
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2035

Abstract—Reverse Engineering is a very important process in

Software Engineering. It can be performed backwards from system

development life cycle (SDLC) in order to get back the source data

or representations of a system through analysis of its structure,

function and operation. We use reverse engineering to introduce an

automatic tool to generate system requirements from its program

source codes. The tool is able to accept the C++ programming source

codes, scan the source codes line by line and parse the codes to

parser. Then, the engine of the tool will be able to generate system

requirements for that specific program to facilitate reuse and

enhancement of the program. The purpose of producing the tool is to

help recovering the system requirements of any system when the

system requirements document (SRD) does not exist due to

undocumented support of the system.

Keywords—System Requirements, Reverse Engineering, Source

Codes.

I. INTRODUCTION

EVERSE engineering is the process of discovering the

technological principles of a device or object or system

through analysis of its structure, function and operation [9].

Most of the time, it involves taking something apart, for

example the device or the system program, and analyzing its

working in detail, and trying to make a new device or program

that does the same thing without copying anything from the

original [6].

In reverse engineering, the process is often tedious but

necessary in order to study the specific technology or device.

In system programming, reverse engineering is often done

because the documentation of that particular system has never

been written or the person who developed the system is no

longer working in the company. We use this concept to

introduce an automatic tool for retrieval of requirements of a

system from the program source codes.

The purpose of producing the tool is to be able to recover

the system requirements of any system due to the cause that

the system does not have the necessary documents.

Documenting the process involved in developing the system is

important. In many organizations, 20 percent of system

development costs go to documenting the system [4]. In

Rosziati Ibrahim is with the Research Management and Innovation Centre,

Universiti Tun Hussein Onn, Malaysia (UTHM), Parit Raja, Batu Pahat,

Johor, Malaysia (phone: 607-4537901; fax: 607-4536021; e-mail: rosziati@

uthm.edu.my).

Tiu Kian Yong is with the Faculty of Information Technology and

Multimedia, Universiti Tun Hussein Onn Malaysia (UTHM), Pari Raja, Batu

Pahat, Johor, Malaysai (e-mail: jonastiu@gmail.com).

software development life cycle (SDLC), documenting

process in requirements analysis ends with a system

requirements document (SRD) [9]. SRD is important in order

to develop a system. It shows the system’s specification

before a developer would be able to develop the system. Once

the system demonstrates fault after implementation phase, the

SRD can be used as a reference for finding errors of the

system requirements. However, if documenting is not proper,

the source codes of the system will be used to find errors. This

is a difficult process considering the lines of the source codes

would be thousand. Therefore, by having a tool that would be

able to retrieve the system requirements back from the source

codes would be an added advantage to the developer of any

system application.

This paper discusses on retrieval of system requirements

from its source codes. The rest of the paper is organized as

follows. Section II presents the related work and Section III

discusses the system requirements. We also present our idea

on how to read the source codes, parse it to parser and then

convert it to system’s requirements in Section III. Section IV

discusses our tool in details, in particular on how to retrieve

data from the source codes using the engine of the tool.

Finally, we conclude our paper in Section V and give some

suggestions for future work of the tool.

II. RELATED WORK

Reverse engineering has become a viable method to

measure an existing system and reconstruct the necessary

model from its original. In the older days, disassembler is used

to recreate the assembly codes from the binary machine codes,

where the assembler is used to convert the codes written in

assembly language into binary machine codes. Decomplier, on

the other hand, is used to recreate the source codes in some

high level language for a program only available in machine

codes or bytecodes.

Based on the decompiler and disassembler, there has been a

significant amount of study focusing on disassembly of the

machine code instructions. Schwarz et al. [8], for example,

study the disassembly algorithms and propose an hybrid

approach in disassembly of the machine code. Tilley et al.

[10], on the other hand, propose the programmable approach

using the scripting language to enable the users to write their

own routines for common reverse engineering activities such

as graph layout, metrics and subsystem decompositions.

There has been a significant amount of study for looking at

the best technique in reverse engineering focusing on studying

the source code in order to get the design or requirements

ReSeT: Reverse Engineering System

Requirements Tool

Rosziati Ibrahim, and Tiu Kian Yong

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2036

Person

- lastname

- firstname

+ SetName

+ GetName

FocusGroup

- staffid

- EvaluateForm

PostGraduateStudent

- matrixno

PgForm

- detailinfo

+ GetForm

+ Submit

+ View

+ Evaluate

- FillUpForm

documents. Knodel et al. [5] suggest using the graphical

elements in order to understand the software architecture

better. Graph-based technique is proposed to be one of the

good techniques in reverse engineering in order to get the

requirements documents. Cremer et al. [3], for example, use

the graph-based technique for COBOL applications and

provide code analysis. Based on the graph-based technique as

well, UML (Unified Modeling Language) reverse engineering

[1] imports Java source codes and generates UML class

diagram to facilitate requirements analysis.

