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Abstract— Instead of representing individual cognition only, 

population cognition is represented using artificial neural networks 

whilst maintaining individuality.  This population network trains 

continuously, simulating adaptation.  An implementation of two 

coexisting populations is compared to the Lotka-Volterra model of 

predator-prey interaction.  Applications include multi-agent systems 

such as artificial life or computer games. 

Keywords— collective unconsciousness, neural networks, 

adaptation, predator-prey simulation 

I. INTRODUCTION

rtificial Neural Networks (ANNs) attempt to replicate the 

connectivity and functionality of biological neural 

networks in order to simulate learning [1], [2], [3].  They have 

been successfully applied in a number of domains including 

robotics, computer vision, pattern recognition, speech 

recognition, and image processing.  These typical applications 

assume that a neural network represents a single individual.

In order to represent populations of individuals accurately, 

it could be argued that each individual should have their 

cognition represented by a dedicated ANN, regardless of how 

cognition is defined.  However, each ANN would need to be 

trained prior to simulating population interactions otherwise 

each individual would have no knowledge whatsoever on their 

instantiation (eg.  birth), which might place them at a 

significant disadvantage with respect to their environment or 

other more highly-trained individuals.  In addition, if all 

individuals need to be trained before birth, it means that the 

total number of births needs to be known before run-time; 

impossible for emergent dynamic simulations such as artificial 

life.  Finally, even if training time for a large population were 

acceptable, it may be difficult to construct meaningful and 

reasonable variations of training data that are supposed to 
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engender individuality. 

However, it may be unnecessary for each individual to have 

a dedicated ANN.  The Jungian theory of collective 

unconsciousness states that there is part of the unconscious 

mind that is shared by a society, a people, or all humankind 

which contains concepts of science, religion and morality and 

is a product of ancestral experience [4], [5], [6]. 

This psychology theory can be loosely interpreted (in 

engineering terms) as a global common mechanism that 

represents the cognition of an entire population, assuming that 

the requirements that individuals take turns in cognitive 

processing is acceptable.  Using a typical ANN for this global 

mechanism is computationally feasible, because it has exactly 

the same requirements as a single ANN. 

Unfortunately, a side effect of this naive implementation is 

that the concept of individuality is lost because the cognitive 

representation for each agent is identical.  Consequently 

agents are just an army of deterministic clones; in exactly the 

same situation, all agents will necessarily behave in exactly 

the same way.  While it might be possible to avoid placing 

different agents in the same situation, such an implementation 

fails to accurately represent the theory of collective 

unconsciousness, because the theory requires individuality in 

addition to universality. 

In order to avoid cloning, each individual must be allowed 

to affect the global mechanism in some manner.  Since Jung 

fails to specify precisely how such interaction occurs, the 

precise details of this interaction can satisfy the whim of any 

implementation criteria, as long as it agrees with the theory.  

In this instance, we would like to preserve the ability of the 

mechanism to simulate learning when it is made global.  The 

advantage of such preservation is that adaptation can occur 

both at the individual and population levels, which is in 

accordance with Jung’s theory. 

The global mechanism must also affect each individual.  On 

instantiation, individuals must be given enough knowledge 

from the global mechanism to allow them to begin interacting 

in their environment immediately.  In addition, to simulate 

generation in nature, the way a child agent interacts with the 

global mechanism could resemble the way its parents interact 

with the global mechanism.  Both these ideas are designed 

into what we call a population artificial neural network (PN).

In comparison to dedicated neural networks, the benefit of 

using PN is that a single neural network is trained once prior 

to simulation, rather than needing to train as many neural 

networks as there are individuals.  In addition, instead of 
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individuals learning independently once instantiated, 

adaptation also occurs at a global level.  Consequently, 

individuals that are instantiated later rather than earlier 

interact using a PN with greater exposure. 

We did not know how to properly evaluate such a 

representation, as a precise mechanistic specification for 

cognition has yet to emerge from psychology to which such a 

representation can be compared.  Furthermore, an ANN is 

much simpler than a biological neural network, thus 

evaluating its biological cognitive accuracy would be difficult 

for a single individual let alone a population. 

However, it is possible to evaluate the feasibility of 

constructing an interacting population of simple agents, with 

each population having its own PN.  We implemented a 

predator-prey ecosystem because such ecosystems supposedly 

approximate the Lotka-Volterra model of population numbers 

[7], [8], [9], [10], [11].  Such numbers are trivial to record 

during simulation. 

