
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3129

Abstract— This paper proposes a novel game theoretical

technique to address the problem of data object replication in large-

scale distributed computing systems. The proposed technique draws

inspiration from computational economic theory and employs the

extended Vickrey auction. Specifically, players in a non-cooperative

environment compete for server-side scarce memory space to

replicate data objects so as to minimize the total network object

transfer cost, while maintaining object concurrency. Optimization of

such a cost in turn leads to load balancing, fault-tolerance and

reduced user access time. The method is experimentally evaluated

against four well-known techniques from the literature: branch and

bound, greedy, bin-packing and genetic algorithms. The experimental

results reveal that the proposed approach outperforms the four

techniques in both the execution time and solution quality.

Keywords—Auctions, data replication, pricing, static allocation.

I. INTRODUCTION

ATA object replication techniques determine how many

replicas of each objects are to be created, and to which

sites they are to be assigned. Such replica schemas critically

affect the performance of the distributed computing system

(e.g. the Internet), since reading an object locally is less costly

than reading it remotely [1]. Therefore, in a read intensive

network an extensive replica schema is required. On the other

hand, an update of an object is written to all, and therefore, in

a write intensive network a constricted replica schema is

required. In essence, replica schemas are strongly dependent

upon the read and write patterns for each object [2]. Recently,

a few approaches on replicating data objects over the Internet

have been proposed in [3]–[6] and [7]. The majority of the

work related to data replication on the Internet employs the

site based replication. As the Internet grows and the limitations

of caching become more obvious, the importance of object

based replication, i.e., duplicating highly popular data objects,

is likely to increase [8].

In this paper, the replica schemas are established in a static

fashion. The aim is to identify a replica schema that effectively

Manuscript received June 1, 2005.

Samee Ullah Khan is with the Department of Computer Science and

Engineering, University of Texas at Arlington, TX 76019 USA (phone: 817-

272-3607; fax: 817-272-3784; e-mail: sakhan@cse.uta.edu).

Ishfaq Ahmad is with the Department of Computer Science and

Engineering, University of Texas at Arlington, TX 76019 USA.

minimizes the object transfer cost. We propose a novel

technique based on the extended Vickrey auction [9], where

the players compete for memory space at sites so that replicas

can be placed. This approach is compared against four well-

known techniques from the literature: genetic [1], branch and

bound [6], bin-packing [6], and greedy [9] algorithms.

Experimental results reveal that this simple and intuitive

approach outperforms the four techniques in both execution

time and solution quality.

The remainder of this paper is organized as follows. Section

II provides motivation to study the object replication problem

and encapsulates the related work. Section III formulates the

object replication problem (ORP). Section IV concentrates on

modeling the auction mechanism for the ORP. The

experimental results and concluding remarks are provided in

Sections V and VI, respectively.

II. MOTIVATION AND RELATED WORK

A. Motivation

Caching attempts to store the most commonly accessed

objects as close to the clients as possible, while replication

distributes a site’s contents across multiple mirror servers.

Replication accounts for improved end-to-end response by

allowing clients to download from their closest mirror server.

Caching can be viewed as a special case of replication when

mirror servers store only parts of a site’s contents [3]. This

Replicating Data Objects in Large-scale

Distributed Computing Systems using Extended

Vickrey Auction

Samee Ullah Khan and Ishfaq Ahmad

D

TABLE I

NOTATIONS AND THEIR MEANINGS

Symbol Meaning

M Total number of sites in the network.

N Total number of objects to be replicated.

Ok k-th object.

ok Size of object k.

Si i-th site.

si Size of site i.

rk
i Number of reads for object k from site i.

Rk
i Aggregate read cost of rk

i.

wk
i Number of writes for object k from site i.

Wk
i Aggregate write cost of wk

i.

NNk
i Nearest neighbor of site i holding object k.

c(i,j) Communication cost between sites i and j.

Pk Primary site of the k-th object.

Rk Replication schema of object k.

Coverall Total overall data transfer cost.

ORP Object replication problem.

EVA Extended Vickrey auction.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3130

analogy leads to some interesting comparisons. For instance,

cache replacement algorithms are examples of on-line,

distributed, locally greedy algorithms for data allocation in

replicated systems. Furthermore, caches do not have full server

capabilities and thus can be viewed as a replicated system that

sends requests for specific object types (e.g., dynamic pages)

to a single server. Essentially, every major aspect of a caching

scheme has its equivalent in replicated systems, but not vice

versa. Replication, as a side effect, leads to load balancing and

increases client-server proximity [9].

As a rule of thumb, a replica placement technique should

pursue the following line of action.

1. Determine the network topology.

2. Specify the objects that are to be replicated.

3. Obtain the access frequencies of the objects. The access

frequencies are either known apriori or determined using

some prediction techniques.

4. Based on the above information, employ an algorithmic

technique to replicate objects based on some optimization

criteria and constraints.

5. Finally, determine a redirection method that sends

client requests to the best replicator that can satisfy them.

Based on the above passage, an effective replica placement

technique determines the replica allocation which gives the

highest data accessibility in the whole network. If the network

topology is comprised of M sites which are connected (directly

or indirectly) to each other and N denotes the number of data

objects that are specified for replication, then, the number of

possible combinations of replica allocation is expressed by the

following expression:

! !
M

N N C ,

where C is the overall memory capacity of M sites.

In order to determine the optimal allocation among all

possible combinations, we must analytically find a

combination which gives the highest data accessibility

considering the following parameters:

1. Access frequencies from each site to each data object.

2. The probability that each site’s memory capacity

remains unchanged.

3. The probability that the network connectivity remains

unchanged.

