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Abstract— This paper proposes a novel game theoretical 

technique to address the problem of data object replication in large-

scale distributed computing systems. The proposed technique draws 

inspiration from computational economic theory and employs the 

extended Vickrey auction. Specifically, players in a non-cooperative 

environment compete for server-side scarce memory space to 

replicate data objects so as to minimize the total network object 

transfer cost, while maintaining object concurrency. Optimization of 

such a cost in turn leads to load balancing, fault-tolerance and 

reduced user access time. The method is experimentally evaluated 

against four well-known techniques from the literature: branch and 

bound, greedy, bin-packing and genetic algorithms. The experimental 

results reveal that the proposed approach outperforms the four 

techniques in both the execution time and solution quality. 

Keywords—Auctions, data replication, pricing, static allocation. 

I. INTRODUCTION

ATA object replication techniques determine how many 

replicas of each objects are to be created, and to which 

sites they are to be assigned. Such replica schemas critically 

affect the performance of the distributed computing system 

(e.g. the Internet), since reading an object locally is less costly 

than reading it remotely [1]. Therefore, in a read intensive 

network an extensive replica schema is required. On the other 

hand, an update of an object is written to all, and therefore, in 

a write intensive network a constricted replica schema is 

required. In essence, replica schemas are strongly dependent 

upon the read and write patterns for each object [2]. Recently, 

a few approaches on replicating data objects over the Internet 

have been proposed in [3]–[6] and [7]. The majority of the 

work related to data replication on the Internet employs the 

site based replication. As the Internet grows and the limitations 

of caching become more obvious, the importance of object 

based replication, i.e., duplicating highly popular data objects, 

is likely to increase [8]. 

In this paper, the replica schemas are established in a static 

fashion. The aim is to identify a replica schema that effectively 
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minimizes the object transfer cost. We propose a novel 

technique based on the extended Vickrey auction [9], where 

the players compete for memory space at sites so that replicas 

can be placed. This approach is compared against four well-

known techniques from the literature: genetic [1], branch and 

bound [6], bin-packing [6], and greedy [9] algorithms. 

Experimental results reveal that this simple and intuitive 

approach outperforms the four techniques in both execution 

time and solution quality.  

The remainder of this paper is organized as follows. Section 

II provides motivation to study the object replication problem 

and encapsulates the related work. Section III formulates the 

object replication problem (ORP). Section IV concentrates on 

modeling the auction mechanism for the ORP. The 

experimental results and concluding remarks are provided in 

Sections V and VI, respectively. 

II. MOTIVATION AND RELATED WORK

A. Motivation 

Caching attempts to store the most commonly accessed 

objects as close to the clients as possible, while replication 

distributes a site’s contents across multiple mirror servers. 

Replication accounts for improved end-to-end response by 

allowing clients to download from their closest mirror server. 

Caching can be viewed as a special case of replication when 

mirror servers store only parts of a site’s contents [3]. This 
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TABLE I 

NOTATIONS AND THEIR MEANINGS 

Symbol Meaning 

M Total number of sites in the network. 

N Total number of objects to be replicated. 

Ok k-th object. 

ok Size of object k.

Si i-th site. 

si Size of site i.

rk
i  Number of reads for object k from site i.

Rk
i Aggregate read cost of rk

i.

wk
i  Number of writes for object k from site i.

Wk
i Aggregate write cost of wk

i.

NNk
i Nearest neighbor of site i holding object k.

c(i,j)  Communication cost between sites i and j.

Pk  Primary site of the k-th object. 

Rk Replication schema of object k.

Coverall  Total overall data transfer cost. 

ORP Object replication problem. 

EVA Extended Vickrey auction. 
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analogy leads to some interesting comparisons. For instance, 

cache replacement algorithms are examples of on-line, 

distributed, locally greedy algorithms for data allocation in 

replicated systems. Furthermore, caches do not have full server 

capabilities and thus can be viewed as a replicated system that 

sends requests for specific object types (e.g., dynamic pages) 

to a single server. Essentially, every major aspect of a caching 

scheme has its equivalent in replicated systems, but not vice 

versa. Replication, as a side effect, leads to load balancing and 

increases client-server proximity [9].  

As a rule of thumb, a replica placement technique should 

pursue the following line of action.  

1. Determine the network topology. 

2. Specify the objects that are to be replicated. 

3. Obtain the access frequencies of the objects. The access 

frequencies are either known apriori or determined using 

some prediction techniques. 