For our approach, we use graph-based technique as well to

get the necessary information from the C++ source codes,

convert the information into necessary tokens and then use

these detected tokens to generate the UML class diagram. The

class diagram can be used for requirements analysis. Altova

tool [1] is quite similar to our tool. However, Altova

concentrates on Java program source codes for its input to

generate the UML class diagram, our tool, on the other hand,

concentrate on C++ program source codes for its input to

generate the UML class diagram.

III. THE SYSTEM REQUIREMENTS

In UML specification, requirements analysis and design are

usually done using diagrams [2]. One particular diagram (a

use-case diagram) is used to specify requirements of the

system. In a use-case diagram, two important factors are used

to describe the requirements of a system. They are actors and

use cases. Actors are external entities that interact with the

system and use cases are the behavior (or the functionalities)

of a system [7]. The use cases are used to define the

requirements of the system. These use cases represent the

functionalities of the system. Most often, each use case is

then converted into a function representing the task of the

system.

In this paper, we present an example of an application for

monitoring system of a postgraduate student submitting

his/her progress report to Centre of Graduate Studies. The

requirements of the system include the capability to submit

progress report using the provided form, view the submitted

progress report and evaluate the submitted progress report.

These three requirements are then transformed into a use-case

diagram as shown in Fig. 1.

Fig. 1 A use-case Diagram for Monitoring System of Postgraduate

Student

Fig. 1 shows a simple use-case diagram for a monitoring

system of postgraduate student where a postgraduate student

(an actor) can submit his/her progress report to Centre of

Graduate Studies. From Fig. 1, a student is able to do two

tasks: submit a progress report and view a progress report. A

focus group is able to view and evaluate the progress report

while the centre is able to view the progress report.

Most often, use cases represent the functional requirements

of a system. If the requirements are gathered correctly, then a

good use-case diagram can be formed. From this use-case

diagram, the use cases are usually used for the functions of the

system. Table I shows the mapping of use cases to functions

of a system. These functions can then be converted to a class

diagram for the system.

TABLE I

USE CASES MAPPING TO SYSTEM’S FUNCTIONALITIES

Use Case Function

Submit Submit

View View

Evaluate Evaluate

The class diagram is the main static analysis diagram [2]. It

shows the static structure of the model for the classes and their

relationships. They are connected to each other as a graph.

Each class has its own internal structures and its relationships

with other classes. Fig. 2 shows an example of a class diagram

for Monitoring System of Postgraduate Student. Note that the

mapping from use-cases from Fig. 1 into functions in the class

diagram in Fig. 2. This mapping is important for the

consistency of the UML diagrams.

Fig. 2 A Class Diagram for Monitoring System of Postgraduate

Student

From Fig. 2, each class consists of a class name, its

attributes and methods. For example, a class Person has

attributes lastname and firstname with no method. Classes

FocusGroup and PostgraduateStudent inherit class Person.

Class FocusGroup declares its own attribute (staffid) and one

method (EvaluateForm) and class PostGraduateStudent

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2037

declares its own attribute (matrixno) and one method

(FillUpForm). Note that, a subclass inherits all the attributes

and methods of its superclass. Class PgForm, on the other

hand, offers 4 methods namely GetForm, Submit, View and

Evaluate. The three methods are translated from the three use

cases declared in Fig. 1.

IV. THE RESET

The tool, which we call ReSeT (Reverse Engineering

System’s Requirements Tool) is implemented using C++

programming language. The tool has two stages of activities.

The first stage accepts the source codes of C++ programming

language as the input and produces the output as detected

tokens in term of the set of class name, its attributes and

functions as well as its relationships with other classes. From

this output, for the second stage, the tool will suggest the

possibility of the class diagram. The targeted user of the tool

is software developer who wants to get back the system’s

requirements specification based on the program source codes.

The main objectives of developing the tool are being able to

detect the necessary tokens from the syntaxes of the program

source codes and generate the class diagram automatically

based on the detected tokens.

To generate the class diagram, a user is required to input a

C++ program source codes into the tool. After that, the tool

will validate the file format as well as the filename. If an

invalid file format has been entered or the file does not exist,

the tool will prompt an error message to warn the user.

Indeed, the user needs to reinsert the filename. However, if

both the filename and file format is valid, the tool will

reconfirm whether it is the file that the user needs. All the

commands in the tool are case-insensitive where the tool will

recognize both lowercase and uppercase command typed by

the user. The tool will also provide files searching function in

order to list out all the files’ name in a folder. The tool will

only accept a C++ source codes with the “.cpp” and “.h”

extensions. When user tries to insert an invalid file, the tool

will display a warning message and ignore the file.

Once the correct source codes file has been verified, the

source codes are parsed to the parser. The parser will read the

file, line by line, detect the tokens and store the necessary

tokens to form the class diagram. Note that, the tool will

bypass all the comments found in the file. There are two types

of comments which are single line comments (//) and multiple

line comments (enclosed between /* and */). At the same

time, the tool will also check the syntax error in the program

source codes.

Before the class diagram is displayed, the tool will display

the scanning results to the user. The result will contain the set

of class name, its attributes and methods as well as its

relationships with other classes. The tool will then provide

two log files to store the error occurred and parsing results.