Even if some looping is possible the computational

complexity is very high, and this calculation must be done

every time when either of the above three parameters change.

Moreover, among the above three parameters, the later two

cannot be formulated in practical because they follow no

known phenomenon.

For these reasons, we take the following approach:

1. Replicas are relocated in a specific period (relocation

period).

2. At every relocation period, replica allocation is

determined based on the access frequency from each site to

each data object and the network topology at the moment.

Based on this approach we propose a game theoretical

technique that effectively and efficiently determines a replica

schema that is competitive, scalable and simple compared to:

GRA [1], A -Star [6], and Greedy [9].

B. Related Work

The data replication problem (see Section 3 for a formal

description) is an extension of the classical file allocation

problem (FAP). Chu [11] studied the file allocation problem

with respect to multiple files in a multiprocessor system. Casey

[12] extended this work by distinguishing between updates and

read file requests. Eswaran [13] proved that Casey’s

formulation was NP-complete. In [7] Mahmoud et al. provide

an iterative approach that achieves good solution quality when

solving the FAP for infinite server capacities. A complete

although old survey on the FAP can be found in [14].

 In the context of the Internet, replication algorithms fall

into the following three categories: 1) the problem definition

does not cater for the client accesses, 2) the problem definition

only accounts for read access and 3) the problem definition

considers both read and write access including consistency

requirements. These categories are further classified into four

categories according to whether a problem definition takes into

account single or multiple objects, and whether it considers

storage costs.

The main drawback of the problem definition in category 1

is that they place the replicas of every object, in the same

node. Clearly, this is not practical, when many objects are

placed in the system. However, they are useful as a substitute

of the problem definition of category 2, if the objects are

accessed uniformly by all the clients in the system and

utilization of all nodes in the system is not a requirement. In

this case category 1 algorithms can be orders of magnitude

faster than the ones for category 2, because the placement is

decided once and it applies to all objects.

Most of the research papers tackle the problem definition of

category 2. They are applicable to read-only and read-mostly

workloads. In particular this category fits well in the context of

CDNs. Problem definitions [14]–[18] have all been used in

CDNs. The two main differences between them are whether

they consider single or multiple objects, and whether they

consider storage costs or not. The cost function in [7] also

captures the impact of allocating large objects and could

possible be used when the object size is highly variable. In

[19] the authors tackled a similar problem – the proxy cache

placement problem. The performance metric used there was

the distance parameter, which consisted of the distance

between the client and the cache, plus the distance between the

client and the node for all cache misses. It is to be noted that in

CDN, the distance is measured between the cache and the

closest node that has a copy of the object.

The storage constraint is important since it can be used in

order to minimize the amount of changes to the previous

replica placements. As far as we know only the works reported

in [1] and [20] have evaluated the benefits of taking storage

costs into consideration. Although there are research papers

which consider storage constraints in their problem definition,

yet they never evaluate this constraint (e.g. see [10], [13], [21],

and [22]).

Considering the impacts of writes, in addition to that of

reads, is important, if content providers and applications are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3131

able to modify documents. This is the main characteristic of

category 3. Some research papers in this category also

incorporate consistency protocols – in many different ways.

For most of them, the cost is the number of writes times the

distance between the client and the closest node that has the

object, plus the cost of distributing these updates to the other

replicas of the object. In [17], [18], [22]–[24], the updates are

distributed in the system using a minimum spanning tree. In

[10] and [21] one update message is sent from the writer to

each copy, while in [1] and [6] a generalized update

mechanism is employed. There a broadcast model is proposed

in which any user can update a copy. Next, a message is sent to

the primary (original) copy holder site which broadcasts it to

the rest of the replicas. This approach is shown to have lower

complexity than any of the above mentioned techniques. In

[23] and [26], it is not specified how updates are propagated.

The other main difference among the above definitions is that

[1], [5], [6], [22], [23], and [27]–[29] minimize the maximum

link congestion, while the rest minimize the average client

access latency or other client perceived costs. Minimizing the

link congestion would be useful, if bandwidth is scare.

Our work differs from all the above in: 1) describing a

problem definition that combines both the server selection and

replica placement problems, 2) taking into account the more

pragmatic scenario in today’s distributed information

environments, we tackle the case of allocating replicas so as to

minimize the network traffic under storage constraints with

“read from the nearest” and “update through the primary

server policies, 3) indirectly incorporating the minimization of

link congestion via object transfer cost, 4) extensively

evaluating the impact of storage constraints similar to the

evaluations performed in [1] and [6], and 5) using game

theoretical techniques.

Recently, game theory has emerged as a popular tool to

tackle optimization problems especially in the field of

distributed computing. However, in the context of data

replication it has not received much attention. We are aware of

only three published articles which directly or indirectly deal

with the data replication problem using game theoretical

techniques. The first work [27] is mainly on caching and uses

an empirical model to derive Nash equilibrium. The second

work [20] focuses on mechanism design issues and derives an

incentive compatible auction for replicating data on the Web.

The third work [31] deals with identifying Nash strategies

derived from synthetic utility functions. Our work differs from

all the game theoretical techniques in: 1) identifying a non-

cooperative priced based replica allocation method to tackle

the data replication problem, 2) using game theoretical

techniques to study an environment where the agents behave in

a selfish manner, 3) performing extensive experimental

comparisons with a number of conventional techniques using

an experimental setup that is mimicking the Web in its

infrastructure and access patterns.