4. Based on the above information, employ an algorithmic 

technique to replicate objects based on some optimization 

criteria and constraints.

5. Finally, determine a redirection method that sends 

client requests to the best replicator that can satisfy them. 

Based on the above passage, an effective replica placement 

technique determines the replica allocation which gives the 

highest data accessibility in the whole network. If the network 

topology is comprised of M sites which are connected (directly 

or indirectly) to each other and N denotes the number of data 

objects that are specified for replication, then, the number of 

possible combinations of replica allocation is expressed by the 

following expression: 

! !
M

N N C ,

where C is the overall memory capacity of M sites.

In order to determine the optimal allocation among all 

possible combinations, we must analytically find a 

combination which gives the highest data accessibility 

considering the following parameters: 

1. Access frequencies from each site to each data object. 

2. The probability that each site’s memory capacity 

remains unchanged. 

3. The probability that the network connectivity remains 

unchanged. 

Even if some looping is possible the computational 

complexity is very high, and this calculation must be done 

every time when either of the above three parameters change. 

Moreover, among the above three parameters, the later two 

cannot be formulated in practical because they follow no 

known phenomenon. 

For these reasons, we take the following approach:  

1. Replicas are relocated in a specific period (relocation 

period).

2. At every relocation period, replica allocation is 

determined based on the access frequency from each site to 

each data object and the network topology at the moment. 

Based on this approach we propose a game theoretical 

technique that effectively and efficiently determines a replica 

schema that is competitive, scalable and simple compared to: 

GRA [1], A -Star [6], and Greedy [9]. 

B. Related Work 

The data replication problem (see Section 3 for a formal 

description) is an extension of the classical file allocation 

problem (FAP). Chu [11] studied the file allocation problem 

with respect to multiple files in a multiprocessor system. Casey 

[12] extended this work by distinguishing between updates and 

read file requests. Eswaran [13] proved that Casey’s 

formulation was NP-complete. In [7] Mahmoud et al. provide 

an iterative approach that achieves good solution quality when 

solving the FAP for infinite server capacities. A complete 

although old survey on the FAP can be found in [14]. 

  In the context of the Internet, replication algorithms fall 

into the following three categories: 1) the problem definition 

does not cater for the client accesses, 2) the problem definition 

only accounts for read access and 3) the problem definition 

considers both read and write access including consistency 

requirements. These categories are further classified into four 

categories according to whether a problem definition takes into 

account single or multiple objects, and whether it considers 

storage costs.  

The main drawback of the problem definition in category 1 

is that they place the replicas of every object, in the same 

node. Clearly, this is not practical, when many objects are 

placed in the system. However, they are useful as a substitute 

of the problem definition of category 2, if the objects are 

accessed uniformly by all the clients in the system and 

utilization of all nodes in the system is not a requirement. In 

this case category 1 algorithms can be orders of magnitude 

faster than the ones for category 2, because the placement is 

decided once and it applies to all objects. 

Most of the research papers tackle the problem definition of 

category 2. They are applicable to read-only and read-mostly 

workloads. In particular this category fits well in the context of 

CDNs. Problem definitions [14]–[18] have all been used in 

CDNs. The two main differences between them are whether 

they consider single or multiple objects, and whether they 

consider storage costs or not. The cost function in [7] also 

captures the impact of allocating large objects and could 

possible be used when the object size is highly variable. In 

[19] the authors tackled a similar problem – the proxy cache 

placement problem. The performance metric used there was 

the distance parameter, which consisted of the distance 

between the client and the cache, plus the distance between the 

client and the node for all cache misses. It is to be noted that in 

CDN, the distance is measured between the cache and the 

closest node that has a copy of the object.  

The storage constraint is important since it can be used in 

order to minimize the amount of changes to the previous 

replica placements. As far as we know only the works reported 

in [1] and [20] have evaluated the benefits of taking storage 

costs into consideration. Although there are research papers 

which consider storage constraints in their problem definition, 

yet they never evaluate this constraint (e.g. see [10], [13], [21], 

and [22]). 

Considering the impacts of writes, in addition to that of 

reads, is important, if content providers and applications are 
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able to modify documents. This is the main characteristic of 

category 3. Some research papers in this category also 

incorporate consistency protocols – in many different ways. 

