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Abstract—This study presents an active vibration control 

technique to reduce the earthquake responses of a retained structural 
system. The proposed technique is a synthesis of the adaptive input 
estimation method (AIEM) and linear quadratic Gaussian (LQG) 
controller. The AIEM can estimate an unknown system input online. 
The LQG controller offers optimal control forces to suppress 
wall-structural system vibration. The numerical results show robust 
performance in the active vibration control technique. 
 

Keywords—Active vibration control, AIEM, LQG, Optimal 
control 

I. INTRODUCTION 

ANY recent earthquake disasters have occurred around 
the world, causing innumerable losses in human lives and 

property. Earthquake-resistant design has an important role in 
structure design. Seismic action is a load that structures must be 
able to resist, accepting a certain level of structural degradation. 
Control technique applications, including passive, semi-active 
and active control systems have been developed for civil 
engineering structures. The passive control technique examples 
include using tuned-mass-dampers, base isolations, friction and 
viscous dampers and so on [1]. In semi-active techniques the 
vibration is attenuated through an indirect manner by changing 
the structural parameters of the machine, such as damping and 
stiffness.  Recently, various active control technique methods 
have been developed. The optimal control methods, such as 
linear quadratic regulator (LQR) and LQG, are popular with 
many structural engineers. Optimal LQR controllers have been 
developed and used in practical implementations [2-4]. Yang 
[5] applied the optimal control theorem to control the vibrations 
of civil engineering structures under stochastic dynamic loads 
such as earthquakes and wind loads. He used the instantaneous 
optimal control method, which minimizes the quadratic 
performance index at every time instant, to overcome the 
deficiency of neglecting the earthquake input [6]. The external 
load influence is not considered in the optimal controller design 
because the external load disturbances are immeasurable or 
inestimable in the control force calculation. Therefore, the 
traditional LQG controller has difficulty maintaining robust 
control performance with the random dynamic input condition. 
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To solve the above problems, this study first investigates 

active control technique application to reduce the retaining 
structure response when subjected to earthquake excitations. 
The active control technique is a synthesis algorithm of the 
AIEM and LQG controller. The AIEM is frequently employed 
in structural dynamic problems. The input estimation method 
has been successfully used to inversely solve 1-D, 2-D heat 
conduction problems [7, 8]. Ji et al. [9] used the Kalman filter 
with the recursive least square method to estimate the input 
force of a plate. Lee et al. [10] utilized the adaptive weighted 
input estimation method to inversely solve the burst load of a 
truss structure system. Chen et al. [11, 12] investigated the 
adaptive input estimation method applied to the inverse 
estimation of load input in a multi-layer shearing stress structure 
and moving load identification in a bridge structure system. The 
AIEM can estimate on-line dynamic loads. An active LQG 
controller can apply the same inverse control forces on a 
structural system. The control results of the proposed method 
are effective in suppressing vibration in a retaining structural 
system. 

II.  DYNAMIC MODELING AND ANALYSIS OF THE RETAINING 

STRUCTURAL SYSTEM  

The geometry and coordinates of a soil-wall system are 
shown in figure 1(a). The semi-infinite, homogeneous and 
visco-elastic soil medium is retained by a vertical rigid retaining 
wall along one of its vertical boundaries, connected to a rigid 
base. The soil layer base is excited by the ground motion 
accelerations of the 9/21 Chi-Chi earthquake in Taiwan. The 
soil-wall system is modeled using a simple two-degree of 
freedom (2-DOF) mass spring dashpot dynamic model, as 
shown in figure 1(b). Considering the dynamic equilibrium of 

these two masses using D'Alemberl's principle, the soil-wall 

system under active control, the basic dynamic equation can be 
written in matrix form [13]: 

( ) ( )gMX CX KX Mx t DF t+ + = +&& & &&                                                (1) 
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 is the restoring force vector. 

( )gx t&&  is the ground motion acceleration. D  is the control 
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force distribution matrix, [ ]1 2( ) ( ) ( )
T

F t f t f t=  is the control 

force vector. [ ]1 2

T
X x x= , [ ]1 2

T
X x x=& & &  and 

[ ]1 2

T
X x x=&& && && is the displacements, velocities and accelerations 

of the masses 1m  and 2m , respectively. 

The continuous-time measurement equation is shown below: 

( ) ( ) ( ),Z t HX t v t= +                                                              (2) 
where ( )Z t  is the observation vector, [ ]1 0H =  is the 

measurement matrix and ( )v t is the measurement noise.  

The continuous-time state equation of the structure system can 

be presented as follows [14]: 

( ) ( ) ( ) ( ),X t AX t BG t EF t= + +&                                                   (3) 
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where ( )X t  is the modal state vector.A  is the coefficient 

matrix. ( )F t is the control force inputs.B and E  are the 

coefficient vectors of ( )G t and ( )F t , respectively. Constant 

matrices are composed of the nth natural frequency and the 

inertia moment of the structure system. Using the sampling 

time, t∆ , to sample the continuous-time state equation, (3) and 

assuming that the system model error, ( )w k is Gaussian white 

noise with zero mean, the discrete-time equation can be 
obtained as follows [14]. 