III. OBJECT REPLICATION PROBLEM FORMULATION

Consider a distributed system comprising M sites, with each

site having its own processing power, memory (primary

storage) and media (secondary storage). Let Si and si be the

name and the total storage capacity (in simple data units e.g.

blocks), respectively, of site i where 1 i M. The M sites of

the system are connected by a communication network. A link

between two sites Si and Sj (if it exists) has a positive integer

c(i,j) associated with it, giving the communication cost for

transferring a data unit between sites Si and Sj. If the two sites

are not directly connected by a communication link then the

above cost is given by the sum of the costs of all the links in a

chosen path from site Si to the site Sj. Without the loss of

generality we assume that c(i,j) = c(j,i). This is a common

assumption (e.g. see [5]–[7], [32]). Let there be N objects,

each identifiable by a unique name Ok and size in simple data

unites ok where 1 k N. Let rk
i
 and wk

i
 be the total number of

reads and writes, respectively, initiated from Si for Ok during a

certain time period t. This time period t determines when to

initiate a replica placement algorithm (in our case the auction

mechanism), i.e., relocation period. Note that this time period t

is the only parameter that requires human intervention.

However, in this paper we use analytical data that enables us to

effectively predict the time interval t (see Section V.A for

details).

Our replication policy assumes the existence of one primary

copy for each object in the network. Let Pk, be the site which

holds the primary copy of Ok, i.e., the only copy in the network

that cannot be de-allocated, hence referred to as primary site of

the k-th object. Each primary site Pk, contains information

about the whole replication scheme Rk of Ok. This can be done

by maintaining a list of the sites where the k-th object is

replicated at, called from now on the replicators of Ok.

Moreover, every site Si stores a two-field record for each

object. The first field is its primary site Pk and the second the

nearest neighborhood site NNk
i
 of site Si which holds a replica

of object k. In other words, NNk
i
 is the site for which the reads

from Si for Ok, if served there, would incur the minimum

possible communication cost. It is possible that NNk
i
= Si, if Si

is a replicator or the primary site of Ok. Another possibility is

that NNk
i
= Pk, if the primary site is the closest one holding a

replica of Ok. When a site Si reads an object, it does so by

addressing the request to the corresponding NNk
i
. For the

updates we assume that every site can update every object.

Updates of an object Ok are performed by sending the updated

version to its primary site Pk, which afterwards broadcasts it to

every site in its replication scheme Rk.

For the ORP under consideration, we are interested in

minimizing the total Replication Cost (RC) (or the total

network transfer cost) due to object movement, since the

communication cost of control messages has minor impact to

the overall performance of the system. There are two

components affecting RC. The first component of RC is due to

the read requests. Let Rk
i
 denote the total RC, due to Sis’

reading requests for object Ok, addressed to the nearest site

NNk
i
. This cost is given by the following equation:

,i i i
k k k k

R r o c i NN , (1)

where NNk
i

= {Site j | j Rk ^ min c(i,j)}. The second

component of RC is the cost arising due to the writes. Let Wk
i

be the total RC, due to Sis’ writing requests for object Ok,

addressed to the primary site Pk. This cost is given by the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3132

following equation:

,

, ,i i i
k k k k k

j R j ik

W w o c i P c NN j . (2)

Here, we made the indirect assumption that in order to

perform a write we need to ship the whole updated version of

the object. This of course is not always the case, as we can

move only the updated parts of it (modeling such policies can

also be done using our framework). The cumulative RC,

denoted as Coverall, due to reads and writes is given by:

1 1

M N i i
i koverall k k

C R W . (3)

Let Xik = 1 if Si holds a replica of object Ok, and 0 otherwise.

Xiks define an M×N replication matrix, named X, with boolean

elements. Equation 3 is now refined to:

1

1 1

1 min , | 1

, ,

i
ik k k jk

Mi x
k k k ik k k kx

M N

i k

X r o c i j X

w o c i P X w o c i P

X . (4)

Sites which are not the replicators of object Ok create RC

equal to the communication cost of their reads from the nearest

replicator, plus that of sending their writes to the primary site

of Ok . Sites belonging to the replication scheme of Ok, are

associated with the cost of sending/receiving all the updated

versions of it. Using the above formulation, the ORP can be

defined as:

“Find the assignment of 0,1 values in the X matrix that

minimizes Coverall, subject to the storage capacity

constraint:
1

(1)
N

iik kk
X o s i M , and subject to the

primary copies policy: 1 (1)P kk
X k N .”

The minimization of Coverall has the following two impacts

on the distributed system under consideration. First, it ensures

that the object replication is done in such a way that it

minimizes the maximum distance between the replicas and

their respective primary objects. Second, it ensures that the

maximum distance between an object k and the user(s)

accessing that object is also minimized. Thus, the solution

aims for reducing the overall RC of the system. In the

generalized case, the ORP is NP-complete [1].

IV. EXTENDED VICKREY AUCTION (EVA)

A. Setup

In the auction setup each primary copy of an object k is a

player. A player k can perform the necessary computations on

its strategy set by using the site (where it resides) Pk’s

processor. At each given instance a (sub)-auction takes place

at a particular site i chosen in a round robin fashion from the

set of M sites. These auctions are performed continuously

throughout the system’s life, making it a self evolving and self

repairing system. However, for simulation purposes (“cold”

network [6]) we discrete the continuum solely for the reason to

observe the solution quality.

B. Competitiveness

Each player k competes through bidding for memory at a

site i. Many would argue that memory constraints are no

longer important due to the reduced costs of memory chips.

However, replicated objects (just as cached objects) reside in

the memory (primary storage) and not in the media (secondary

storage) [8], [33]. Thus, there will always be a need to give

priority to objects that have higher access (read and write)

demands. Moreover, memory space regardless of being

primary or secondary is limited.