For most of them, the cost is the number of writes times the 

distance between the client and the closest node that has the 

object, plus the cost of distributing these updates to the other 

replicas of the object. In [17], [18], [22]–[24], the updates are 

distributed in the system using a minimum spanning tree. In 

[10] and [21] one update message is sent from the writer to 

each copy, while in [1] and [6] a generalized update 

mechanism is employed. There a broadcast model is proposed 

in which any user can update a copy. Next, a message is sent to 

the primary (original) copy holder site which broadcasts it to 

the rest of the replicas. This approach is shown to have lower 

complexity than any of the above mentioned techniques. In 

[23] and [26], it is not specified how updates are propagated. 

The other main difference among the above definitions is that 

[1], [5], [6], [22], [23], and [27]–[29] minimize the maximum 

link congestion, while the rest minimize the average client 

access latency or other client perceived costs. Minimizing the 

link congestion would be useful, if bandwidth is scare.  

Our work differs from all the above in: 1) describing a 

problem definition that combines both the server selection and 

replica placement problems, 2) taking into account the more 

pragmatic scenario in today’s distributed information 

environments, we tackle the case of allocating replicas so as to 

minimize the network traffic under storage constraints with 

“read from the nearest” and “update through the primary 

server policies, 3) indirectly incorporating the minimization of 

link congestion via object transfer cost, 4) extensively 

evaluating the impact of storage constraints similar to the 

evaluations performed in [1] and [6], and 5) using game 

theoretical techniques. 

Recently, game theory has emerged as a popular tool to 

tackle optimization problems especially in the field of 

distributed computing. However, in the context of data 

replication it has not received much attention. We are aware of 

only three published articles which directly or indirectly deal 

with the data replication problem using game theoretical 

techniques. The first work [27] is mainly on caching and uses 

an empirical model to derive Nash equilibrium. The second 

work [20] focuses on mechanism design issues and derives an 

incentive compatible auction for replicating data on the Web. 

The third work [31] deals with identifying Nash strategies 

derived from synthetic utility functions. Our work differs from 

all the game theoretical techniques in: 1) identifying a non-

cooperative priced based replica allocation method to tackle 

the data replication problem, 2) using game theoretical 

techniques to study an environment where the agents behave in 

a selfish manner, 3) performing extensive experimental 

comparisons with a number of conventional techniques using 

an experimental setup that is mimicking the Web in its 

infrastructure and access patterns.   

III. OBJECT REPLICATION PROBLEM FORMULATION

Consider a distributed system comprising M sites, with each 

site having its own processing power, memory (primary 

storage) and media (secondary storage). Let Si and si be the 

name and the total storage capacity (in simple data units e.g. 

blocks), respectively, of site i where 1 i M. The M sites of 

the system are connected by a communication network. A link 

between two sites Si and Sj (if it exists) has a positive integer 

c(i,j) associated with it, giving the communication cost for 

transferring a data unit between sites Si and Sj. If the two sites 

are not directly connected by a communication link then the 

above cost is given by the sum of the costs of all the links in a 

chosen path from site Si to the site Sj. Without the loss of 

generality we assume that c(i,j) = c(j,i). This is a common 

assumption (e.g. see [5]–[7], [32]). Let there be N objects, 

each identifiable by a unique name Ok and size in simple data 

unites ok where 1 k N. Let rk
i
 and wk

i
 be the total number of 

reads and writes, respectively, initiated from Si for Ok during a 

certain time period t. This time period t determines when to 

initiate a replica placement algorithm (in our case the auction 

mechanism), i.e., relocation period. Note that this time period t

is the only parameter that requires human intervention. 

However, in this paper we use analytical data that enables us to 

effectively predict the time interval t (see Section V.A for 

details). 

Our replication policy assumes the existence of one primary 

copy for each object in the network. Let Pk, be the site which 

holds the primary copy of Ok, i.e., the only copy in the network 

that cannot be de-allocated, hence referred to as primary site of 

the k-th object. Each primary site Pk, contains information 

about the whole replication scheme Rk of Ok. This can be done 

by maintaining a list of the sites where the k-th object is 

replicated at, called from now on the replicators of Ok.