The organisation of this paper is as follows.  In Section 2, 

we design the PN.  In Section 3 we discuss our 

implementation of the PN in the predator-prey ecosystem.  In 

Section 4 we evaluate this ecosystem with respect to the 

scalability of population size and with respect to the Lotka-

Volterra model.  Finally, in Section 5 we indicate some new 

directions for this work that we are currently pursuing. 

II. POPULATION NETWORK DESIGN

There are many ways in which interactions between the PN

and individuals could be defined, but no benchmark exists 

with which these interactions can be compared.  

Consequently, we establish our own set of design criteria and 

attempt to meet these.  Then, we assess our agents with 

respect to intelligent agents, since agent designs are usually 

considered with respect to this field. 

 It was necessary to establish our own criteria for the 

manner in which individuals precisely modify the global 

consciousness, since the theory of collective unconsciousness 

lacks such criteria.  In attempting to keep with the spirit of the 

theory we established three criteria: universality, individuality, 

and simplicity. 

For universality, it was necessary for the PN to fully 

represent the cognition of all individual agents that were 

connected to it.  We assume that members of a population are 

assumed to have exactly the same characteristics by default, 

and that this assumption includes cognition.  Consequently, all 

agents use their reasoning mechanism in exactly the same way 

and modify the same components of the reasoning 

mechanism.  In addition, since the PN simulates isolated 

dedicated neural networks, for universality it is necessary that 

individuals are unable to affect the ability of the PN to 

represent the cognitive capabilities of the population as a 

whole. 

For individuality, it was necessary for individual agents to 

modify the same components of the PN in different ways.  

Otherwise if agents interact with these components in the 

same way, their behaviour would still be identical, unless the 

PN changes independently of the agents.  In contrast, the 

theory of collective unconsciousness appears to indicate that 

the global mechanism is a function of the individual 

contributions to it, thus such an implementation is outside the 

scope of this work.. 

The concept of individuality can be interpreted in strong 

and weak versions.  With the strong version, all agents could 

be expected to behave significantly differently from each 

other in every situation.  With the weak version, all agents 

could be expected to behave slightly differently from each 

other in a single situation.  Two agents would engage in 

similar behaviour when two variables are similar: their input 

perceptions; and the internal variables of the PN.

Consequently, internal cognitive state variables need to be 

represented in agents that are input to the PN.  Differences in 

these cognitive state variables can guarantee individual 

behaviour even by different agents in the same situation with 

the same PN.  By instantiating these variables with great 

similarities or great differences, it is not infeasible that both 

versions of individuality could be represented. 

For simplicity, it was necessary for individual agents to 

modify the PN as little as possible, due to the computational 

expense required by the PN and the desired scalability in 

population numbers.  In such a context, even the simple task 

of fetching the individual contributions from each agent in 

memory become time consuming with complex PN and large 

numbers of agents, so minimum processing incorporating this 

contribution into the PN makes an appreciable difference 

depending on the resources of the simulation machine. 

Having elaborated our design criteria we now consider 

interactions between the agents and the PN.  We firstly 

consider how agents will affect the PN then the way in which 

the PN will, in turn, affect the agents.  These proposed 

interactions are examined with respect to our design criteria. 

In order to represent individuality, agents are given private 

cognitive state variables.  We consider two types of variables, 

world-variables, and PN-variables.  These two types act as a 

counterbalance to avoid both extreme versions of 

individuality.  World-variables relate the agent to the 

environment.  Since the environment varies itself, different 

agent’s world variables are in different states, leading to 

strong versions of individuality.  On the other hand, PN-

variables allow agents to make small contributions to the 

global mechanism.  However, the global mechanism is 

reasonably similar when different agents use it, leading to 

weak versions of individuality.  The architecture for our PN is 

shown in  

 Figure 1. 
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 Figure 1: Population Network Architecture 

With world-variables, agents require some internal state 

that relates the world to the agent.  From a philosophical point 

of view, since goals exist in individuals, and goals relate 

individuals to the world around them, we chose to represent 

simple goals within each agent.  Since goals are dynamic, and 

the rate of their change can be dependent of the situations in 

which agents find themselves, it is possible that two agents in 

the same situation will have different goals.  Since these goals 

are input to the PN along with perceptual inputs, different 

goals can produce individual behaviours. 

With PN-variables, agents require unique and private 

weights when the reasoning mechanism is a neural network.  

Thus an individual’s weights can be similar, but non-identical, 

to the weights of every other agent connected to the same PN.

