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 
Abstract—Conventional reservoir prediction methods ar not 

sufficient to explore the implicit relation between seismic attributes, 
and thus data utilization is low. In order to improve the predictive 
classification accuracy of reservoir lithology, this paper proposes a 
deep learning lithology prediction method based on ResNet (Residual 
Neural Network) and SENet (Squeeze-and-Excitation Neural 
Network). The neural network model is built and trained by using 
seismic attribute data and lithology data of Shengli oilfield, and the 
nonlinear mapping relationship between seismic attribute and 
lithology marker is established. The experimental results show that 
this method can significantly improve the classification effect of 
reservoir lithology, and the classification accuracy is close to 70%. 
This study can effectively predict the lithology of undrilled area and 
provide support for exploration and development. 
 

Keywords—Convolutional neural network, lithology, prediction 
of reservoir lithology, seismic attributes. 

I. INTRODUCTION 

ITH the improvement of oil and gas exploration, the 
conventional oil and gas resources are decreasing, and 

the exploration objects are gradually changing from structural 
oil and gas reservoirs to hidden oil and gas reservoirs. 
However, hidden oil and gas reservoirs are generally 
characterized by deep burial, complex structure, and great 
difficulty in exploration and development. Lithology 
identification is one of the important tasks of well logging 
reservoir evaluation, which is the basis of reservoir description, 
formation evaluation, real-time drilling monitoring, reservoir 
parameter solution and reservoir evaluation [1]. Direct 
experimental measurement of the core is the most accurate 
method to identify lithology, but it consumes tremendous time 
and money, which is limited in practical application [2]. 
Traditional lithology identification methods, such as crossplot 
and overlap [3], cannot effectively identify reservoir lithology. 

Deep learning has been applied in reservoir prediction and 
lithology identification. Guohe et al. [4] used depth belief 
network to predict logging lithology data by taking seismic data 
from several adjacent sampling points as input, and obtained 
the predicted lithology profile. Anpeng et al. [5] used natural 
gamma ray (GR) and other logging data as the input of deep 
network for lithology prediction, and achieved great results. 
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Jialiang et al. [6] combined PCA principal component analysis 
and BP network to reduce the dimension of network input data, 
network parameters and computation. 

As an important part of deep learning method, convolutional 
neural network [7] has made remarkable achievements in 
image recognition [8] and sound analysis [9], while reservoir 
prediction is still in the development stage. In this paper, the 
seismic attribute data of a block in Chengdao of Dongying are 
extracted and organized, the deep convolutional neural network 
is built, and the nonlinear mapping relationship between 
seismic attribute and logging lithology is established by using 
its powerful feature extraction and nonlinear fitting ability, and 
a new method of lithology prediction is proposed and verified 
by experiments. 

II. RESEARCH METHODS 

A. Convolutional Neural Network (CNN) 

As an important part of deep learning, CNN provides an 
end-to-end learning model. The parameters in the model can be 
trained by the traditional gradient descent method, and the 
features in the data can be learned by the trained CNN [10]. 
Since the original information can be directly input, the 
complicated pre-processing of data can be avoided. Meanwhile, 
the convolution operation shares weights of the network, which 
greatly reduces complexity and computation of the model. 
Consequently, this approach has been widely applied. 

The most important part of the CNN is convolution and 
pooling operation. Each convolutional layer moves on the input 
feature graph through a convolution kernel to obtain the local 
information of each step, while the pooling layer mixes the 
information of adjacent units in the input feature graph through 
operations such as maximum pooling and average pooling. In 
recent years, many models based on CNN were proposed, 
especially in the field of image recognition, including 
GoogleNet [11], ResNet [12], SENet [13] etc. They have 
improved the network structure in network depth and 
information transmission, and have become a popular 
component of convolutional network model. 

a) Convolutional Operation 

Convolution is a special mathematical operation. A 
convolution kernel carries out a convolution operation every 
step it moves on the input feature graph, and the output result 
can be obtained by adding bias and activating function [7]. The 
receptive field of the operation is the same size as the 
convolution kernel, and each convolution can extract the local 
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features. The convolution process is shown in Fig. 1. The 
convolution calculation is shown in (1): 

