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Abstract—Coloured Petri net (CPN) has been widely adopted in 

various areas in Computer Science, including protocol specification, 
performance evaluation, distributed systems and coordination in 
multi-agent systems. It provides a graphical representation of a system 
and has a strong mathematical foundation for proving various 
properties. This paper proposes a novel representation of a coloured 
Petri net using an extension of logic programming called abductive 
logic programming (ALP), which is purely based on classical logic. 
Under such a representation, an implementation of a CPN could be 
directly obtained, in which every inference step could be treated as a 
kind of equivalence preserved transformation. We would describe how 
to implement a CPN under such a representation using common 
meta-programming techniques in Prolog. We call our framework 
CPN-LP and illustrate its applications in modeling an intelligent 
agent.  
 

Keywords—Abduction, coloured Petri net, intelligent agent, logic 
programming. 

I. INTRODUCTION 
N recent years, agent oriented computing becomes one of the 
dominant trends of development in Computer Science. 

Various approaches have been proposed for solving problems 
in this field. An important area of research concerns 
communication and coordination amongst different 
autonomous agents. Coloured Petri net, which was widely used 
in studying coordination and concurrency in distributed 
systems [1, 2], has been applied to this research area in 
multi-agent systems [3, 4]. The advantages of using CPN are 
that a graphical representation of a system is provided and 
analytical methods are available for proving various properties, 
like place-invariant and deadlock. In parallel, another kind of 
approach based on logic programming (LP) has also been 
advocated. Logic programming has been extended in various 
directions. One of the extensions is called abductive logic 
programming [5]. A number of researches have proposed the 
use of ALP in multi-agent systems [6, 7].  The advantages of 
using logic programming are that logical semantics and 
inference procedure are available for specifying and 
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implementing a multi-agent system.  
This paper proposes a novel representation of a CPN in ALP 

such that advantages of both of these approaches could be 
resulted. Under such a representation, an implementation of the 
CPN using meta-programming techniques in Prolog could be 
directly obtained. Each inference step can be regarded as a kind 
of equivalence preserved transformation. We would discuss the 
application of our proposed framework (CPN-LP) using a 
formulation recently proposed by R.A. Kowalski [8] for 
modeling an intelligent agent: Thinking = Logic + Control, 
where “Control” concerns the manner in using the inference 
steps. Following this formulation, we argue that CPN could be 
nicely used for modeling the control component when 
designing an intelligent agent in a multi-agent system. Using 
the logical representation we propose, an implementation could 
be directly obtained. 

The structure of the rest of the paper is as follows. First, we 
would briefly introduce the formal definition of a CPN and 
ALP in the coming sections. Second, we outline the way to 
represent a CPN in ALP and illustrate the steps with a simple 
example. We show how to implement the representation of a 
CPN. Then we formally define the inference procedure and 
discuss its properties. Finally, we mention its applications in 
modeling an intelligent agent and discuss possible future 
developments.  

II. COLOURED PETRI  NET   
In Petri net, the possible states of a system are represented by 

means of ellipses or circles, which are called places. The 
actions or events, which may occur in the system, are 
represented by means of rectangles, which are called 
transitions. The net also contains a set of directed arrows 
called arcs. Each arc connects a place with a transition or a 
transition with a place. The current state of a system is 
represented by using a number of tokens. An arbitrary 
distribution of tokens on the places is called a marking. In 
coloured Petri net, each token contains values of certain type or 
called colour. 

 
A. Simple Example    
In Figure 1, which is borrowed from [2], there are 3 places, 

namely: B, C, and S. T2 is a transaction. The marking is that two 
tokens with values equal to (p, 0) are in the place B and another 
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three tokens with values equal to e are in the place S. Thus a 
place could contain a multi-set of tokens of certain type or 
colour. Also, each variable in the figure is also declared with a 
type.  

 

 
Fig. 1 A simple example of a CPN 

 
Declarations: 
type U = with p|q; 
type I = int; 
type P = product U*I 
type E = with e; 
var x : U; 
var i : I; 

 
There are 3 arcs in Figure 1 connecting a place to a transition or 
a transition to a place. An arc may be inscribed with an arc 
expression, which results in a multi-set of tokens when 
evaluating. In the figure, the transition T2 is enabled and could 
be fired. When firing the transition, one token of (p, 0) and two 
tokens of e would be respectively removed from B and S, 
another token of (p, 0) would be added to C. Sometimes, a 
transition may be associated with a Boolean expression called a 
guard which has to be evaluated to true when enabling or firing 
a transition. The formal definitions of these intuitive notions are 
given in the following. 
 

B. Formal Definitions  
Formally, a CPN is defined as a tuple,  (Σ, P, T, A, N, C, G, 

E, I) where 
(i) Σ is called colour sets. 
(ii) P is a finite set of places. 
(iii) T is a finite set of transitions. 
(iv) A is a finite set of arcs. 
(v) N is called node function mapping from A into P x T ∪ 

T x P. 
(vi) C is a colour function mapping from P into Σ. 
(vii) G is called guard function, mapping a transition in T 

into a Boolean expression. 
(viii) E is called an arc expression function mapping an arc 

into a multi-set of tokens. 
(ix) I is an initialization function mapping a place into a 

multi-set of tokens. 
 