In every agent, weights must correspond to exactly the same 

connections, to maintain universality.   

It is feasible for agents to submit their weights to the PN to 

be processed in turn, overriding the previous weights in the 

PN.  However, such an approach means that agents are using a 

global mechanism for processing only, rather than 

contributing to a global consciousness that affects all agents.  

Consequently, we allow the PN to have its own private 

weights, but view each agent’s weights as individual 

contributions to these global weights.  When each agent is 

connected to the PN, its contribution (offset) is summed with 

the global weights for simplicity. 

The PN must also affect the weight offsets of individual 

agents, in order for agents to change with respect to the global 

mechanism.  Since the PN is an abstraction of individual 

cognition, it was felt that whatever modifications were made 

to the global mechanism after processing should be reflected 

exactly in each individual.  Thus it was necessary to design a 

single update mechanism only to satisfy the criteria of 

universality. 

The way in which the PN changed was thus reflected 

proportionately in the offsets of each individual agent.  The 

formula used is shown below: wO is the agent’s offset weight 

which matches a specific neuron, W1 is the initial total weight 

for the neuron and W2 is the weight after the PN has 

completed processing. 

Although every weight in every agent uses the same 

formula to preserve universality, the agent offsets ripple-

through the PN such that each set of W2 will be unique for 

every agent.  Thus overall individuality is preserved, despite 

using the same formula for every neuron.  The formula was 

implemented directly, which satisfies the criteria of simplicity 

in a mathematical sense, having only four arithmetic 

operations.  While this formula could be further simplified to 

reduce computation, we prioritised individuality over 

simplicity in this instance, as the computational cost was 

deemed acceptable given our system resources. 

It is necessary to consider how our agents relate to 

intelligent agents, in order to define the scope of our design.  

In the field of intelligent agents, interaction between agents 

and their world is categorised as either reactive or deliberative 

(although there exists disagreement about the precise meaning 

of these terms) [12].  We briefly describe these categories, and 

attempt to position this work within. 

Reactive agents interact with the world by attempting to 

match their perceptions to stimulus-action pairs; if a match is 

found the predefined action is executed.  As such, reactive 

agents simulate intelligent behaviour without the need for a 

world model, internal state such as a goal model or memory, 

or explicit reasoning capability [13]. 

 There are three main differences between our 

architecture and a classical reactive agent.  Firstly, our agents 

are given simple internal cognitive states that are processed by 

the PN in addition to inputs from the world.  Secondly, rather 

than attempting to match inputs (perception) to a stimulus-

response pair (eg.  by searching in a lookup table), all inputs 

are processed simultaneously by the PN.  Thirdly, the neural 

network basis does give agents an explicit representation that 

allows learning, though it is clearly different from memory as 

agents are unable to explicitly recall past events.  Despite 

these differences, our agents probably fall more strongly into 

this category than deliberative agents, because agents do 

attempt to represent a world model that they can reason upon. 

Deliberative agents use an internal model of the world 

and a representation of memory to reason about the effects of 

its actions in order to select actions that it predicts will achieve 

its goals.  Its perceptions can be assessed in terms of a number 

of explicitly represented and interacting components such as 

memory, goals, beliefs, desires, intentions [14], [15].  Agents 

use these components to construct plans that they 

continuously evaluate and suspend or discontinue where 

necessary. 

 The major difference between our architecture and a 

classical deliberative agent is that our agents make no plans 

nor have any of the reasoning components for supporting 

planning.  The absence of these components means that one of 

the primary advantages of reactive architectures can be 

maintained: comparatively faster processing requirements 

[16].  Where planning is critical to achieve optimal agent 

behaviour, the current specification of our agents might be 

unsuitable.  However, it is outside the scope of this work to 

consider planning since the theory of collective 

unconsciousness does not mention it.  At the least, the current 
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specification of our model appears to potentially allow the 

incorporation of planning capability in our agents. 

 In this section we described the design of our agent 

architecture using a PN that satisfied our criteria.  Our agents 

can be categorised mainly as reactive, since they have no 

internal world model, memory, or explicit reasoning 

capability, and they map inputs directly to actions.  However, 

agents do have two sets of internal state variables: offset 

weights to the neurons; and goal states, which are considered 

alongside perceptual input.  These internal state variables, in 

conjunction with their offset modification (simulating 

adaptation) mean that our agents belong to the deliberative 

agent class to a small degree.  We now discuss the 

implementation of our agents in a predator-prey ecosystem. 