( 1) ( ) ( ) ( ) ( )X k X k G k F k w k+ = Φ + Γ + +Λ +                              (4) 
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Where Φ  is the state transition matrix. Γ  and Λ are the 
coefficient matrices of ( )G k  and ( )F k , respectively. ( )G k  is 

the certain input array. ( )F k  is the control array. ( )w k  is the 

processing error vector, which is assumed as Gaussian white 

noise with zero mean and variance, { }( ) ( )T
kjE w k w k Qδ= , 

2 2w n nQ Q I ×= × , Q  is the discrete-time processing noise 

covariance matrix. kjδ  is the Kronecker delta function. The 

discrete-time measurement equation of equation (2) is shown 
below: 

( ) ( ) ( )Z k HX k v k= +                                                                           (5) 

( )Z k is the discrete observation vector. ( )v k  represents the 

measurement noise vector and is assumed as the Gaussian white 

noise with zero mean and the variance, { }( ) ( )T
kjE v k v k Rδ= , 

2 2v n nR R I ×= × , R  is the discrete-time measurement noise 

covariance matrix.  
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Fig. 1 (a) Considered soil-wall system. (b) Proposed 2-DOF 
mathematical model [15] 

III.  AIEM  COMBINED LQG CONTROL TECHNIQUE DESIGN  

The conventional LQG controller has a specific level of 
interference suppression. It is weak in maintaining high 
performance in the suppression of external loads; which are 
complex and arbitrary style disturbances. In other words, in 
equation (4), if a time-varying load, ( )G k  exists, the optimal 

control method combining the Kalman filter and the LQG 
regulator will not be able to obtain the optimal control forces. 
To resolve this situation, this study proposes combining the 
AIEM with the LQG control technique for active vibration 
control of the retaining structural system. The AIEM can 
estimate the unknown dynamic inputs while the active LQG 
controller can apply the same inverse control forces on the 
structural system. 

The AIEM is composed of a Kalman filter without the input 
term and the adaptive weighting recursive least square 
algorithm. The detailed formulation of this technique can be 
found in the research by Tuan et al [14]. The Kalman filter 
equations are as follows: 
The optimal estimate of the state is 

( 1/ ) ( / 1) ( ) ( ) ( / 1)X X Xk k k k K k Z k H k k
∧ ∧ ∧ 

  
+ = Φ − + − −    (6) 

The bias innovation produced by the measurement noise and 
input disturbance is expressed by 

( ) ( ) ( / 1)Z Xk Z k H k k
∧

= − −                                                 (7) 
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The Kalman gain is 
1

( ) ( / 1) ( )( ) ( 1/ ) ( / 1) ( ) TT H k P k k H k RK k k k P k k H k
−

 − + =Φ + − (8) 

The covariance of residual is ( )S k  

( ) ( / 1) TS k HP k k H R= − +                                                   (9) 

The prediction error covariance matrix is  
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The recursive least square estimator equations are as follows: 
The sensitivity matrices are ( )B k  and ( )M k  

( ) [ ( 1) ]B k H M k I= Φ − + Γ                                                     (11) 

( ) [ ( ) ][ ( 1) ]M k I K k H M k I= − Φ − +                                     (12) 

The correction gain is expressed as 
111 1 1( ) (( ) ( ) ( ) ( ) ( ) )T T

b b bB B k BK P k k k k kk P Sγ γ
−− −  = − − +        (13) 

The error covariance of the input estimation process is 
1( ) 1( ) ( ) ( )b b bI K B k PP k k kγ −  = − −                                         (14) 

The estimated earth motion acceleration is 

( ) ( 1) ( ) ( ) ( ) ( 1)bG k G k K k Z k B k G k
∧ ∧ ∧ 

= − + − − 
 

                       (15) 

In equations (15-16), γ  is a weighting factor using the 

adaptive weighting function, which is formulated in [15]. That 
is, 

1, ( ) ,
( )

/ ( ) , ( ) .

Z k
k

Z k Z k
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≤

                                           (16) 

In the optimal estimation portion of the LQG optimal control 

method, by substituting ( )G k
∧

 of equation (15) for ( )G k  and 

substituting the control input in equation (6), the optimal state 
estimation equation can be rewritten as: 

ˆ ( ) ( )
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G k F k
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The performance index is defined as: 
1
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where 1 0Q ≥ , 2 0Q ≥ and 0 0Q ≥ are all symmetric weighting 

matrices. The optimal feedback control force vector can be 
obtained by using the separation theorem [16]:  

( ) ( ) ( / 1)rF k K k X k k
∧

= − −                                                                 (19) 

Here the regular gain ( )rK k  is given by 
1

2 2 2( ) ( 1) ( 1)T T
rK k P k Q P k

−
 = Λ + Λ + Λ + Φ 

                         (20) 

where 2( )P k  is the discrete-time Ricatti equation solution. The 

Ricatti equation is shown below:  
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According to equation (21), 2( )P k can be obtained by 

inversely calculating from k N=  to 1,k =  . The method 

combining AIEM and the LQG active controller is presented 

using the AIEM to estimate ( )G k
∧

 and combining equation (6) 

to obtain the optimal state estimate, ( 1/ )X k k+ , which can be 

further substituted in equation (19). The combination of AIEM 
and the LQG controller has been designed. 