The following is the formal definitions for a transition being 
enabled and the resultant marking after firing an enabled 
transition. 

 A binding of a transition t, (t, b) is a function b defined on 
variables of t, Var(t) such that b(v) ∈ Type(v) for all variables v 
occurring in t and G(t)<b> is evaluated to be true (where 
G(t)<b>  stands for the Boolean expression with all the 
variables in t being replaced with the values as dictated by b). 
 A binding (t, b) is enabled in a marking M if-and-only-if the 
following property is satisfied. 
  ∀p∈P: E(p,t)<b>  ≤ M(p). 
 
Accordingly, the binding, <T2, {(x, p), (i, 0)}> is enabled in 
Figure 1. When a (t, b) is fired in M1, the marking is updated to 
another marking, M2 as follows. 
  ∀p∈P: M2(p) =(M1(p) –E(p,t)<b>) + E(t, p) <b>. 
  

III. ABDUCTIVE LOGIC PROGRAMMING : A TRADITIONAL 
PERSPECTIVE 

Traditionally, abduction means inference to a best 
explanation and is a pattern of reasoning that occurs in many 
diverse areas. It proceeds from an outcome to a hypothesis that 
best explains or accounts for the outcome.  

    A ← B 
    A 
______________________________________________ 
Conclude B as an explanation for the outcome A 
 
In general, it can be formulated as follows. Given a set of 

sentences T (a theory or an agent’s belief) and a sentence Q (an 
outcome), to a first approximation, the abductive task can be 
characterized as the problem of finding a set of sentences Δ 
such that  

T ∪ Δ |=  Q. 
 

Moreover, we need to restrict Δ so that it conveys some reasons 
why the outcome holds. We want to explain one effect in terms 
of some causes; instead of other similar effects. Therefore the 
explanations are often restricted to a special pre-specified and 
domain-specific class of sentences called abducibles. In 
addition to T, integrity constraints (also called propagation 
rules), IC may be useful to avoid unintended explanations 
produced. A simple example below is used to illustrate these 
intuitive notions.  
 

A. Simple Example 
T: grass_is_wet ← rain_last_night  

grass_is_wet ← sprinker_was_on 
     no_cloud_last_night 
IC: cloudy_last_night ←rain_last_night 
   false ← cloudy_last_night, no_cloud_last_night 
Ab: rain_last_night, sprinker_was_on, cloudy_last_night 
Q: grass_is_wet. 
 
Without the use of integrity constraints, IC, the possible 

explanation for the outcome, Q; i.e. grass_is_wet could be 
explained by either rain_last_night or sprinker_was_on.  In the 
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presence of IC, the explanation rain_last_night would deduce 
falsity and thus unacceptable. In general, a further criterion is 
added when constructing an explanation; i.e. 

T ∪ Δ |=  IC. 
 
It should be noted that from Q to obtain one of the 

explanations, backward reasoning is employed. On the other 
hand, from one of the plausible explanations, rain_last_night to 
obtain the falsity, forward reasoning is employed. Thus in 
abductive reasoning, backward reasoning and forward 
reasoning are integrated together. 

 

B. Formal Definitions 
 Similarly, a ALP is  defined as a tuple, (T, IC, Ab, ThC ) 

(i) T is called the definitions for defined predicates (in the 
form of usual Prolog clauses); i.e. those predicates 
which are not abducible predicates and built-in 
predicates. 

(ii) IC is the set of integrity constraints or propagation 
rules. 

(iii) Ab is the set of abducible predicates; i.e. predicates 
without any definitions. 

(iv) ThC is some theory in form of logical formulae; but in 
general, would not be stated out explicitly. It is mainly 
used for justifying those operations when handling 
built-in predicates. For example, for handling ≠, =, 
ThC includes the Clark equality theory (CET) [9] 
which is implemented in Prolog using standard 
unification algorithm. 

In this paper, ThC is also used for logically justifying the 
steps when modeling the removal of tokens after firing a 
transition. This would be further explained in a latter section. 

IV. REPRESENTATION OF CPN IN ALP 
Superficially, these two formalisms seem to be totally 

different from each other. Also, destruction of tokens when 
firing a transition usually lead one to believe that such an 
operation could not be appropriately modeled using classical 
logic.  

 

A. Simple example 
To clarify our approach, we use the CPN in Figure 1 as an 

illustration. 
In the representation we propose, a marking in a CPN is 

represented as a set of abducible atoms (in the form of token(ID, 
Colour, Place)) with abducible, Ab={token}. For the marking 
of CPN in Figure 1, it is represented as 

{ token(id1, col(p,0), b), token(id2, col(p,0), b), 
token(id3, col(e), s), token(id4, col(e), s),  
token(id5, col(e),s)}. 

Here, we adopt the conventions in Prolog. Names starting 
with a small letter stand for constants, while those starting with 
a capital letter stand for variables. A (set of) propagation rule(s) 
(in the form of trans(ID, ListOfInputs) ← List of tokens 

requested ) would be responsible for firing a transition in a 
CPN. For T2 in Figure 1, the following rules are used. 
trans(t2, [p,I])← token(Id1, col(p, I), b), token( Id2,col(e), s), 

 token(Id3,col(e),s), Id2 ≠ Id3.  
trans(t2, [q,I])← token(Id1, col(p, I), b), token( Id2,col(e), s). 