III. IMPLEMENTATION

A simulation of a predator-prey ecosystem requires a 

number of components to be represented.  We briefly list 

these components then justify their inclusion.  Object-oriented 

modelling was performed on these components, so that the 

resulting modular implementation could be easily extended.  

Seven components were required: 

The world with which agents interact 

The group attributes of each population (X2) 

The individual attributes of each agent (X2) 

The characteristics of features common to individuals in 

both populations 

The population network (PN)

The world with which agents interact was designed to 

represent three features: time, space, and population tracking.  

With time, it was necessary to schedule agents because only 

one agent can interact with the PN at a time.  In terms of the 

populations, we decided that predator agents would all be 

processed before prey agents, although it makes little 

difference since all agents have access to the PN in one turn.  

Within populations, we use round robin scheduling for 

simplicity. 

 With space, it is necessary for agent perceptions to be 

localised for two reasons.  Firstly, it is undesirable for all 

agents to be able to perceive the entire state of the world 

simultaneously, because then it means that all agents have 

exactly the same inputs perceptions (global omniscience), thus 

unnecessarily placing the responsibility for representing 

individuality on the representation of internal state.  More 

importantly, the processing capability required for the entire 

world-state, depending upon its complexity, could be well 

beyond the resources of a machine.  We used a homogenous 

tile engine to graphically represent different terrain types, 

where the various types of terrain related to agent goals. 

 With population tracking, it is necessary to periodically 

count and store population numbers, in order for changes in 

population numbers to be compared.  Population tracking 

served only one purpose in the simulation, for evaluating the 

accuracy of the predator-prey interactions.  Population 

numbers alone, while simple, are often critical in ecological 

modelling. 

The group attributes of each population were designed to 

represent the relationship between populations with the world 

and population relationships.  The relationship between 

populations with the world was interpreted in terms of 

territory.  With territory, populations would wander roughly 

within a region of tiles; predators and prey meet conveniently 

due to territory overlap.   

The population relationships were interpreted in two ways: 

each population had one dominant male and one dominant 

female, and each population had scheduled mating seasons.  

Dominant animals were given choice priority in various 

collective behaviours.  For example, where a group of lions 

met a group of zebras, the unfortunate zebra that had been 

selected by the dominant lion was also selected as a target by 

all other lions. 

With scheduled mating season, populations would, for a 

certain number of turns, prioritise the goal of mating over 

other goals.  In the tile world, pairs of agents would move to 

adjacent tiles and stay there for a time.  At the end of the 

season, agents would re-prioritise their goals to their original 

states. 

The individual attributes of each population represented 

relationships between the individual agent and a number of 

other agents including mate, offspring, food, and foes.  With 

the predator agents, food included the prey agents; with the 

prey agents, its foes were the predator.  We named the 

predator population lions, and the prey population zebras, 

because the agents and population relationships we had 

constructed simulated a small number of features with these 

complex real-life predators and prey. 

The attributes of features common to individuals in both 

populations include: a numerical id; food level, injury status, 

speed, perceptual range, and gender.  These attributes affect 

the way in which the agents interact with the world, thus 

changing the state of the world that the agents perceive.  Some 

of these attributes are directly input to the PN, under the 

assumption that agents perceive their own internal state as 

they perceive external state that can also be perceived by other 

agents. 

The PN used a Kohonen neural network, which was chosen 

for two reasons.  Firstly, a KNN is supposedly similar in 

architecture to biological neural networks [3], [2].  Secondly, 

this type of network learns in an unsupervised manner, placing 

the responsibility of constructing relationships upon the 

mechanism instead of on the designers.  The PN had 70 

Kohonen-layer neurons.; it took an hour to train on a dataset 

consisting of 500 elements processed in 4000 iterations.   

The PN has 7 input neurons; four were goal-state variables 

and three were perceptual boolean variables.  The four goal-

state variables were: hungry, thirsty, injury_level, and 

ready_to_mate..  The three perceptual variables were: 

predator-prey detected, mate detected and water detected.  The 

PN has four output variables; all output variables were 

directional: go-to-water, go-to-food, go-to-mate and roam.  

Once agents had moved on top of tiles that satisfied their 
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goals, they automatically proceeded to satisfy these goals.  

Note that a lion does not instantaneously kill a zebra; they 

inflicted damage, then as the zebra moves, the lion continues 

to move towards the new tiles containing the zebra, either 

until the kill was made, another zebra distracted the lion, or 

the lion became too tired to continue. 