C. Strategy

Each player k’s strategy is to place a replica at a site i, so

that it maximizes its (the object’s) benefit function. The benefit

function gives more weight to the objects that incur reduced

RC in the system:

1
,

Mi i x i
xk k k k k k

B R w o c i P W . (5)

The above value represents the expected benefit (in RC

terms), if Ok is replicated at Si. This benefit is computed using

the difference between the read and update cost. Negative

values of Bk
i
 mean that replicating Ok, is inefficient from the

“local view” of Si (although it might reduce the global RC due

to bringing the object closer to other servers).

The pseudo-code for EVA is given in Fig. 1.

D. The Algorithm

We maintain a list Li
 at each server. The list contains all the

objects that can be replicated at Si (i.e., the remaining storage

capacity bi
 is sufficient and the benefit value is positive). We

also maintain a list LS containing all servers that can replicate

an object. In other words, Si LS if and only if Li
NULL.

EVA performs in steps. In each step a server Si is chosen from

LS in a round-robin fashion. Each player k O calculates the

benefit function of object. The set O represents the collection

of players that are legible for participation. A player k is

legible if and only if the benefit function value obtained for

Extended Vickrey Auction

Initialize:

01 LS, L
i
.

02 WHILE LS NULL DO

03 SELECT S
i

LS /*Round-robin fashion */

04 FOR each k O DO

05 Bk = compute (Bk
i
); /*compute the benefit*/

06 Report Bk to Si which stores in array B;

07 END FOR

08 WHILE bi 0

09 Bk = argmaxk(B); /*Choose the best offer*/

10 Extract the info from Bk such as Ok and ok;

11 bi = bi-ok; /*Calculate available space and termination condition*/

12 Payment = Bk; /* Maintain Vickrey payment */

13 IF bi < 0 THEN EXIT WHILE ELSE

14 L
i
 = L

i
- Ok; /*Update the list*/

15 Update NN
i
OMAX /*Update the nearest neighbor list*/

16 IF L
i
 = NULL THEN SEND info to M to update LS = LS - S

i
;

17 Replicate Ok;

18 END WHILE

19 Si asks all successful bidders to pay Bk

20 END WHILE

Fig. 1. Pseudo-code for Extended Vickrey Auction (EVA).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3133

site Si is the maximum of among all the other benefit function

values for sites other than i, i.e., Si S-i. This is done in order

to suppress mediocre bids, which, in turn improves

computational complexity. It is to be noted that in each step Li

together with the corresponding nearest server value NNk
i
, are

updated accordingly.

E. Theoretical Results

Theorem 1: EVA takes O(MN2
) time.

Proof: The worst case execution time of the algorithm is

when each server has sufficient capacity to store all objects

and the update ratios are low enough so that no object incurs

negative benefit value. In that case, the while-loop (02)

performs M iterations. The time complexity for each iteration

is governed by the for-loop in (04) and the while loop in (08)

(O(N2
) in total). Hence, we conclude that the worst case

running time of the algorithm is O(MN2
).

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

We performed experiments on a 440MHz Ultra 10 machine

with 512MB memory. The experimental evaluations were

targeted to benchmark the placement policies. The solution

quality in all cases, was measured according to the RC

percentage that was saved under the replication scheme found

by the algorithms, compared to the initial one, i.e., when only

primary copies exist.

A. Relocation Period

As discussed in Sections II.A and III, the time (interval t)

when to initiate the EVA requires high-level human

intervention. In this section, we will show that this parameter if

not totally can at least partially be automated. The decision

when to initiate EVA depends on the past trends of the user

access patterns. The experiments performed to test the EVA

used real user access patterns collected at the 1998 Soccer

World Cup website [31]. This access log file has become a “de

fecto” standard over the number of years to benchmark various

replica placement techniques. Works reported in [6], [9], and

[10] all have used this access log for analysis.

Figs. 2(A) and 2(B) show the user access patterns. The two

figures represent different traffic patterns, i.e., Figure II(A)

shows the traffic recorded on the days when there was no

scheduled match, while Fig. 2(B) shows the traffic on the days

when there were scheduled matches. We can clearly see that

the website incurred soaring and stumpy traffic at various

intervals during a 24-hour time period (it is to be noted that the

access logs have a time stamp of GMT+1). For example, the

days when there was no scheduled match, the traffic was

mediocre before 0900 hrs. The traffic increased after 0900 hrs

till 2200 hrs. The two vertical dashed lines indicate this

phenomenon. These traffic patterns were recorded over a

period of 86 days (April 30th 1998 to July 26th 1998).

Therefore, on the days when there was no scheduled match, a

replica placement algorithm (in our case the EVA) could be

initiated twice daily: 1) at 0900 hrs and 2) at 2200 hrs. The

time interval t for 0900 hrs would be t = (2200-0900) = 11

hours and for 2200 hrs would be t = (0900-2200) = 13 hours.

Hours

A
v

e
ra

g
e

 H
it

s

12:00:00.00 AM 6:00:00.00 AM 12:00:00.00 PM 6:00:00.00 PM 12:00:00.00 AM
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

1600000

1700000

1800000

1900000

2000000

Fig. 2(A). Access on Days when there were no Scheduled Games.

TABLE II

OVERVIEW OF TOPOLOGIES.

Topology Mathematical Representation

SGRG [6]

(12 topologies)

Randomized layout with node degree (d*) and

Euclidian distance (d) between nodes as parameters.

GT-ITM PR [35]

(5 topologies)

Randomized layout with edges added between the

randomly located vertices with a probability (p).