 
 Thus checking whether a transition is enabled under a 

marking and firing the transition in a CPN is just a kind of 
forward reasoning commonly used in many production 
systems. 

For determining the set of output tokens when firing an 
enabled transition, the definition of an atom (in the form of 
trans(ID, ListOfInputs)←List of tokens generated) for that 
transition and backward reasoning are employed. Again, for T2 
in Figure 1, the corresponding definition is as follows. 
 trans(t2,  [X, I])←  gensym(id, ID), token(ID, col(X,I), c), 
         place(c, col(X, I). 
Note that gensym is a built-in predicate available in most Prolog 
systems for generating a unique serial number, which should be 
logically treated as a distinct skolem constant. The atom 
place(c, col(X, I)) is used as a  safeguard to check the 
appropriateness of the colour of the newly generated token 
token(ID, col(X,I), c). The corresponding definition is below.  
  place(c, col(p, I)) ← integer(I). 
  place(c, col(q, I)) ← integer(I). 
 
 Finally, we define a computation state as a tuple consisting 
of two sets S = (S1, S2). At the beginning, S1 consists of 
abducible atoms representing the initial marking a CPN and S2 
is empty. For Figure 1, the computation state, S is defined as 

 S=({ token(id1, col(p,0), b), token(id2, col(p,0), b), 
token(id3, col(e), s), token(id4, col(e), s),  
token(id5, col(e),s)}, {}). 

By forward reasoning with a propagation rule, a transition is 
fired and the tokens occurring in the body of the propagation 
rule would be removed from S1 to S2 and the head of the rule is 
added to S1.  Then by backward reasoning with the definition of 
the transition, the corresponding new token(s) would be added 
to S1. This process is repeated. For firing the transition T2 in 
Figure 1, the changes could be described as follows. 

 S=({ token(id1, col(p,0), b), token(id2, col(p,0), b), 
token(id3, col(e), s), token(id4, col(e), s),  
token(id5, col(e),s)}, {}) 
            forward reasoning 

 S’=({ trans(t2, [p,I]), token(id2, col(p,0), b), 
token(id3, col(e), s) }, { token(id1, col(p,0), b), 
token(id4, col(e), s),  token(id5, col(e),s)}) 
                backward reasoning 

S”=({ token(id6, col(p,0), c), token(id2, col(p,0), b), 
token(id3, col(e), s) }, { token(id1, col(p,0), b), 
token(id4, col(e), s),  token(id5, col(e),s)}) 

S1 contains the tokens in the current marking of a CPN and S2 
contains the tokens, which occur in a certain previous state.  
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B. Comparison 
A comparison table is below to highlight the difference 

between a CPN and the corresponding logical representation 
we propose.  

TABLE I 
COMPARISON BETWEEN TWO FORMALISMS: CPN VS. ALP 

________________________________________________ 
CPN         ALP 

________________________________________________ 
Structure: Node function  Implicit in the propagation  

rules and definitions for 
transitions 

 
Place:  Name           Use the definitions of predicate 

Colour set              place and functor, col: 
         Initial marking           place(Place, col(Type)). 

Initial state: S=(S1, S2) where S1 
is a set of atoms with predicate, 
token and S2 is empty 
 

Transition: Name      Use the definitions of predicate  
Guard     trans: 

trans(ID, ListOfInputs)← 
List of tokens generated 

Note: Guard is represented in the 
condition of a propagation rule. 

Arc expression: It is   Represented in the body of a 
evaluated to yield a      propagation rule for arcs 
multi-set of tokens with    from place to transition 
colour          trans(ID, ListOfInputs) ←  

List of tokens requested 

Binding:<T2,{(x,p), (i,0)}>   Prolog unification process when 
implementing the propagation 
rule 

Enable a binding   Enable a propagation rule using 
an appropriate ground 
instantiation  

 
Fire a transition: A     Forward reasoning using 
multi-set tokens is removed  propagation rule and  
from each input place and  backward  reasoning using a  
is added to each output place  definition in order to update a  

computation state 
  
Declarations:       Following common Prolog’s 
Types, variables       conventions: No need 
Functions/ operations     These could be easily achieved  
(for defining an arc      using clauses for defined 
expression)        predicates 
________________________________________________ 

C. Full Example: Resource Allocation 
Before we mention the implementation, and formalize the 

inference steps and discuss its properties, we show a full 
example borrowing from [2] in Figure 2. Note that the initial 
distribution of tokens (if any) in each relevant place of a CPN is 
indicated as a multi-set of tokens with an underline. Initially, 

there are 11 tokens in the CPN.  
 