IV. RESULTS AND DISCUSSION 

To demonstrate the accuracy and efficiency of the controller 
design, several numerical retaining structure simulations were 
investigated. The soil-wall system considered is shown in figure 
1(a). The system is modeled using a simple two-degree freedom 
(2-DOF) mass spring dashpot dynamic model as shown in figure 
1(b) [13]. The wall material and soil layer is defined by the mass 

density, ρ , shear modulus of elasticity, G , Poisson's ratio, µ , 

and the material damping factor η  of concrete and dense sand 

respectively. The material data and soil-wall system dimensions 
are shown in Table I.  

TABLE I 
THE MATERIAL DATA AND DIMENSIONS OF THE SOIL-WALL SYSTEM [13] 

Wall height, H  5 (m ) 
Unit weight of the concrete wall, concγ  24 ( 3/KN m ) 
Shear modulus of the concrete wall, 

concG  

3 29921 10 ( / )KN m×  

Unit weight of the backfill soil, soilγ  318( / )KN m  

Shear modulus of the backfill soil, soilG  25769( / )KN m  

 
For method estimating the stiffness value for both soil and 

wall was described by Veletsos and Younan [17]. It is 
determined such that the undamped natural frequency of the 
model equals the fundamental natural frequency of the medium 

idealized as a series of vertical shear-beams. The stiffness, k  of 
a particular system can be estimated as 

( )( )2 2/ 4 /k m H Gπ ρ=                                                    (23) 

where m  is the mass of the system considered. This method is 
composed of the Kalman filter without the input term and the 
intelligent fuzzy weighted recursive least square estimator. The 
initial simulation conditions and other parameters are shown as 
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follows: 4(0 / 0) 10p diag  =   . ˆ (0) 0G = . 8(0) 10bp = . (0)M  

is set as a zero matrix. The weighting factor, γ , is an intelligent 

fuzzy weighting function. The sampling interval, 0.005t∆ = s, 
and the total simulation time, 70ft s= . The earth motion 

accelerations of the 921 Chi-Chi Earthquake in Taiwan were 
measured from the seismological station (TCU 056) at the 
Li-Ming elementary school [18]. The unknown earth motion 
acceleration can also be estimated from the dynamic responses 
of the wall.  

The process noise and measurement noise are both 
considered in the simulation process. The process noise 

covariance matrix, 2 2w n nQ Q I ×= × , where 210wQ −= . The 

measurement noise covariance matrix, 2 2v n nR R I ×= × , where 
2 1410vR σ −= = . σ  is the standard deviation of noise. Figure 

2 shows the displacement, velocity and acceleration-time 
history responses of the wall structure to the earth motion 
acceleration. Figure 3 shows the estimation result for the earth 
motion acceleration. The estimation results show that the 
estimator tracking performance is good enough and suitable in 
reducing the noise effect. The time histories of the responses for 
a wall-structural system with and without control are shown in 
Figures 4-7. The conventional LQG controller has the issue that 
the unknown input cannot be obtained and the control reaction 
is slower. The AIEM estimates the unknown input in on-line and 
combined with the LQG controller (which computes the optimal 
control force) can be used to obtain better results. Figure 8 
shows the overall time histories of the control forces required 
for the proposed method and LQG method. The simulation 
results demonstrate that the proposed control method 
successfully reduces the wall-structure responses when 
subjected to seismic excitation. 

 
Fig. 2 The displacement, velocity and acceleration of the wall caused 

by the seismic force 

 
Fig. 3 the estimation results using the adaptive weighting 

function

 
Fig. 4 Comparison of wall displacement control (1x ) caused by the 

seismic force 

 
Fig. 5 Comparison of wall displacement control (2x ) caused by the 

seismic force 
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Fig. 6 Comparison of wall velocity control (3x ) caused by the seismic 

force 

 
Fig. 7 Comparison of wall velocity control (4x ) caused by the seismic 

force 

 
Fig. 8 Comparison of the wall-structural system control forces 

V. CONCLUSIONS 

The study proposed an active control technique for active 
ground motion acceleration control in a retained structural 
system. This research exploited an active control technique 
based on the excellent AIEM and LQG controller. Because this 
active control technique requires external forces information the 
AIEM is proposed for on-line excitation estimation. This active 
control technique demonstrated excellent performance by 
solving the earthquake-excitation control problem. The results 
demonstrate that this method has better active vibration control 
than the conventional LQG controller. Future work is being 
conducted to extend this application to a nonlinear structural 
system. 
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