 
𝑥௝

௟=𝑓ሺ𝑢௝
௟ ሻ 

𝑢௝
௟=∑ 𝑥௜

௟ିଵ ൈ 𝑘௜௝
௟ ൅ 𝑏௝

௟
௜∈ெೕ                          (1) 

 
𝑙 is the sequence number of the convolutional layer, 𝑗 is the 
sequence number of the channel, 𝑥௝

௟ is the output of the JTH 

channel j of the convolutional layer l, 𝑢௝
௟ is the output of the 

unactivated function after convolution operation. 𝑓ሺ൉ሻ can be 
activation function, generally sigmoid function or ReLU 
function. 𝑀௝ is the subset of the input feature graph, 𝑥௜

௟ିଵ is the 

input of the convolution layer, 𝑘௜௝
௟  is the convolution kernel 

matrix, 𝑏௝
௟  is the corresponding bias, “ ∗ ” is convolutional 

operation. 
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Fig. 1 Convolutional operation 

b) Pooling 

Pooling can be used to conduct statistics on the features of 
different positions after convolution operation, and lower 
resolution statistical representation can be performed on the 
convolutional layer [14]. Common methods include average 
pooling, maximum pooling, etc. Pooling layer, also known as 
sampling layer or feature mapping layer, is obtained by pooling 
operation and then through activation function, which can 
effectively reduce the size of the matrix and reduce model 
parameters. Pooling calculation is shown in (2): 

 

𝑥௝
௟=𝑓ሺ𝑢௝

௟ ሻ 

𝑢௝
௟=𝑤௝

௟poolingሺ𝑥௝
௟ିଵሻ+ 𝑏௝

௟                             (2) 
 

𝑤௝
௟ is the weight of pooling, 𝑏௝

௟ is the bias of pooling. 

B. ResNet 

As the CNN gradually develops to a deeper level, the main 
problem facing the network is degradation rather than 
overfitting. The network performance no longer improves with 
the increase of depth, and even the performance declines when 
the network depth further increases [15]. Aiming at this 
problem, ResNet is designed through an identity mapping to 
transfer information directly backward, and constitute a 
Residual block, on the part of the Network learning into the 
Residual block. Hence, a deep Network can be constructed. The 
network learns the identity mapping of the residual block in the 
process of training, and then achieves the suitable depth of the 
network. The residual structure is shown in Fig. 2. F(X) is the 
residual function, X is the identity mapping, and the mapping of 
the residual structure is H(X) = F(X) -X, then F(X) = H(X) -X. 
It is easier to optimize the residual mapping than the original 
mapping [12]. 
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Fig. 2 Residual block 

C. SENet 

SENet can explicitly model the interdependencies between 
channels and adaptively recalibrate the characteristic responses 
of channel directions [13]. It has two main operations: Squeeze 
and Excitation. The Squeeze operation makes each 
characteristic of the two-dimensional channel become a real 
number, which can represent features in response to the global 
distribution channel while the Excitation operation is similar to 
the gating mechanism in the LSTM [16], which can generate 
weights for feature channels and explicitly model the 
correlation between feature channels. Finally, scale operation is 
used to scale the original feature graph with the weight 
obtained. The main structure of SENet is shown in Fig. 3 [13]. 

 

 

Fig. 3 SENet block 
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a) Squeeze 

To mine the dependencies between channels, we use a global 
average pooling operation to generate channel-level statistical 
data, as shown in (3): 

 

𝑧௖=𝐹௦௤ሺ𝑢௖ሻ=
ଵ

ு ൈ ௐ
+∑ ∑ 𝑢௖ሺ𝑖, 𝑗ሻௐ

௝ୀଵ
ு
௜ୀଵ            (3) 

 
𝑢௖ represents an input characteristic graph, H and W represent 
dimensions of the feature graph, 𝑧௖ ∈ 𝑅௖ represents statistical 
data of a channel after Squeeze operation. 