 
 

Fig. 2 A full example of CPN 
Propagation rules: 
trans(t1, [q, I] ) ← token(Id1, col(q,I), a), token(Id2,col(e),r), 

 token(Id3, col(e), s). 
trans(t2, [p,I]) ← token(Id1, col(p, I), b), 

token( Id2,col(e), s), token(Id3,col(e),s), 
 Id2 ≠ Id3.  

trans(t2, [q,I]) ←  token(Id1,col(q, I), b),token(Id2, col(e), s). 
trans(t3, [p,I]) ← token(Id1, col(p,I),c), token(Id2, col(e), t). 
trans(t3(q,I) ← token(Id2, col(q,I), c). 
trans(t4,[P,I]) ← token(Id1, col(P,I), d), token(Id2, col(e), t). 
trans(t5,[P,I]) ← token(Id1, col(P,I), e). 
Definitions: 
place(a, col(X,I)) ← type(X),integer(I).  
place(b, col(X,I)) ← type(X),integer(I).  
place(c, col(X,I)) ← type(X),integer(I). 
place(d, col(X,I)) ← type(X),integer(I).  
place(e, col(X,I)) ← type(X),integer(I).  
place(r, col(e)). place(s, col(e)).place(t, col(e)). 
type(p). type(q). 
 
 
trans(t1,[P,I])←place(b, col(P,I),gensym(id, ID), 

token(ID, col(P,I), b). 
trans(t2,[P,I])← place(c, col(P,I)),gensym(id,ID), 

token(ID, col(P,I), c). 
trans(t3,[p,I])← place(d, col(p,I)),gensym(id,ID), 

 token(ID, col(p,I), d). 
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trans(t3, [q,I])← place(d, col(q,I)), gensym(id,ID1),
 token(ID1, col(q,I), d), gensym(id, ID2), 
token(ID2, col(e), r).  

trans(t4,[P, I])←place(e, col(P,I)), gensym(id, ID), 
token(ID, col(P,I), e). 

trans(t5,[p,I])←  place(b, col(p,I)),gensym(id, ID1), 
 I1 is I + 1, token(ID1, col(p,I1),b), gensym(id, ID2), 

gensym(id,ID3), token(ID2, col(e),s), 
 token(ID3, col(e), s), gensym(id, ID4), gensym(id,ID5), 
token(ID4, col(e),t), token(ID5, col(e), t). 

trans(t5, [q,I])← place(a, col(q,I)), gensym(id, ID1), 
 I1 is I + 1, token(ID1, col(p,I1),a), 
 gensym(id, ID2),gensym(id,ID3),token(ID2, col(e),s), 

 token(ID3, col(e), s), gensym(id, ID4), 
 token(ID4, col(e),t). 

Initial computation state: 
S=({token(id1,col(q,0),a), token(id2, col(q,0),a), 

 token(id3,col(q,0),a),token(id4,col(p,0),b),  
token(id5,col(p,0),b),token(id6, col(e),r),  
token(id7,col(e),s),token(id8,col(e),s), token(id9,col(e),s),  
token(id10, col(e),t), 
 token(id11, col(e),t)}, {}) 

V. IMPLEMENTATION  

In this section, we briefly sketch how to implement a CPN 
using the logical representation proposed above. It is largely in 
line with the format shown in the previous section with some 
modifications for efficiency of programming. 
 We adopt SWI-Prolog [10] for the implementation of a CPN 
using the meta-programming techniques. To ease the 
programming effort for checking whether a transition is 
enabled and firing a transition, each transition rule is 
represented using the following format. 
 progRule(ID, DefinedAtomAdded,  

body(ListOfTokens, Constraints, ListOfVars) ) 
 

For each propagation rule, we give a unique number, ID for 
identification purpose. The tokens required for firing the rule is 
represented using the functor body, which has three arguments.  
The first argument is the list of tokens required. The second 
argument is the constraints on the variables occurring in the 
tokens required. The third argument is the list of the variables 
occurring in the tokens. For example, the second propagation 
rule for the CPN in Figure 2 is represented as follows. 

progRule(r2, trans( t2,[p,I], LstOfTokensGenerated), 
body([token(Id1, col(p, I), b), token( Id2,col(e), s), 
token(Id3,col(e),s)], [not(Id2 =Id3)],[Id1,I,Id2,Id3]) ). 

 
Based on such a format, all the rules and the corresponding 

instantiations that are enabled in a computation state can be 
found using the following program clauses and the built-in 
meta-predicate setof. 
setof( c(RID,LV),  

enableRule(RID, LV, TokensInCurrentState),  
ListRuleVars) 

where enableRule is defined as 
enableRule(RID, LV, LstTokens):- 

progRule(RID, _, body(LT, LC, LV) ),  
enable(LT, LC, LV, LstTokens). 

enable(LT, LC, LV, LstTokens) :- 
subList(LT, LstTokens), 

                     fulfillAll(LC). 
 
Simply speaking, a rule is enabled when all the tokens could be 
found in the current state (subList(LT, LstTokens)), and the 
corresponding constraints on the variables are fulfilled 
( fulfillAll(LC)). 
 After finding all enabled propagation rules, we randomly 
choose one to fire; i.e. the head of the propagation rule is added 
to the computation state. Next, we mention how to handle a 
defined atom. Each defined atom would have a (set of) clause(s) 
as its definition. For atoms of predicate trans, their definitions 
are in the following format. 
 trans(ID, ListOfInputVars, ListOfTokensGen) :- 
               B1,B2,….., Bn. 