GT-ITM W [35]

(9 topologies)

P(u,v)= e-d/(L)

SGFCGUD [6]

(5 topologies)

Fully connected graph with uniform link distances.

SGFCGRD [6]

(5 topologies)

Fully connected graph with random link distances.

SGRGLND [6]

(9 topologies)

Random layout with link distance having a

lognormal distribution [36].

Hours

A
v

e
ra

g
e

 H
it

s

12:00:00.00 AM 6:00:00.00 AM 12:00:00.00 PM 6:00:00.00 PM 12:00:00.00 AM
0

2500000

5000000

7500000

1E+7

1.25E+7

1.5E+7

1.75E+7

Figure 2(B). Access on Days when there were Scheduled Games.

TABLE III

RUNNING TIME IN SECONDS

Problem Size Greedy GRA A -Star EVA GMM

M= 500, N= 1350 81.69 117.60 110.46 78.48 90.09

M= 500, N= 1400 98.28 127.89 127.89 81.87 95.34

M= 500, N= 1450 122.43 139.02 139.02 87.81 98.91

M= 500, N= 1500 134.61 148.47 155.40 90.75 104.37

M= 500, N= 1550 146.58 168.84 169.47 95.06 105.63

M= 500, N= 2000 152.25 177.66 189.21 105.46 108.57

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3134

On the other hand the days when there were scheduled

matches, EVA could be initiated at 1900 hrs and 0100 hrs. It is

to be noted that the autonomous agents can easily obtain all the

other required parameters (for the ORP) via the user access

logs and the underlying network architecture.

B. Experimental Setup

To establish diversity in our experimental setups, the

network connectively was changed considerably. In this paper,

we only present the results that were obtained using a

maximum of 500 sites. We used existing topology generator

toolkits and also self generated networks. Table II summarizes

the various techniques used to gather forty-five various

topologies. All the results reported, represent the average

performance over all the topologies.

To evaluate our proposed technique on realistic traffic

patterns, we used the access logs collected at the Soccer World

Cup 1998 website [31]. Each experimental setup was

evaluated thirteen times, i.e., Friday (24 hours) logs from May

1, 1998 to July 24, 1998. Thus, each experimental setup in fact

represents an average of the 585 (13×45) data set points. To

process the logs, we wrote a script that returned: only those

objects which were present in all the logs (2000 in our case),

the total number of requests from a particular client for an

object, the average and the variance of the object size. From

this log we choose the top five hundred clients (maximum

experimental setup), which were randomly mapped to one of

the nodes of the topologies. Note that this mapping is not 1-1,

rather 1-M. This gave us enough skewed workload to mimic

real world scenarios. It is also worthwhile to mention that the

total amount of requests entertained for each problem instance

was in the range of 1-2 million. The primary replicas’ original

site was mimicked by choosing random locations. The

capacities of the sites C% were generated randomly with range

from Total Primary Object Sizes/2 to 1.5×Total Primary

Object Sizes. The variance in the object size collected from the

access logs helped to instill enough diversity to benchmark

object updates. The updates were randomly pushed onto

different sites, and the total system update load was measured

in terms of the percentage update requests U% compared that

to the initial network with no updates.

C. Comparative Algorithms

For comparison, we selected four various types of replica

placement techniques. To provide a fair comparison, the

assumptions and system parameters were kept the same in all

the approaches. We chose: 1) from [6] the efficient branch-

and-bound based technique (A -Star), 2) from [1] the genetic

algorithm based technique (GRA) which showed excellent

adaptability against skewed workload, 3) from [6] the bin-

packing based technique GMM 4) and from [10] the famous

greedy approach (Greedy). Due to space limitations, we briefly

describe the comparative approaches. Details for a specific

technique can be obtained from the referenced papers.

1) A -Star

In [6] the authors proposed a 1+ admissible A-Star based

technique called A -Star. This technique uses two lists: OPEN

and FOCAL. The FOCAL list is the sub-list of OPEN, and

only contains those nodes that do not deviate from the lowest

cost node by a factor greater than 1+ . The technique works

similar to A-Star, with the exception that the node selection is

done not from the OPEN but from the FOCAL list. It is easy to

see that this approach will never run into the problem of

memory overflow, moreover, the FOCAL list always ensures

that only the candidate solutions within a bound of 1+ of the

A-Star are expanded.

2) GMM

In [6] the authors proposed a bin-packing based technique,

which we describe as follows: Let Ok and Si
represent the set of

objects and sites in the system. Let U be the set of unassigned

objects and k be the global minimum of all the replication

costs associated with an object. The minimum of such cost as a

set T=min0 j N-1(k(Ok,S
i
), Ok U. If during the assignment, the

minimum replication cost of an object is the same for two

different sites, the tie is broken by the minimum object size.

For a node n let mink(n) define the minimum element of set T.

Thus mink(n) represents the best minimum replication cost that

would occur if object Ok is replicated to a site Si
, i.e., Global

Min-Min (GMM).

3) GRA

In [1] the authors proposed a genetic algorithm based

heuristic called GRA. GRA provides good solution quality, but

suffers from slow termination time. This algorithm was

selected since it realistically addressed the fine-grained data

replication using the same problem formulation as undertaken

in this article.

4) Greedy

We modify the greedy approach reported in [10] to fit our

problem formulation. The greedy algorithm works in an

iterative fashion. In the first iteration, all the M sites are

investigated to find the replica location(s) of the first among a

total of N objects. Consider that we choose an object j for

replication. The algorithm recursively makes calculations

based on the assumption that all the users in the system request

for object j. Thus, we have to pick a site that yields the lowest

cost of replication for the object j. In the second iteration, the

location for the second site is considered. Based on the choice

of object j, the algorithm now would identify the second site

for replication, which, in conjunction with the site already

picked, yields the lowest replication cost. Observe here that

this assignment may or may not be for the same object j. The

algorithm iterates forward till either one of the ORP

constraints are violated.

