only for small
values (the number of nodes and the sequence dimensions less
than 20), probabilistic algorithms such as genetic algorithms are
preferred (as presented also in paper [23]). Section III presents
an algorithm of this type.

III. THE ALGORITHM OF THE MODEL OF GENERATION WITH
RESTRICTIONS OF TESTS USING GENETIC ALGORITHMS

As we presented earlier in the paper, the algorithm uses
arborescent structures for defining the elements used and
genetic notions for solving the problem proposed in the
introduction. As any algorithm structure, the one presented in
the paper need input data and output data, as well as sequences,
structures and mechanisms used within the algorithm for
solving the problem. These components will be presented in the
next lines.

A. Structures Used within the Algorithm

The algorithm uses the number of the tests, the sequence
dimension, the number of generations and the parent nodes
array for outputting the sequences with the given conditions.
Thus, the next variables and arrays are used:

- N (the number of tests within the battery);

- No (the sequence dimension);

- no_generations (the number of generations);

-k (number of distinct solutions wanted to be output);
- NrPop (the number of the chromosomes).

As for the arrays used within the algorithm, the next list

presents them:

- T[N] (the parent nodes array);

- pop[NrPop][No] (the bi-dimensional array which contains
the sequences);

- V[N] (binary array used for determining fitness values;
contains the visited nodes from a path);

- W[N] (binary arrays used for determining fitness values;
contains the nodes which are part of a sequence).

B. Genetic Algorithm Structures

Every genetic algorithm, regardless its form, has the same
major structures: chromosomes, genes, operations and fitness
function. A chromosome is actually a sequence of test which
respects the given conditions. A gene is a test within a sequence
of'tests. A general form of a chromosome is presented in Fig. 2.
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poplil[1] poplil[2] popli][3] popli][4] pop[i][No-1] | popli][No]

Fig. 2 The general form of a chromosome

The operations used in this algorithm are generation,
mutation and crossover. The tests are randomly generated to
form the initial population of chromosomes. The operation of
generation is shown in Fig. 3. In this figure, the number P is in

ﬁilr.'d__gcnc:s
poplilll] | poplil2] | poplill3] | poplill4]

generated number
poplilll] | peplili2] | poplill3] | poplill4]

the set {1, 2, ..., N} and must be different from the genes
previously generated (P # popli][j-1]; where i=1, NrPop, j=1,
No).

The mutation operation consists in the random generation of
a test (number) and the replacement in a previously randomly-
generated sequence, if the test is different from the others within
the sequence. The mutation operation is graphically presented
in Fig. 4. A number M2 is randomly generated, different from
the other genes in the chromosome, then the gene from the
position M1 is replaced with M2.

unfilled genes

popli][i-

Pe{1,2,...,N}

2 P+ poplil[j — 1],

i=1,NrPop,j =1,No

poplillil=

P

pop[i][i-
1]

Fig. 3 Operation of generation for a chromosome (j < No, P <N)

The crossover operation consists in the formation of an
enlarged chromosome from two chromosomes chosen
randomly after the chromosomes are verified to be distinct and
ordered. The resulted chromosome is then split in two new
chromosomes which are added in the population. The crossover
operation is graphically presented in Fig. 5. Two chromosomes
with the property that one gene from a chromosome is not found
in the second chromosome are generated. Then, an array with
the elements from the two chromosomes is built, the values
from this array are ordered and two new chromosomes are built:
one from the first No elements and the second with the last No
components.

The fitness function calculates the number of the missing
edges from a generated subtree. In this case, the function is a
minimal one, because the lowest the number of missing edges

poplilll] | poplill2] | poplill3] | poplill4]

generated number

M2

pop(il[1] | pop(il[2] | poplill3] | poplill4]

will be, the optimal solution will be output. The general form of
the fitness function is:

f oplil[j1) = X}, vIpoplil[j1]; i = 1, NrPop (M

The array V is used for establishing how many and which
nodes miss for the sequence to form a subtree. It has N
elements, as the array w, and its elements can have two values:
binaries 0 and 1. The array W contains how many and which
nodes form a sequence and the array v contains the closest
nodes from the sequence nodes that form a subtree (subtree
which match with the sequence when the sequence forms a
subtree), whose elements are 0 when the sequence forms a
subtree. The mechanism of the function for a certain sequence
pop[i][j] is presented in Table I.