Moreover, every site Si stores a two-field record for each 

object. The first field is its primary site Pk and the second the 

nearest neighborhood site NNk
i
 of site Si which holds a replica 

of object k. In other words, NNk
i
 is the site for which the reads 

from Si for Ok, if served there, would incur the minimum 

possible communication cost. It is possible that NNk
i
= Si, if Si

is a replicator or the primary site of Ok. Another possibility is 

that NNk
i
= Pk, if the primary site is the closest one holding a 

replica of Ok. When a site Si reads an object, it does so by 

addressing the request to the corresponding NNk
i
. For the 

updates we assume that every site can update every object. 

Updates of an object Ok are performed by sending the updated 

version to its primary site Pk, which afterwards broadcasts it to 

every site in its replication scheme Rk.

For the ORP under consideration, we are interested in 

minimizing the total Replication Cost (RC) (or the total 

network transfer cost) due to object movement, since the 

communication cost of control messages has minor impact to 

the overall performance of the system. There are two 

components affecting RC. The first component of RC is due to 

the read requests. Let Rk
i
 denote the total RC, due to Sis’

reading requests for object Ok, addressed to the nearest site 

NNk
i
. This cost is given by the following equation:  

,i i i
k k k k

R r o c i NN , (1) 

where NNk
i

= {Site j | j Rk ^ min c(i,j)}. The second 

component of RC is the cost arising due to the writes. Let Wk
i

be the total RC, due to Sis’ writing requests for object Ok,

addressed to the primary site Pk. This cost is given by the 
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following equation:  

,

, ,i i i
k k k k k

j R j ik

W w o c i P c NN j . (2) 

Here, we made the indirect assumption that in order to 

perform a write we need to ship the whole updated version of 

the object. This of course is not always the case, as we can 

move only the updated parts of it (modeling such policies can 

also be done using our framework). The cumulative RC, 

denoted as Coverall, due to reads and writes is given by:  

1 1

M N i i
i koverall k k

C R W . (3) 

Let Xik = 1 if Si holds a replica of object Ok, and 0 otherwise. 

Xiks define an M×N replication matrix, named X, with boolean 

elements. Equation 3 is now refined to: 

1

1 1

1 min , | 1

, ,

i
ik k k jk

Mi x
k k k ik k k kx

M N

i k

X r o c i j X

w o c i P X w o c i P

X . (4) 

Sites which are not the replicators of object Ok create RC 

equal to the communication cost of their reads from the nearest 

replicator, plus that of sending their writes to the primary site 

of Ok . Sites belonging to the replication scheme of Ok, are 

associated with the cost of sending/receiving all the updated 

versions of it. Using the above formulation, the ORP can be 

defined as:  

“Find the assignment of 0,1 values in the X matrix that 

minimizes Coverall, subject to the storage capacity 

constraint:
1

(1 )
N

iik kk
X o s i M , and subject to the 

primary copies policy: 1   (1 )P kk
X k N .”

The minimization of Coverall has the following two impacts 

on the distributed system under consideration. First, it ensures 

that the object replication is done in such a way that it 

minimizes the maximum distance between the replicas and 

their respective primary objects. Second, it ensures that the 

maximum distance between an object k and the user(s) 

accessing that object is also minimized. Thus, the solution 

aims for reducing the overall RC of the system. In the 

generalized case, the ORP is NP-complete [1]. 

IV. EXTENDED VICKREY AUCTION (EVA) 

A. Setup 

In the auction setup each primary copy of an object k is a 

player. A player k can perform the necessary computations on 

its strategy set by using the site (where it resides) Pk’s

processor. At each given instance a (sub)-auction takes place 

at a particular site i chosen in a round robin fashion from the 

set of M sites. These auctions are performed continuously 

throughout the system’s life, making it a self evolving and self 

repairing system. However, for simulation purposes (“cold” 

network [6]) we discrete the continuum solely for the reason to 

observe the solution quality. 

B. Competitiveness 

Each player k competes through bidding for memory at a 

site i. Many would argue that memory constraints are no 

longer important due to the reduced costs of memory chips. 

However, replicated objects (just as cached objects) reside in 

the memory (primary storage) and not in the media (secondary 

storage) [8], [33]. Thus, there will always be a need to give 

priority to objects that have higher access (read and write) 

demands. Moreover, memory space regardless of being 

primary or secondary is limited. 