b) Excitation 

Excitation operation can build dependencies between 
channel statistical data. Two reduction ratio r full connection 
layers are used to limit the model complexity, and then we use 
the ReLU [17] activation function to get the weight of channel 
level, as shown in (4): 

 
s=𝐹௘௫ሺz, Wሻ=σሺgሺz, Wሻሻ= σሺ𝑊ଵδሺ𝑊ଶzሻሻ       (4) 

 

δ  represents ReLU function, 𝑊ଵ ∈ 𝑅
಴
ೝ

 ൈ ஼  and 𝑊ଶ ∈ 𝑅େ ൈ 
಴
ೝ 

represent the weights of full connection layer. Finally, the final 
result is obtained by multiplying the original feature graph by 
the weight of the channel level through the scaling operation as 
shown in (5): 

 
𝑥෤௖=𝐹௦௖௔௟௘ሺ𝑢௖, 𝑠௖ሻ=𝑠௖𝑢௖                  (5) 

III. RES-SE-NET LITHOLOGY PREDICTION MODEL 

A. Model Structure  

We propose a method of lithology prediction which 
combines the advantage of ResNet to deepen the network with 
the advantage of SENet to mine relationship between channels. 
This method can construct a flexible lithology prediction 
model. On the basis of classical convolution neural network, we 
use ResNet identity to deepen the depth of network, and use 
SENet Squeeze, Excitation to mine association relationship 
between channels. The designed network can be composed of 
multiple similar components, and the main component of the 
network, "SEidentity_Block", is shown in Fig. 4.  

The convolution kernel of 1×1 extracts global features and 
fuses the features of the previous convolution at the channel 
level, followed by two convolution kernels of 3×3 to mine local 
features of the feature map and reduce the network parameters. 
Because the numerical ranges of various seismic attribute data 
vary greatly, we add a BatchNormalization layer after each 
convolution to effectively prevent the gradient from 
disappearing. Moreover, we use the Squeeze and Excitation to 
mine the relationship between channels and generate weight. 
Finally, the identity connection is added at the beginning and 
end of the structure to realize the idea of ResNet, so that the 
structure changes from the original mapping of learning to 
learning residual mapping, which makes learning easier and 
can increase the depth of the network. 
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Fig. 4 SEidentity_Block 

B. Network Construction 
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Fig. 5 Model structure 
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We use 49 seismic attributes, such as original amplitude, 
mean square amplitude, instantaneous phase, and instantaneous 
frequency, to form a 7×7 input matrix, and construct multiple 
SEidentity_Block, which is followed by a dropout layer to 
reduce overfitting. Finally, four full-connection layers are 
connected to a sigmoid layer for dichotomous classification, 
with sandstone and mudstone as the output labels of {0,1}. The 
network structure with three "seidentity_blocks" is shown in 
Fig. 5. 

 

 

Fig. 6 Accuracy rate of training 
 

 

Fig. 7 Prediction result of CB11 

IV. EXPERIMENT AND ANALYSIS 

A. Experimental Data 

We take a block in Chengdao, Dongying as the research 
object, and extract SEGY seismic data volume, logging data, 
logging lithology data, time-depth conversion data and horizon 
information. 

B. Data Processing 

a) Seismic Data Processing 

We first calculate the location of each line of data in the segy 
file. For round-trip travel, the range is 1025, the inline range is 
627 to 2267, and the CDP range is 1189 to 1852. Since the 
range of values of each attribute varies greatly, the data are 
normalized as shown in (6): 

 

𝒙ᇱ=
𝒙ି𝒙𝒎𝒊𝒏

𝒙ି𝒙𝒎𝒂𝒙
                                      (6) 

 

 

Fig. 8 Real label of CB11 
 

 

Fig. 9 Prediction result of CB111  

b) Lithology Label Data Processing 

Lithology markers are mapped to the time-travel scale of 
seismic data by logging lithology files and time-depth 
conversion files. The travel time range [ 𝑡ଵ

௟ , 𝑡ଶ
௟ ] of the 

corresponding seismic attribute is calculated according to each 
depth range [𝑑ଵ

௟ , 𝑑ଶ
௟ ] of the lithology file. Lithological markers 

𝑙𝑎𝑏𝑒𝑙௟  of depth range [𝑑ଵ
௟ , 𝑑ଶ

௟ ] is the label of each sampling 
point in [𝑡ଵ

௟ , 𝑡ଶ
௟ ], divided into sandstone and mudstone 𝑦={0,1}. 