 An object oriented analysis of our predator-prey 

simulation requirements lead to the construction of seven 

objects: World, Kohonen, Pride, Herd, Lion, Zebra and 

Animal.  For each of these objects, the simulation 

requirements were interpreted in terms of attributes and 

methods.  The complete implementation class diagram for the 

simulation is shown below in Figure 2.  Note the similarities 

and also the differences between attributes and methods to 

reflect the predator-prey relationship.  

Figure 2: Implementation Class Diagram 

An example of interactions between the predators and prey 

is shown below in Figure 3, where each picture shows a 

subset of the tile-world (in this instance, all tiles are the same 

type).  In the top left diagram, two lions (on the far edges of 

the screen), have detected a zebra, and the zebra has seen the 

lion to its right.  In the top right diagram, the zebra turns to 

flee from the first lion, but is confronted by another lion.  In 

the bottom left diagram, the zebra has turned back again (one 

emergent property of the simulation was confusion).  In the 

bottom right diagram, the zebra is now in the process of being 

eaten by one lion who is about to be joined in their meal by 

the other. 

Figure 3: Predator’s closing 

In this section we realised the design of our agent 

architecture using a PN within the context of a predator-prey 

ecosystem simulation.  Agents are able to reason, taking into 

consideration the external world and their internal states 

without requiring an explicit world model.  Agents are able to 

learn without having an explicit learning mechanism.  Once 

the initial training of the PN is complete, the global cognitive 

mechanism continues to learn without explicit representation 

in the world.  Based on our observation of behaviour, it does 

appear that agents do interact with the world in different ways 

some of the time, such that the requirement of individuality is 

satisfied.  We now discuss the evaluation of our predator-prey 

ecosystem. 

IV. EVALUATION

We evaluated two things: the scalability of representing 

increasingly large populations using the PN; and the accuracy 

of interactions in a predator-prey ecosystem.  It is important to 

investigate scalability because there are always upper bounds 

that constrain how many members can be represented 

simultaneously in a population.  It is important to investigate 

the accuracy of interactions because no model of cognition 

exists to which the PN could be compared. Thus cognitive 

models can only be investigated indirectly- via the interactions 

of large numbers of agents using the PN.

The scalability of the PN was evaluated by measuring the 

length of time it took for all of the agents to access the PN

once (all predators round-robin, then all prey).  The machine 
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on which this with 512M RAM.  The predator-prey ecosystem 

was implemented in C++, running under the Gentoo Linux 

operating system. 
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Figure 4: Single turn time for X agents 

As shown above in  

Figure 4, population numbers were increased in intervals of 

25.  Note that the population numbers were split 1:1 – for 

X=100 there were 50 lions and 50 zebras.  The graph shown is 

reasonably linear, fitting the formula t = X - 325.  We only 

considered the length of processing time for one turn and did 

not attempt to represent realistic interactions with such large 

numbers, even though the tile-world could be flexibly 

extended and modelled, due to a lack of information to which 

these interactions could be compared and limited viewing 

area.  These experiments, at least, demonstrated that it was 

possible to quickly compute reasonably large populations of 

agents using the PN (in the order of a few hundred). 

While no psychological mechanism exists to which our PN

can be compared, the interactions of the predator-prey 

ecosystem (whose individuals use this PN) can be assessed.  

Unfortunately, such an evaluation fails to evaluate the PN

directly; using another global mechanism instead of a PN

might be equally effective.  The strongest claim that such an 

evaluation allows us to make is that representing collective 

unconsciousness using a neural network is similar to a simple 

mathematical model, and thus such a representation may 

potentially be useful in simulating artificial life. 

Intuitively, interaction in a predator-prey ecosystem has two 

components.  Firstly, an increase in the number of prey can 

support a larger population of predators by increasing the food 

supply.  Secondly, when the number of predators reaches a 

certain size, they eat too many of the prey, thus the food 

supply dwindles, thus only a small number of predators can be 

supported because some predators starve to death (assuming 

no other food supply).  It is trivial to assess these interactions.  

At particular intervals, the numbers of each population are 

recorded and these numbers are plotted on a graph.  Changes 

in these numbers over time are due to births and deaths. 