D. Results and Discussions

Table III (best times shown in bold) shows the algorithm

execution times. The number of sites was kept constant at 500,

and the number of objects was varied from 1350 to 2000. With

maximum load (2000 objects and 500 sites), the proposed

technique EVA saved approximately 50 seconds of

termination time then the third fastest algorithm (Greedy).

Superiority of execution time comes at the cost of loss in

solution quality. However, EVA showed high solution quality.

First, we observe the effects of system capacity increase. An

increase in the storage capacity means that a large number of

objects can be replicated. Replicating an object that is already

extensively replicated, is unlikely to result in significant traffic

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3135

savings as only a small portion of the servers will be affected

overall. Moreover, since objects are not equally read intensive,

increase in the storage capacity would have a great impact at

the beginning (initial increase in capacity), but has little effect

after a certain point, where the most beneficial ones are

already replicated. This is observable in Fig. 3, which shows

the performance of the algorithms. Greedy and EVA showed

an immediate initial increase (the point after which further

replicating objects is inefficient) in its RC savings, but

afterward showed a near constant performance. GMM and

GRA although performed the worst, but observably gained the

most RC savings (27% and 35%, respectively) followed by

Greedy with 24%. Further experiments with various update

ratios (5%, 10%, and 20%) showed similar plot trends. It is

also noteworthy (plots not shown in this paper due to space

restrictions) that the increase in capacity from 10% to 17%,

resulted in 4 times (on average) more replicas for all the

algorithms.

Next, we observe the effects of increase in the read and

update (write) frequencies. Since these two parameters are

complementary to each other, we describe them together. In

both the setups the number of sites and objects were kept

constant. Increase in the number of reads in the system would

mean that there is a need to replicate as many object as

possible (closer to the users). However, the increase in the

number of updates in the system requires the replicas be

placed as close as to the primary site as possible (to reduce the

update broadcast). This phenomenon is also interrelated with

the system capacity, as the update ratio sets an upper bound on

the possible traffic reduction through replication. Thus, if we

consider a system with unlimited capacity, the “replicate

everywhere anything” policy is strictly inadequate. The read

and update parameters indeed help in drawing a line between

good and marginal algorithms. The plots in Figs. 4 and 5 show

the results of read and update frequencies, respectively. A

clear classification can be made between the algorithms. A -

Star, Greedy and EVA incorporate the increase in the number

of reads by replicating more objects and thus savings increase

up to 89%. GMM gained the least of the RC savings of up to

54%. To understand why there is such a gap in the

performance between the algorithms, we recall from [1] that

GMM maintains a localized network perception. Increase in

updates result in objects having decreased local significance

(unless the vicinity is in close proximity to the primary

location). On the other hand, A -Star, Greedy and EVA never

Capacity of Sites (%)

R
C

 S
a

v
in

g
s
 (

%
)

10% 14% 18% 22% 26% 30% 34% 38%
10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Legend
Greedy
GRA

A -Star
EVA
GMM

Fig. 3. RC Savings Versus System Capacity (N=2000, M=500, U=5%).

Updates (%)

R
C

 S
a

v
in

g
s
 (

%
)

40% 42% 44% 46% 48% 50% 52% 54% 56% 58% 60%
0

10%

20%

30%

40%

50%

60%

70%

80%

Legend
Greedy
GRA

A -Star
EVA
GMM

Fig. 5. RC Savings Versus Updates (N=2000, M=500, C=60%).

Reads (%)

R
C

 S
a

v
in

g
s
 (

%
)

20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40%
10%

20%

30%

40%

50%

60%

70%

80%

90%

Legend
Greedy
GRA

A -Star
EVA
GMM

Fig. 4. RC Savings Versus Reads (N=2000, M=500, C=45%).

TABLE IV

AVERAGE RC SAVINGS IN PERCENTAGE

Problem Size Greedy GRA A -Star EVA GMM

N=150, M=20 [C=20%,U=25%] 70.46 69.74 74.62 75.70 64.21

N=200, M=50 [C=20%,U=20%] 73.94 70.18 77.42 78.43 66.62

N=300, M=50 [C=25%,U=5%] 70.01 64.29 70.33 82.25 61.01

N=300, M=60 [C=35%,U=5%] 71.66 65.94 72.01 74.43 60.95

N=400, M=100 [C=25%,U=25%] 67.40 62.07 71.26 73.89 59.21

N=500, M=100 [C=30%,U=35%] 66.15 61.62 71.50 75.45 54.56

N=800, M=200 [C=25%,U=15%] 67.46 65.91 70.15 73.68 60.52

N=1000, M=300 [C=25%,U=35%] 69.10 64.08 70.01 72.45 61.16

N=1500, M=400 [C=35%,U=50%] 70.59 63.49 70.51 74.01 62.63

N=2000, M=500 [C=10%,U=60%] 67.03 63.37 72.16 73.15 60.94

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3136

tend to deviate from their global view of the problem domain.

1) Summary

In summary, Table IV shows the quality of the solution in

terms of RC percentage for 10 problem instances (randomly

chosen), each being a combination of various numbers of sites

and objects, with varying storage capacity and update ratio.

For each row, the best result is indicated in bold. The proposed

EVA steals the show in the context of solution quality, but A -

Star and Greedy do indeed give a good competition, with

savings within a range of 7%-10% of EVA.