As an illustration, the definition for the transition T5 would 
be as follows. 
trans(t5,[p,I], [token(ID2, col(e),s), token(ID3, col(e), s), 

 token(ID1, col(p,I1), b), token(ID4, col(e), t), 
             token(ID5, col(e), t)] ):- 

place(b, col(p,I)), gensym(id, ID1), I1 is I + 1,   
gensym(id, ID2), gensym(id,ID3) ,gensym(id, ID4),  
gensym(id,ID5). 

trans(t5,[q,I], [token(ID1, col(q,I1),a), token(ID2, col(e),s), 
token(ID3, col(e), s), token(ID4, col(e),t)]):- 

place(a, col(q,I)), gensym(id, ID1), I1 is I + 1,   
 gensym(id, ID2),gensym(id,ID3), gensym(id, ID4). 
 
The third argument, ListOfTokensGen is the list of tokens that 
would be generated. The body of the clause, B1,B2,…..,Bn is 
used to determine the ground values of the variables occurring 
in these tokens based on the values of the input variables. 
 The cycle of the reasoning process is established using the 
predicate abdemo as shown below. 
abdemo(state(prc([],[HTok|Toks]),Ls) ) :- 

setof( c(RID,LV), 
 enableRule(RID, LV, [HTok|Toks]), ListRuleVars), 

ListRuleVars=[HRule|TRules],!, 
selectOne(ListRuleVars, RuleVars), 
fireRule(RuleVars, [HTok|Toks], Ls, LH1, LTok1, Ls1),
abdemo( state(prc(LH1, LTok1), Ls1) ). 

abdemo(state(prc([trans(ID,ListIn,ListTokens)|Ld],Lt), 
 Ls) ) :- 

call(trans(ID, ListIn, ListTokens)),!,  
append(ListTokens, Lt, Lt1),  
abdemo(state(prc(Ld, Lt1), Ls)).  

abdemo( state(prc([],Lt), Ls) ):- 
!, write(‘End of the token game ’). 

 
Note that a computation state is represented as an atom 

 state( prc(ListofDefinedAtoms, ListofCurrentTokens), 
 Listof PreviousTokens ). 

The first argument of the functor, prc, ListofDefinedAtoms is 
the list of defined atoms with predicates equal to trans. The 
second argument ListofCurrentTokens is the list of current 
ground tokens which reflect the current system state. Finally, 
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the second argument, Listof PreviousTokens of functor, state is 
the list of previous tokens.  

The initial marking would be represented using a number of 
atoms (in the form of initial(token(ID,Colour,Place)). For the 
CPN in Figure 2, the corresponding clauses are shown below. 

initial(token(ID,col(q,0),a)):-gensym(id, ID). % ID=id1 
initial(token(ID, col(q,0),a)):-gensym(id, ID). % ID=id2  
initial(token(ID,col(q,0),a)):-gensym(id, ID). % ID=id3 
initial(token(ID,col(p,0),b)):-gensym(id, ID). % ID=id4 
initial(token(ID,col(p,0),b)):-gensym(id, ID). % ID=id5 
initial(token(ID, col(e),r)):-gensym(id, ID). % ID=id6 
initial(token(ID,col(e),s)):-gensym(id, ID). % ID=id7 
initial(token(ID,col(e),s)):-gensym(id, ID). % ID=id8 
initial(token(ID,col(e),s)):-gensym(id, ID). % ID=id9 
initial(token(ID, col(e),t)):-gensym(id, ID). % ID=id10 
initial(token(ID,col(e),t)):-gensym(id, ID). % ID=id11 
 

The whole process is started by using the following clause. 
start:- 
 findall(T, initial(T), ListOfInitialTokens),  
 abdemo(state( prc([],ListOfInitialTokens), [])). 

 
The output of firing first two rules when running the logical 
representation of the CPN in Figure 2 is shown below. 

Firing the rule, r1 (i.e. T1) using tokens of id1, id6 and id7, 
the list of current tokens is changed to: 

token(id12, col(q, 0), b) 
token(id2, col(q, 0), a) 
token(id3, col(q, 0), a) 
token(id4, col(p, 0), b) 
token(id5, col(p, 0), b) 
token(id8, col(e), s) 
token(id9, col(e), s) 
token(id10, col(e), t) 
token(id11, col(e), t) 
 

Firing the rule, r2 (i.e. T2 with x=p) using tokens of id5, id9, 
id8, the list of current tokens is changed to: 

token(id13, col(p, 0), c) 
token(id12, col(q, 0), b) 
token(id2, col(q, 0), a) 
token(id3, col(q, 0), a)  
token(id4, col(p, 0), b) 
token(id10, col(e), t) 
token(id11, col(e), t) 

VI. PROOF PROCEDURE AND ITS PROPERTIES 
At the introduction, we claim that each inference step can be 

regarded as an equivalence preserved transformation. Before 
we prove such a property, we introduce some definitions and 
formally define the inference steps below. Note that a 
conjunction of atoms (or negated atoms) and a set of atoms (or 
negated atoms) are used interchangeably. 

Definition 1:  Given an abductive logic program, P=<T, IC, 
Ab, ThC>, the semantics of the program, Sem(P) is defined as 

  Sem(P) ≡ Comp(T) ∪ IC ∪ ThC 
where  Comp(T) is the Clark completion semantics [9] applied 
to the (user-) defined predicates.    