A number of mathematical models of predator-prey 

interaction have been proposed; the simplest is the Lotka-

Volterra model which was developed independently by Lotka 

(1925) and Volterra (1926) [7]: The model has been compared 

to real predator-prey populations such as the arctic lynx and 

snowshoe hare (whose numbers have been closely monitored 

over a great length of time) and appears to be a surprisingly 

accurate approximation. 

The LVM equations consist of two interacting differential 

equations: one for each species.  In the equation shown below, 

X = is the number of prey, Y = the number of predators, a = 

the rate of prey population increase, b = predation rate 

coefficient, c = reproduction rate of predators per single prey 

eaten, and d = predator mortality rate. 

Measurement was performed was an Intel Pentium 4 2.4 

GHz

dYcXY
dt

dY

bXYaX
dt

dX

A graph of these equations is shown below in Figure 5, 

where X = 60 initially, Y = 20 initially, a = 0.142, b = 

0.00355, c = 0.00142, and d = 0.1065. These constants gave a 

clear representation of the interactions in the predator-prey 

ecosystem. The cyclic nature of the LVM perfectly matches 

the way numbers should intuitively rise and fall. 

Lotka-Volterra Model
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Figure 5: LVM predicted population numbers by steps 

In order to compare LVM to agents using our PN, we 

constructed a predator-prey simulation with the same initial 

numbers as the LVM graph above, having 20 predators and 60 

prey.  The world we constructed for our agents consisted of 

100*100 tiles.  There was four tile rings: at the centre, water, 

dirt, grass, and then water at the perimeter.  Zebras tended to 

stay close to the edges of the outer ring at the intersection of 

water and grass.  Those zebras that roamed towards the inner 

edge of the grass occasionally became thirsty and crossed the 

dirt to the central water source.  If they were hungry as well 

and did not make it back to the grass, the zebras could starve 

to death.  Since there were less zebras at the centre, more lions 

in the centre also tended to starve more than lions on the 

perimeter.  Population numbers recorded in this simulation 

were tracked and the resulting numbers are graphed below in 

Figure 6. 
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Simulation Results
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Figure 6: Predator-prey numbers by turns 

The similarities in these graphs were unexpected.  The cycles of 

interacting simulation population numbers seemed to follow the 

LVM reasonably closely.  On the other hand, the maximum numbers 

of each population at their peak were inconstant.  The reason for this 

variance is possibly because the four constants used by the LVM 

(a,b,c,d), are dynamic in an actual simulation, depending on a 

number of factors.  Unfortunately, no immediate pattern is 

discernable in these peak changes, and further investigation is 

required into how these constants are a function of the simulation 

state. The LVM also makes two other assumptions that could 

contribute to these differences: it assumes that prey only dies because 

predators kill them; and that all individuals in each species behave 

identically  

 In this section we evaluated the scalability of representing 

increasingly large populations using the PN; and the accuracy of 

interactions in a predator-prey ecosystem.  We found that it was 

possible to compute a few hundred agents for one turn in around a 

second.  We also found that population numbers fit the cyclic pattern 

of the Lotka-Volterra model of predator-prey interactions.

V. CONCLUSION

In this paper we described the design and implementation 

of a common mechanism to represent the cognition of groups 

of agents, based on Jung’s theory of collective 

unconsciousness.  We demonstrated that it was 

computationally possible to process the simulated interactions 

between hundreds of simple agents.  We also demonstrated 

that the simple predator-prey ecosystem we constructed had 

similar population number oscillation to a predictive 

mathematical model for these numbers. 

 There are three main areas that are currently undergoing 

investigation.  Firstly, we are curious to discover how 

particular terrain impacts the predator-prey interactions, since 

terrain differences can be compared to the real world.  

Secondly, we are experimenting both with different 

contributions from each agent to the PN, and different 

contributions back from the PN to each agent, to evaluate how 

the PN and the agents are affected.  Finally, we are developing 

a component-based approach to constructing the PN, so that 

different agents will use different neural network 

combinations.  It is hoped that such an arrangement will 

produce class-based behavioural differentiation; agents with 

the same components will demonstrate visibly similar 

behaviour and agents with different components will 

demonstrate visible behavioural differences. 

 There are several areas in which this representation of 

collective unconsciousness using neural networks could be 

applied.  Artificial life and ecological modelling typically 

represent large populations of interacting agents that also 

interact with the world around them.  The need to train many 

neural networks prior to simulation limited their application in 

these fields.  Many computer games also represent small 

populations that engage in behaviour that approximates the 

predator-prey relationship.  Specific agent offsets could 

represent non-playing characters at various levels of 

experience. 
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