VI. CONCLUSIONS

Manual mirroring of data objects is a tedious and time

consuming operation. This paper proposed a game theoretical

extended Vickrey auction (EVA) mechanism for object based

data replication in large-scale distributed computing systems,

such as, the Internet. EVA is a protocol for automatic

replication and migration of objects in response to demand

changes. EVA aims to place objects in the proximity of a

majority of requests while ensuring that no hosts become

overloaded.

EVA allows agents to compete for the scarce memory space

at sites so that they can acquire the rights to place replicas. To

cater for the possibility of cartel type behavior of the agents,

EVA uses the extended Vickrey auction protocol. This leaves

the agents with no option, then to report truthful valuations of

the objects that they represent.

EVA was compared against some well-known techniques,

such as: greedy, branch and bound and genetic algorithms. To

provide a fair comparison, the assumptions and system

parameters were kept the same in all the approaches. The

experimental setup was designed to mimic a large-scale

distributed computing system (the Internet), by using several

Internet topology generators and World Cup Soccer 1998 web

server access logs. The experimental results revealed that EVA

outperformed the four widely cited and powerful techniques in

both the execution time and solution quality. In summary,

EVA exhibited 7%-10% better solution quality and 10%-30%

savings in the algorithm termination timings.

REFERENCES

[1] T. Loukopoulos, and I. Ahmad, “Static and adaptive distributed data

replication using genetic algorithms,” J. of Parallel and Distributed

Comput., vol. 64, no. 11, pp. 1270-1285, 2004.

[2] B. Awerbuch, Y. Bartal and A. Fiat, “Competitive distributed file

allocation,” in Proc. of 25th ACM Symp. on Theory Of Comput.,

Victoria, B.C., Canada, 1993, pp. 164-173.

[3] T. Abdelzaher and N. Bhatti, “Web content adaptation to improve sever

workload behavior,” Comput. Networks, vol. 21, no. 11, pp. 1536-1577,

1999.

[4] A. Heddaya and S. Mirdad, “WebWave: Globally load balanced fully

distributed caching of hot published documents,” in Proc. 17th Intl.

Conf. on Distributed Comput. Systems, Baltimore, Maryland, 1997, pp.

160-168.

[5] J. Kangasharju, J. Roberts and K. Ross, “Object replication strategies in

content distribution networks,” in Proc. of Workshop on Content

Caching and Distribution, 2001, pp. 455-466.

[6] S. Khan and I. Ahmad, “Heuristic-based replication schemas for fast

information retrieval over the internet,” in Proc. of 17th Intl. Conf. on

Parallel and Distributed Comput. Systems, 2004, pp. 278-283.

[7] S. Mahmoud and J. Riordon, “Optimal allocation of resources in

distributed information networks,” ACM Trans. on Database Systems,

vol. 1, no. 1, pp. 66-78, 1976.

[8] T. Loukopoulos, D. Papadias, and I. Ahmad, “An overview of data

replication on the internet,” in Proc. of IEEE Intl. Symp. on Parallel

Architectures, Algorithms and Networks, 2002, pp. 31-36.

[9] W. Vickrey, “Counterspeculations, auctions and competitive sealed-bid

tenders,” J. of Finance, vol. 16, pp. 15-27, 1961.

[10] L. Qiu, V. Padmanabhan and G. Voelker, “On the placement of web

server replicas,” in Proc. of the IEEE INFOCOM, 2001, pp. 1587-1596.

[11] W. Chu, “Optimal file allocation in a multiple computer system,” IEEE

Trans. on Computers, vol. 18, no. 10, pp. 885-889, 1969.

[12] R. Casey, “Allocation of copies of a file in an information network,” in

Proc. Spring Joint Computer Conf., IFIPS, 1972, pp. 617-625.

[13] K. Eswaran, “Placement of records in a file and file Allocation in a

computer network,” in Proc. of Intl. Information Processing Conf.,

1974, pp. 304-307.

[14] L. Dowdy and D. Foster, “Comparative models of the file assignment

problem,” ACM Computing Surveys, vol. 14, no. 2, pp. 287-313, 1982.

[15] K. Chandy and J. Hewes, “File allocation in distributed systems,” in

Proc. of the International Symp. on Comput. Performance Modeling,

Measurement and Evaluation, 1976, pp. 10-13.

[16] S. Hakimi, “Optimum location of switching centers and the absolute

centers and medians of a graph,” Operations Research, vol. 12, pp. 450-

459, 1964.

[17] S. Jamin, C. Jin, Y. Jin, D. Riaz, Y. Shavitt and L. Zhang, “On the

placement of internet instrumentation,” in Proc. of the IEEE

INFOCOM, 2000, pp. 295-304.

[18] M. Karlsson and M. Mahalingam, “Do we need replica placement

algorithms in content delivery networks?” in Proc. of Web Caching and

Content Distribution Workshop, 2002, pp. 117-128.

[19] S. Cook, J. Pachl, and I. Pressman, “The optimal location of replicas in

a network using a READ-ONE-WRITE-ALL policy,” Distributed

Computing, vol. 15, no. 1, pp. 57-66, 2002.

[20] S. Khan and I. Ahmad, “A powerful direct mechanism for optimal www

content replication,” in Proc. of 19th IEEE International Parallel and

Distributed Processing Symposium, 2005, p. 86.

[21] S. Jamin, C. Jin, T. Kurc, D. Raz and Y. Shavitt, “Constrained mirror

placement on the internet,” in Proc. of the IEEE INFOCOM, 2001, pp.

31-40.