C. Comparative Aanalysis of Pprediction Mmethods 

We used the network 27-Res-SE-Net with the structure in 
Fig. 5, and the comparison models were the ordinary 
convolutional network 27-Conv-Net, the network 27-Res-Net 
with only ResNet structure, and the network 27-SE-Net with 
only SENet structure, and conventional machine learning 
algorithms [18], including SVM, decision tree, KNN algorithm 
and xgboost algorithm using RBF kernel function. 
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Fig. 10 Real label of CB111 
 

TABLE I 
ACCURACY COMPARISON 

method 
accuracy of 

training 
accuracy of 
predicting 

number of 
training 

27-Res-SE-Net 70.47% 69.72% 200 

27-Conv-Net 69.67% 65.41% 800 

27-Res-Net 71.99% 66.35% 180 

27-SE-Net 71.88 67.92 220 

SVM —— 57.90% —— 

DecisionTree —— 59.96% —— 

KNN —— 60.11% —— 

Xgboost —— 64.31% —— 

 
As show in Table I, 27-Res-SE-net has the highest prediction 

accuracy and fast convergence rate. Ordinary convolutional 
network 27-Conv-Net has the slowest convergence speed, and 

it is speculated that the network is too deep, resulting in 
"degradation" [12]. When the network is shallow, the 
convergence is faster, but the prediction accuracy rate does not 
change significantly. 27-Res-Net has the fastest convergence 
speed. Compared with 27-Conv-Net, it can be seen that ResNet 
structure can significantly accelerate the convergence speed of 
deep network. Compared with 27-Res-net, 27-SE-Net has 
higher prediction accuracy and slower convergence speed, so 
SENet can also speed up the network convergence speed and 
significantly improve the accuracy. Combined with the 
advantages of both, 27-Res-SE-Net has a fast convergence 
speed and the highest accuracy, which is the model with the 
best effect. However, after the 27-Res-SE-Net continued 
training, as shown in Fig. 6, the accuracy of the training set 
continued to improve, while there was no significant change in 
the prediction set. It was speculated that overfitting had 
occurred, and overfitting was still a common problem in the 
depth model. At the same time, the accuracy of depth model in 
prediction set is generally higher than that of conventional 
machine learning model, which shows the advantages of deep 
learning model over conventional machine learning model. 

D. Example Analysis of Borehole Lithology Prediction 

The 27-res-se-net model is used to predict the lithology of 
Wells CB11 and CB111. The results are shown in Figs. 7-10. In 
Wells CB11 with dense sandstone and CB111 with sparse 
sandstone, the prediction accuracy was 82.2% and 86.4 
respectively. 

E. Example Analysis of Profile Lithology Prediction 

We use 27-Res-SE-Net model to predict the profile of 
underground lithologic, taking the inline for sandstone markers 
imaging data from 1328 and 1368 respectively. The analysis 
results are shown in Figs. 11 and12. 

 

 

Fig. 11 Prediction result where inline = 1328 
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Fig. 12 Prediction result where inline = 1638 
 

V. CONCLUSION 

To improve the accuracy of reservoir lithology prediction, 
deep learning method is used to build the neural network 
model. We use the ResNet to add the depth of network, 
realizing the effective depth of adaptive network. Further 
SENet is applied after each convolution structure mining the 
correlation between different channels, in the network training 
process, to establish the mapping relationship between seismic 
attributes and lithologic tag. Experimental results in Chengdao 
area of Shengli oilfield show that compared with conventional 
reservoir prediction methods and conventional machine 
learning algorithms, the prediction effect of deep neural 
network combined with ResNet and SENet is significantly 
improved, which proves the effectiveness of deep learning and 
its advanced models in the field of reservoir prediction. 
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