generated position
M1

pop[il[M1] ‘”pﬂll[:% poplil[No]
poeliipv= Porie | popfilNol

Fig. 4 Operation of mutation for a chromosome (M1 <No, M2 <N)
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pop[P] pop[P][1] | pop[P][2] | pop[P][3] A popIPI[4] ... pop[P][No-1] pop[P][No] P=1.NrPop

pop[M] = | pop[MI[I] pop[MI[2] | pop[M][3] pop[MI[4] ... pop[M][No-1] pop[M][No] M =1.NrPop
+

x[1)= | x[2]= | x[3]=  «x[4]= x[No-1]=  x[No]= | x[No+1]=| x[No+2] = x[No#3]= x[No+d]=
pop(PJ[1] | pop[P](2] | pop(PI[3] pop[Pl[4] "~ pop[M][No-1] | pop{P|[No] = pop[M](1] | pop[M]2] = pop[M](3] = pop[M][4] "~

x[2xNo-1]= x[2=No] =
pop[M][No-1] = pop[M][No]

+
x= x[1] | x[2] x[3] x[4] ... x[Ne-1] | x[No] | x[No+l1] x[No+2] | x[No+3] | x[No+d4] ... x[2#Neo-1] x[2=No]

L
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Fig. 5 Operation of crossover for a chromosome (M, P < NrPop)

C. Input Data

The input data consist in the number of tests (N), the initial
tree (given by the array T[N]) and the number of generations
(no_generations). The general form of a tree is presented in Fig.
6.

sl O

T[r]=0:

TIC]=r @ @ @ Level 2
offcXofolelole

TICe)=Cs
Fig. 6 General form of a tree with 3 levels

D. Output Data

As output data, the algorithm uses the first k rows of the bi-
dimensional array pop[NrPop][No], because the sequences
(rows) are ordered ascending by their fitness value. The output
values are the distinct lines found in the population (after the
genes and chromosomes are ordered ascendingly by the fitness
value).

E. Conditions

The algorithm output the solutions which have the lowest
fitness value. This is the main condition of the algorithm.
Another condition is that the genes within a chromosome must
be different.

Summing up, the conditions are:

- f(pop[i][j]) = minimal, i < NrPop, j < No
- popli][j1] # poplil[j2], i < NrPop, j1,j2 < No

F. Steps of the Genetic Algorithm

The algorithm has several steps.
Step 1. The input data is read. The input data consist in the
number of tests (N), the initial tree (given by the array
T[N]) and the number of generations (no_generations).
Step 2. The next population is generated: pop[i][j], i=1,NrPop,
j=1N+1, pop[i][N+1], storing the fitness value. In the
implementation NrPop=1400 was used, with very good

results.

Step 3. The crossover method is applied to the initial population.
Thus, for two chromosomes M and P, we obtain the
sequence x with 2xNo genes which is ordered
ascendingly. With the first No elements, we form the
first chromosome and with the latter No elements we
form the second chromosome. Both chromosomes are
added to the population. The whole process is shown in
Fig. 7.

pop[P] = (pop[P][1], pop[P][2], ..., pop[P][No])
pop[M] = (pop[M][1], pop[M][2], ..., pop[M][No])
!

x = (x[1], [2], ..., Xx[No], x[No+1], x[No+2], ..., x[2No]), where
x[1]=pop[P][1], X[2] = pop[P][2], ..., x[No] = [P][No] and
x[No+1] = pop[M][1], x[No+2] = pop[M][2], ..., X[2No] = pop[M][No]
I

Ascending order of x and two new chromosomes are built

!
(x[1], X[2], ..., X[No]) and
(x[No+1], x[No+2], ..., x[2No])

Fig. 7 Step 3 structure where fitness values are calculated for each
new sequence (chromosome)

Step 4. The mutation method is applied to the initial population.
Thus, for a chromosome P, a position M1 and a gene
M2:

pop[P] = (pop[P][1], pop[P][2], ..., pop[P][M1], ..., pop[P][No])
|
pop[P] = (pop[P][1], pop[P][2], ..., M2, ..., pop[P][No])

Fitness values are calculated for each new sequence.

Step 5.Using any method of sorting, the values are ordered
ascendingly by the fitness value of every chromosome.

Step 6. Steps 3, 4 and 5 are repeated for no_generations number
of times.

Step 7. The first k distinct rows of the bi-dimensional array pop
(the sequences) are output, those being the correct
values.

The fitness value is calculated using two arrays: v and w.