[22] B. Li, M. Golin, G. Italiano and X. Deng, “On the optimal placement of

web proxies in the internet,” in Proc. of the IEEE INFOCOM, 2000, pp.

1282-1290.

[23] K. Kalpakis, K. Dasgupta, and O. Wolfson, “Optimal placement of

replicas in trees with read, write, and storage Costs,” IEEE Trans. on

Parallel and Distributed Systems, vol. 12, no. 6, pp. 628-637, 2001.

[24] I. Cidon, S. Kutten, and R. Soffer, “Optimal allocation of electronic

content,” in Proc. of IEEE INFOCOM, 2001, pp. 1773-1780.

[25] P. Krishnan, D. Raz, and Y. Shavitt, “The Cache Location Problem,”

IEEE/ACM Trans. on Networking, 8(5), pp. 568-582, 2000.

[26] P. Radoslavov, R. Govindan, and D. Estrin, “Topology-informed

internet replica placement,” Computer Communications, vol. 25, no. 4,

pp. 384-392, 2002.

[27] A. Venkataramanj, P. Weidmann, and M. Dahlin, “Bandwidth

constrained placement in a WAN,” in Proc. ACM Symp. on Principles

of Distributed Computing, 2001, pp. 134-143.

[28] M. Korupolu and C. Plaxton, “Analysis of a local search heuristic for

facility location problems,” J. of Algorithms, vol. 37, no. 1, pp. 146-

188, 2000.

[29] C. Krick, H. Racke, and M. Westermann, “Approximation algorithms

for data management in networks,” in Proc. of the Symp. on Parallel

Algorithms and Architecture, 2001, pp. 237-246.

[30] B.-G. Chun, K. Chaudhuri, H. Wee, M. Barreno, C. Papadimitriou and

J. Kubiatowicz, “Selfish caching in distributed systems: A game-

theoretic analysis,” in Proc. of 23rd ACM Symp. on Principles of

Distributed Computing, 2004, pp. 21-30.

[31] N. Laoutaris, O. Telelis, V. Zissimopoulos and I. Stavrakakis, “Local

utility aware content replication,” in IFIP Networking Conference,

2005, pp. 455-468.

[32] B. Narebdran, S. Rangarajan and S. Yajnik, “Data distribution

algorithms for load balancing fault-tolerant web access,” in Proc. of the

16th Symp. on Reliable Distributed Systems, 1997, pp. 97-106.

[33] M. Rabinovich, “Issues in web content replication,” Data Engineering

Bulletin, vol. 21, no. 4, pp. 21-29, 1998.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3137

[34] M. Arlitt and T. Jin, “Workload characterization of the 1998 World Cup

Web Site,” tech. report, HP Lab, Palo Alto, HPL-1999-35(R.1), 1999.

[35] K. Calvert, M. Doar, E. Zegura, “Modeling Internet topology,” IEEE

Communications, 35(6), pp. 160-163, 1997.

[36] P. Apers, “Data Allocation in Distributed Database Systems,” ACM

Trans. Database Systems, 13(3), pp. 263-304, 1988.

Samee Ullah Khan (M’05) received the B.S. degree in computer science and

engineering from Ghulam Ishaq Khan Institute of Engineering Science and

Technology, Topi, Pakistan in 1999, and became a member of the

International Enformatika Society (IES) in 2005.

He is currently a graduate student in the Computer Science and

Engineering Department of the University of Texas at Arlington, TX, USA.

His research interests include algorithmic mechanism design, game

theoretical applications, combinatorial games, operations research,

combinatorial optimization, and distributed computing algorithms.

Mr. Khan is a member of the European Association of Theoretical

Computer Science, the Game Theory Society, the IEEE Communications

Society, the IEEE Computer Society, and the Society of Photo-Optical

Instrumentation Engineers. He also serves on the IES scientific committee.

Ishfaq Ahmad received the B.Sc. degree in electrical engineering from the

University of Engineering and Technology, Lahore, Pakistan, in 1985, the

M.S. degree in computer engineering, and the Ph.D. degree in computer

science, both from Syracuse University, Syracuse, NY, in 1987 and 1992,

respectively.

He is currently a Full Professor of Computer Science and engineering in

the Computer Science and Engineering Department, University of Texas (UT)

at Arlington. Prior to joining UT Arlington, he was an associate professor in

the Computer Science Department at Hong Kong University of Science and

Technology (HKUST), Hong Kong. At HKUST, he was also the Director of

the Multimedia Technology Research Center, an officially recognized

research center that he conceived and built from scratch. The center was

funded by various agencies of the Government of the Hong Kong Special

Administrative Region as well as local and international industries. With

more than 40 personnel including faculty members, postdoctoral fellows, full-

time staff, and graduate students, the center engaged in numerous research

and development projects with academia and industry from Hong Kong,

China, and the U.S. Particular areas of focus in the center are video (and

related audio) compression technologies, video telephone and conferencing

systems. The center commercialized several of its technologies to its

industrial partners world wide. His recent research focus has been on

developing parallel programming tools, scheduling and mapping algorithms

for scalable architectures, heterogeneous computing systems, distributed

multimedia systems, video compression techniques, and web management.

His research work in these areas is published in over 150 technical papers in

refereed journals and conferences.

Dr. Ahmad has received Best Paper Awards at Supercomputing’90 (New

York), Supercomputing’91 (Albuquerque), and the 2001 International

Conference Parallel Processing (Spain). He has participated in the

organization of several international conferences and is an Associate Editor of

Cluster Computing, Journal of Parallel and Distributed Computing, IEEE

Transactions on Circuits and Systems for Video Technology, IEEE

Concurrency, and IEEE Distributed Systems Online.