Simply speaking, under Clark completion semantics, a general 
logic program is a set of if-and-only-if definitions. For example, 
we have a number of clauses for a predicate, say p. 
   p(t)←B1 

   p(t)←B2 

   …………… 
   p(t)←Bn 

 

Under the Clark completion semantics, these clauses mean the 
following if-and-only-if logical statement. 
    p(t)↔ B1∨ B2∨….. ∨ Bn 
 
Also, in this paper, Ab would be simply equal to {token}. 
 Definition 2: A computation state, S is a tuple of 2 sets of 
ground atoms whose predicate could be either of trans or token; 
i.e. S=(S1, S2). An initial computation state S0 is equal to (S1, 
{ }).    
 Definition 3 (Propagation rule):  
A propagation rule in IC is in the form of 
   trans(t) ← Ts, C. 
All the variables in t and C must occur in Ts, which stands for a 
conjunction of atoms with predicates equal to token. The atoms 
or negated atoms in C would be of some built-in predicates.  
  
 Definition 4: A propagation step: Given an abductive logic 
program, P a computation state, S=(S1, S2), a propagation rule, 
trans(t) ← Ts, C and a ground instantiation σ for the variables 
in Ts, a propagation step is defined as follows:  If   Ts.σ 
⊆ S1, 
           Sem(P) |= C.σ 
  Then   the next computation state is S’=( S’1, S’2

 ) with 
     S’1 = (S1-Ts.σ) ∪ trans(t) .σ, 
     S’2 = S2 ∪ Ts.σ.    
 
Note that since the S1 contains only ground atoms and all 
variables in t must occur in Ts, trans(t).σ must be ground. 
 Definition 5 (Definition clause):  
(i) A definition clause in T whose head is of predicate trans is in 
the form of 
   trans(t) ← B, Ts 
where Ts is a conjunction of atoms of predicate token whose 
variables must occur either in t or in B. And B is a conjunction 
of atoms or negated atoms whose predicates are either built-in 
or (user-) defined but not trans. The variables in negated 
atoms must occur in t or atoms in B.  
(ii) A definition clause in T whose head is of other predicates; 
instead of trans is in the form of  

p(t) ←B 
where B could be empty or is a conjunction of atoms or negated 
atoms whose predicates would not be of token or trans and the 
variables in t must occur in some atoms in B. Also, the variables 
in negated atoms must occur in t or atoms in B.    
 Definition 6: An unfolding step: given a definition clause 
trans(t)←B, Ts in T of an abductive logic program, P and a 
computation state S=(S1, S2), an unfolding step is defined as 
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follows: 
  If  trans(t).σ ∈ S1, 
       Sem(P) |= trans(t) .σ←(B, Ts).σ.ρ 

 where σ is any ground instantiation for variables in t , 
ρ is any ground instantiation for variables in B, 

  then the next computation state is S’=( S’1, S’2
 ) with 

     S’1 = (S1 ∪ Ts.σ.ρ) - trans(t).σ, 
     S’2 = S2.           
Note that since the variables in Ts must occur either in t or in B, 
Ts.σ.ρ must be ground.  

To ensure that any SLD-NF derivation for establishing the 
validity of B in a definition clause, trans(t) ← B, Ts would be 
terminated within a finite amount of time, we impose the 
restriction that T has to be acyclic (please refer to [11] for 
details concerning the termination of an acyclic logic program).  
Since we request that any definition clause (whose head is of 
other predicates; instead of trans), p(t) ←B, the variables in t 
must occur in some atoms in B, a ground instantiation of t 
would be obtained in any finite successful SLD-NF derivation 
for p(t).  

To facilitate the presentation, we introduce the following 
notation as a short hand. 

Definition 7(An answer):  Given an abductive logic 
program, P and an atom, trans(t),  answerp(trans(t).σ) (where σ 
is any ground instantiation for variables in t) denotes the set of 
ground abducible atoms Ts.σ.ρ such that the following holds. 
      Sem(P) |= trans(t) .σ←(B, Ts).σ.ρ 
where ρ is a ground instantiation for variables in B.   
If P is obvious in the context, the subscript would be omitted. 

Definition 8 (A derivation): A derivation starting from an 
initial computation state, S0 is defined as a chain of computation 
states. 

 S0 → S’→S”→… 
where the next state is derived from the current state by 
applying either a propagation step or an unfolding step.  

We have formally defined the form of T, IC, Ab and 
inference steps. Now we have to define ThC. As mentioned 
above, ThC includes CET, which is stated below in the form of 
propagation rules. 