Generally, for a gene pop[i][j], w can be defined in this way:
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but do not form a subtree with the other genes. The number of
these nodes are actually the fitness value. Intuitively, this array
helps at finding the closest subtree that can be formed from the
genes of the chromosome pop[i][j], which can themselves form
a subtree in the best case. Table I presents the scheme of the
calculation of a fitness value for a subtree.

a1 _ {1, at the position popl[i][jlin the array w
W[pOP[l]U]] - { 0, otherwise (2)
The array v depends on the array w and the subtree that can
be formed by nodes from the chromosome pop[i][j]. Thus, the
array v contains the nodes which are part of the chromosome,

TABLEI
CALCULATION OF FITNESS VALUES FOR AN EXAMPLE OF A TREE TWO EXAMPLES OF CHROMOSOMES

Example 1 Example 2

oM B0
//‘. <N\ SN Mo
olfo oo

w=(1,1,0,0,0,0,1, 1,0, 1) w=(0,1,1,1,0,0,0,0, 1, 1)
v=(0,0,0,0.0.0.0,0,0,0) v=(0,0,0,0,0,0,0,0,0,0)
(W[1]==0and v[1] ==0) is false o o
(W[5] == 0 and v[5] = = 0) is true and the initialization v[5] = 1 is made (vI2) "8“3 MR jjg) is f’}se
(wW[4] == 0 and v[4] = = 0) is true and the initialization v[4] = 1 is made (W[g] "o and v 9] - o) 18 false
(W[9] == 0 and v[9] = = 0) is true and the initialization v[9] = 1 is made (W[9)==0and v[9] == 0) s false
w=(1,1,0,0,0,0,1,1,0, 1) w=(0,1,1,1,0,0,0,0, 1, 1)
v=(0,0,0,1,1,0,0,0, 1, 0) v=(0,0,0,0,0,0,0,0,0,0)

This step is repeated for each gene. After this method, v and w has the next values:
w=(1,1,0,0,0,0,1,1,0,1) w=(0,1,1,1,0,0,0,0,1, 1)
v=(0,0,0,1,1,1,0,0,0, 1) v=(0,0,0,0,0,0,0,0,0,0)

(W[10] == 0 and v[10] == 0) is false (W[10] == 0 and v[10] == 0) is false
(w[9] == 0and v[9] == 0) is false (w[9] == 0 and v[9] == 0) is false
(1,2,7,8,10) = Y v[i] = 4, which means 4 nodes miss for a subtree (4, 5, 6 (2,3,4,9,10) = > v[i] = 0, which means the chromosome formes
and 9, the indices where the elements of array vis 1). a subtree.
@ Level 1
JORROYORO
ONO @@@@ @
() @ 60 @@@..
Level 5

5000000 0ORm 0 ®

Fig. 8 The tree for our example

example was 3.790 seconds. For the graph from Table I, the
solution output is shown in Table III. The number of distinct
solution is 16 and the runtime for this example was 3.327
seconds.

IV. RESULTS AND DISCUSSIONS

As an example, we will take a battery of tests related to
informatics. The tests are codified with numbers from 1 to N.
The input data for our example is: N=35, No=8,
no_generations=400, k=15, T=(10, 4, 9, 9, 4, 10, 3, 3,0, 9, 15,
2,8,6,1,35,5,15,14,13,29,25,25,7,5,24,17,17, 8, 12,9,
31, 32, 33, 6). The tree is shown in Fig. 8.

V. CONCLUSIONS

This method of generating subtrees with minimal number of

The values output for the tree are presented in Table II. The
number of distinct solution is 16 and the runtime for this

missing edges is useful in case of arborescent structures defined
and classified by a certain criterion. It is useful in situations
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when these types of structures are used. A future work would
represent the development of a complex application with a
friendly interface for the users. Using this application, tests can

be

loaded, the relations between them are set and sequences of

tests can be generated. This algorithm is used in the assessment
of students in various universities with very good results,
alongside other types of applications.

TABLE I
RESULTS FOR THE GIVEN EXAMPLE

Sequence Number of edges needed for forming a subtree

2346789101213 0

2345789101317

12348910121331

1234689101213

1234679101215

234567891014
1234589101213

12345678910
123467891012
123457891012

123456791012

123456891017
123467891024

123457891013

123457891015

134567891024
123467891029

S O O O O O O O O O o oo o oo

(1
[2]

[4]

TABLEIII
RESULTS FOR THE GIVEN EXAMPLE AT TABLE I AND FIG. 1

Sequence Number of edges needed for forming a subtree

245910
456910
345910
45689
14569
234910
23459
12459
45679
24569
13459
34569
145910
12349
12345
14568

34589

—_ e = O OO0 OO OO OO OO OOOO
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