The detected tokens will be stored into another file for

generation of class diagram.

For the purpose of ease in understanding in this paper, we

present an example of an application for monitoring system of

a postgraduate student submitting his/her progress report to

Centre of Graduate Studies as our case study using the tool.

From Fig. 2, a class Person is a superclass of classes

FocusGroup and PostGraduateStudent. Therefore, classes

FocusGroup and PostGraduateStudent inherit all attributes

and methods of class Person. Fig. 3 shows some of the

extracted source codes from the program of this system.

class Person {

 private:

 char lastname [30];

 char firstname [30];

 public:

 void SetName();

 char *GetName();

 };

…

class FocusGroup : public Person {

 private:

 char staffid [10];

 public:

 Void EvaluateForm();

};

…

class PostGraduateStudent : public Person {

 private:

 char matrixno [10];

 public :

 void FillUpForm();

};

…

class pgForm{

 private :

 struct Data {

 char lastname [30];

 char firstname [30];

 char matrixno [10];

 } detailinfo;

 public:

 void GetForm();

 void Submit();

 void View();

 void Evaluate();

};

…

Fig. 3 Extracted Source Codes

From Fig. 3, adopting the hybrid algorithm [8] by using the

linear sweep and recursive traversal algorithms, the tool is

able to read the source codes line by line and detect the

necessary tokens. Then the tokens are stored. Fig. 4 shows the

extracted tokens from reading of the program source codes.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2038

Person

- lastname

- firstname

+ SetName

+ GetName

FocusGroup

- staffid

- EvaluateForm

PostGraduateStudent

- matrixno

PgForm

- detailinfo

+ GetForm

+ Submit

+ View

+ Evaluate

- FillUpForm

Class name: Person

Association:

Inheritance:

Attributes: lastname, firstname

Methods: SetName, GetName

Class Name: FocusGroup

Association:

Inheritance: Person

Attributes: staffid

Methods: EvaluateForm

Class Name: PostGraduateStudent

Association:

Inheritance: Person

Attributes: matrixno

Methods: FillUpForm

Class Name: PgForm

Association: Person

Inheritance:

Attributes: detailinfo

Methods: GetForm, Submit, View, Evaluate

Fig. 4 Extracted Tokens from the Source Codes

From Fig. 4, the hybrid algorithm (combination of linear

sweep and recursive traversal algorithms) is used in order to

identify and extract the necessary tokens. Once the tokens

have been identified and extracted from the source codes, the

graph-based approach is used in our engine of the tool in

order to develop and generate the class diagram from the

extracted tokens. Fig. 5 shows the generated class diagram.

Fig. 5 Generated Class Diagram

Based on Fig. 5, the tool is able to generate the possible

class diagram for the system. However, comparing from Fig. 5

and Fig. 2, we still have problems to overcome the

associations of the classes and relationships among the

classes. The ambiguities of the system requirements are still

existed. We are currently looking at the possible solutions to

reduce these ambiguities.

The tool offers the system requirements by means of

extracted tokens of class name, its attributes and functions as

well as its relationships with other classes. Then the tool

suggests the possible class diagram based on the extracted

tokens.

V. CONCLUSION AND FUTURE WORK

The tool provides the ease in coming up with the system

requirements when the system does not support the proper

documents for requirements analysis. We are currently

improving our algorithm of extracting the tokens in order to

reduce the ambiguities of the system requirements.

For future work, the tool can also be designed to parse other

types of programming languages such as Java and C#.

REFERENCES

[1] Altova (2008). UML Reverse Engineering,

http://www.altova.com/features_reverse_engineer.html

[2] Bahrami A. (1999). Object-Oriented Systems Development, Mc-Graw

Hill, Singapore.

[3] Cremer K., Marburger A. and Westfechtel (2002). Graph-based Tools

for Re-engineering, Journal of Software Maintenance and Evolution:

Research and Practice, Voulme 14, Issue 4, pp 257-292.

[4] Heumann J. (2001). Generating Test Cases from Use Cases, Rational

Software, IBM.

[5] Knodel J., Muthig D. and Naab M. (2006). Understanding Software

Architectures by Visualization – An Experiment with Graphical

Elements, Proceeding of the 13th Working Conference on Reverse

Engineering (WCRE 2006).

[6] Musker D. (1998). Reverse Engineering, IBC Conference on Protecting

& Exploiting Intellectual Property in Electronics.

[7] Rational. (2003). Mastering Requirements Management with Use Cases,

Rational Software, IBM.

[8] Schwarz B., Debray S. and Andrews G. (2002). Disassembly of

Executable Code Revisited, Proceedings IEEE Working Conference on

Reverse Engineering, October 2002, pp 45-54.

[9] Sommerville I. (2007). Software Engineering, 8th Edition, Addison

Wesley, England.

[10] Tilley S., Wong K., Storey M. and Muller H. (1994). Programmable

Reverse Engineering, Journal of Software Engineering and Knowledge

Engineering.