(1) f(y1,…..,yn)=f(z1,…..,zn) → y1=z1,…..,yn=zn  
(2)   f(y1,…..,yn)=g(z1,…..,zm), f≠g → false 

 (3)   y occurs in t, y=t → false 
 
This set of rules justifies the use of unification algorithm for 
catering the equality. Similarly, ThC also includes the 
pre-conditions and post-conditions of built-in predicates in the 
form of propagation rule (built-in predicates theory, BIT) to 
justify use of these predicates. For example, for the built-in 
predicate integer(I), the corresponding rules could be: 
   ground(I), I ∈ INTEGER → integer(I)≡ true 
   ground(I), I ∉ INTEGER → integer(I)≡ false 
  where  INTEGER stands for the integer type; 
     ground(I) is evaluated to true when I is without 

any variables; otherwise false. 
Besides, to capture the characteristics of the execution of a 

CPN, we add the following two theories to ThC. 
Definition 9 (Theory of Mutually Exclusive): Theory of 

mutually exclusive for IC of an ALP is as follows. 
For any two rules:  

trans(t1) ← T1s, C1, 
 trans(t2) ← T2s, C2 

in IC, we have 
(T1s.σ1  ∩ T2s.σ2  ≠ ∅)  → 

((T1s∧C1). σ1 ∧ (T2s∧C2).σ2  ≡  false).   
where σ1 is any ground instantiation for variables in T1s and 
σ2 is any ground instantiation for variables in T2s.  

This theory is to justify the removal of tokens from S1 to S2 in 
a propagation step. It is because according to this theory, after a 
ground token has been used to fire a selected propagation rule, 
the body of any ground instances of other propagation rules 
sharing with the same ground token would be automatically 
false. Therefore there is no need to consider that ground token 
again in subsequent steps. Thus the removal of that ground 
token from S1 to S2 is just a kind of housekeeping. 

Definition 10 (Theory of Unique Output): Theory of 
unique output for T of an ALP is as follows. 

For any two definition clauses: 
    trans(t1) ← B1, T1s 
    trans(t2) ← B2, T2s 

in T, we have: 
    (trans(t1).σ1 = trans(t2).σ2) → 

      answer(trans(t1).σ1)= answer(trans(t1).σ1) 
where σ1 is any ground instantiation for variables in t1; σ2 is 
any ground instantiation for variables in t2.  

This theory ensures that given a ground instance of trans(t) 
in a S1 of a computation state, we obtain a set of ground tokens 
using an unfolding step. According to the theory, this set of 
ground tokens would be unique. There are no other 
alternatives. 

Now we are ready to prove the properties of the proof 
procedure. 

 
Theorem 1 (Equivalence Preserved): Given a derivation, 
      S0 → S’→S”→… 
    Sem(P) |=  S’ ≡  S”       

Proof:  
Case (i) S” is derived from S’ using a propagation step: It is 
trivially true. 
Case (ii) S” is derived from S’ using an unfolding step:  
Consider the definition clause(s) for an atom, trans(t) in the 
form of 
    trans(t)←Body1 
    trans(t)←Body2 
     ………… 
    trans(t)←Bodyn 
According to Comp(T), we have  
    trans(t)↔Body1 ∨ Body2∨ …..∨Bodyn. 
 
However, due to syntactic restriction we impose to T, any 
SLD-NF derivation starting from a ground version of trans(t) 
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using  one of these clause, trans(t)←Bodyi would result in a 
ground instantiation for variables in the atoms of token 
predicate in Bodyi or a failure within a finite amount of time. 
Due to theory of unique output, the resultant token set must be 
unique. Thus we have the ground version of trans(t) ≡ resultant 
ground tokens.     

Theorem 2 (Satisfaction of Integrity Constraints): Given 
a finite chain of a derivation 

   S0 → S’→S’’→…..S* 
Comp(T) ∪  S* ∪ ThC |= IC      

Proof: 
Due to the exhaustion of application of propagation step and 
equivalence between a ground version of trans(t) and the 
resultant ground token obtained by an unfolding step. The 
result follows immediately.         

VII. MODELING AN INTELLIGENT AGENT 
In [8], R.A. Kowalski proposed the following formulation: 

Thinking = Logic + Control 
 

for modeling an intelligent agent. “Control” refers to the 
manner in which the inference rules of logic are applied. It 
includes the use of forward and backward reasoning and also 
the application of inference rules in sequence or in parallel. 
Under such a formulation, an ALP is proposed to model the 
agent’s different types of thinking using forward and backward 
reasoning in an agent’s observe-think-decide-act cycle: 
  To cycle, 
  Observe the world, 
  Think, 
  Decide what actions to perform, 
  Act, 
  Cycle again. 
 
 Following the same line of argument, we further propose that 
the component “Control” could be modeled using CPN; i.e. the 
order of the inference steps could be visually and 
systematically organized with the use of CPN. We use a simple 
example from [8], which concerns getting help on the London 
underground in an emergency. In this simple example, 
perception from the environment could be “there are flames”, 
“there is smoke”, “one person attacks another”, “someone 
becomes seriously ill”, and “there is an accident”. The only 
candidate action is “press the alarm signal button”. Perceptions 
and actions are represented as abducible atoms. The 
corresponding CPN is shown in Figure 3. The declarations of 
the CPN are below: 

type P = with  flames|smoke|attacks|someone_ill|accident 
type E = with  emergency 
type A = with  press_alarm 
var x: P 
var e: E 
var a: A 

 
Based on the CPN in Figure 3, we can write down the 

corresponding propagation rule as shown below. 
trans(processPercept,[P])← 

token(Id,col(P),p), place(p, col(P)). 
trans(decideAct, [E])← 

 token(Id, col(E), q), place(q, col(E)). 

 
Fig. 3 A CPN for modeling of getting help on the London 
underground in an emergency 
According to the CPN, the definition for the predicate place is 
below. 
 

place(p, col(flames)). 
place(p,col(smoke)).  
place(p, col(attacks)). 
place(p, col(someone_ill)). 
place(p, col(accident)). 
place(q, col(emergency)). 
place(a, col(press_alarm)). 
 

Within the limited scope of perceptions received from the 
environment, the definition of processPercept would be 
degenerated and simply as follows. 

 trans(processPercept, [P]) ← 
token(ID, col(emergency), q), gensym(passenger, ID). 

Thus whenever there is an perception of allowed type from 
the environment, a token with value equal to emergency will be 
added to the place Q. The forward reasoning is classified as a 
kind of reactive thinking of an agent.  The newly added token 
will trigger the second propagation rule. The process of 
decideAct will be relatively more complicated for deciding 
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right action. The definition would be as follows. 
trans(decideAct, [E])← 

decideAction(E, Act), 
gensym(passenger,ID),   
place(a, col(Act)), token(ID, col(Act), a). 

 where decideAction is defined as: 
decideAction(emergency, Act) ← 

   getHelp(Act). 
getHelp(Act)← 

   alert(Person, Act). 
alert(driver, press_alarm). 

 
The backward reasoning is classified as a kind of proactive 
thinking of an agent; i.e. try to achieve goals by reducing them 
to sub-goals. Finally a token with value equal to press_alarm 
would be added to the place A, provided that a perception of 
appropriate type is received from the environment. 
 To simulate the interaction between an agent and the 
environment in our implementation, we use the multi-thread 
utilities provided in SWI-Prolog. Whenever there is a token in 
the place A, the following will be executed. 
   thread_send_message(envthd, token(ID, col(Act), a)) 
 
A message, token(ID, col(Act), a) will be sent to the message 
queue of another thread, called envthd which models the 
environment; while the passenger is simulated using another 
thread. Within the passenger thread, an infinite loop (which 
simulates the agent’s cycle) could be set up to check any 
message from the environment using the following clauses. 

 thread_peek_message(token(ID,Colour,Place)), 
  thread_get_message(token(ID,Colour,Place)). 
 
For further details of these built-in predicate, please refer to 
[10]. 

In this simple example, our implementation of the 
environment simply echoes the passenger’s action. After the 
environment thread sends a message, say token(env1, 
col(attacks),p) to the passenger thread, the following output 
would be produced subsequently.  

get a message in passenger: token(env1, col(attacks),p) 
get a message in environment: Action- col(press_alarm) 

 
 In this example, there is only a perception; instead of an 
effect (Q) which is required to be explained in terms of other 
causes. Thus the aim of the adductive reasoning is to achieve T 
∪ Δ |= IC where Δ would be updated due to information from 
the environment. IC becomes the goal we want to achieve or 
maintain (refer to [8] for details). We argue that one can 
visualize and systematically organize the order of reactive 
thinking and proactive thinking with the use of CPN when 
designing an intelligent agent. A prototype can be developed 
immediately using the representation of a CPN proposed in this 
paper. Moreover, when more than one agent involved, their 
interactions can be easily modeled by passing tokens 
(abducible atoms) from one to another. Multi-thread utilities 
provided in SWI-Prolog greatly facilitate the development. 

VIII. CONCLUSION 
In this paper, we propose a logical representation for a CPN. 

As far as we know, this is the first attempt of providing a logical 
formulation of CPN within the framework of classical logic 
with well-defined semantics. Moreover, the logical formulation 
could be executed directly using a meta-interpreter, of which 
each inference step can be regarded as equivalence preserved 
transformation. This is the gain on the side of CPN. On the 
other side, the resultant abductive proof procedure is greatly 
simplified (as compared with the abductive proof procedure in 
[5] which has seven inference rules and a very complicated 
computation state consisting of atoms and rules with 
existentially or universally quantified variables) using the 
execution of a CPN as a guideline. There are only two inference 
steps. The computation state consists of lists of ground atoms 
with predicate equal to either token or trans. Such a 
simplification greatly saves the programming effort and 
improves implementation efficiency. In view of the wide 
application of CPN, it is expected that the applicability of the 
proof procedure would not be greatly scarified. Moreover, CPN 
provides a visualization of the execution order of forward and 
backward reasoning. We would like to view that the relation of 
CPN with ALP is similar to that of DFD (or UML) with 
conventional (or object-oriented) programming. When 
designing an intelligent agent, CPN provides a graphical 
representation, which nicely organizes forward reasoning and 
backward reasoning in a systematic manner. Based on the 
graphical representation, a corresponding logic program could 
be arrived at.  One of the difficulties in using logic program as a 
development or prototyping tool is hard to clarify the execution 
flow. With the use of CPN, such a difficulty could be largely 
reduced. We expect that the integration of CPN with logic 
programming would provide a powerful framework (CPN-LP) 
for developing multi-agent applications and analyzing their 
properties.  

Future works include the exploration of the framework in 
various application areas, such as protocol specifications in a 
multi-agent setting [12,13] and workflow automation, and how 
the framework could be extended to incorporate the normative 
positions of an agent, such as obligation, prohibition and 
permission [14].  
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