C. Strategy 

Each player k’s strategy is to place a replica at a site i, so 

that it maximizes its (the object’s) benefit function. The benefit 

function gives more weight to the objects that incur reduced 

RC in the system:  

1
,

Mi i x i
xk k k k k k

B R w o c i P W . (5) 

The above value represents the expected benefit (in RC 

terms), if Ok is replicated at Si. This benefit is computed using 

the difference between the read and update cost. Negative 

values of Bk
i
 mean that replicating Ok, is inefficient from the 

“local view” of Si (although it might reduce the global RC due 

to bringing the object closer to other servers).  

The pseudo-code for EVA is given in Fig. 1. 

D. The Algorithm 

We maintain a list Li
 at each server. The list contains all the 

objects that can be replicated at Si (i.e., the remaining storage 

capacity bi
 is sufficient and the benefit value is positive). We 

also maintain a list LS containing all servers that can replicate 

an object. In other words, Si LS if and only if Li
NULL. 

EVA performs in steps. In each step a server Si is chosen from 

LS in a round-robin fashion. Each player k O calculates the 

benefit function of object. The set O represents the collection 

of players that are legible for participation. A player k is 

legible if and only if the benefit function value obtained for 

Extended Vickrey Auction 

Initialize: 

01 LS, L
i
.

02 WHILE LS  NULL DO 

03            SELECT S
i

LS                             /*Round-robin fashion */ 

04                           FOR each k O DO

05                                     Bk = compute (Bk
i
);          /*compute the benefit*/ 

06                                     Report Bk to Si which stores in array B;

07                           END FOR 

08           WHILE bi  0

09 Bk = argmaxk(B);         /*Choose the best offer*/ 

10 Extract the info from Bk such as Ok and ok;

11              bi = bi-ok; /*Calculate available space and termination condition*/ 

12 Payment = Bk;  /* Maintain Vickrey payment */ 

13              IF bi < 0 THEN EXIT WHILE ELSE

14              L
i
 = L

i
- Ok;                    /*Update the list*/ 

15              Update NN
i
OMAX            /*Update the nearest neighbor list*/ 

16              IF L
i
 = NULL THEN SEND info to M to update LS = LS - S

i
;        

17              Replicate Ok;

18         END WHILE 

19 Si asks all successful bidders to pay Bk

20 END WHILE 

Fig. 1. Pseudo-code for Extended Vickrey Auction (EVA). 
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site Si is the maximum of among all the other benefit function 

values for sites other than i, i.e., Si S-i. This is done in order 

to suppress mediocre bids, which, in turn improves 

computational complexity. It is to be noted that in each step Li

together with the corresponding nearest server value NNk
i
, are 

updated accordingly.  

E. Theoretical Results 

Theorem 1: EVA takes O(MN2
) time. 

Proof: The worst case execution time of the algorithm is 

when each server has sufficient capacity to store all objects 

and the update ratios are low enough so that no object incurs 

negative benefit value. In that case, the while-loop (02) 

performs M iterations. The time complexity for each iteration 

is governed by the for-loop in (04) and the while loop in (08) 

(O(N2
) in total). Hence, we conclude that the worst case 

running time of the algorithm is O(MN2
).

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

We performed experiments on a 440MHz Ultra 10 machine 

with 512MB memory. The experimental evaluations were 

targeted to benchmark the placement policies. The solution 

quality in all cases, was measured according to the RC 

percentage that was saved under the replication scheme found 

by the algorithms, compared to the initial one, i.e., when only 

primary copies exist.  

A. Relocation Period 

As discussed in Sections II.A and III, the time (interval t)

when to initiate the EVA requires high-level human 

intervention. In this section, we will show that this parameter if 

not totally can at least partially be automated. The decision 

when to initiate EVA depends on the past trends of the user 

access patterns. The experiments performed to test the EVA 

used real user access patterns collected at the 1998 Soccer 

World Cup website [31]. This access log file has become a “de 

fecto” standard over the number of years to benchmark various 

replica placement techniques. Works reported in [6], [9], and 

[10] all have used this access log for analysis.  

Figs. 2(A) and 2(B) show the user access patterns. The two 

figures represent different traffic patterns, i.e., Figure II(A) 

shows the traffic recorded on the days when there was no 

scheduled match, while Fig. 2(B) shows the traffic on the days 

when there were scheduled matches. We can clearly see that 

the website incurred soaring and stumpy traffic at various 

intervals during a 24-hour time period (it is to be noted that the 

access logs have a time stamp of GMT+1). For example, the 

days when there was no scheduled match, the traffic was 

mediocre before 0900 hrs. The traffic increased after 0900 hrs 

till 2200 hrs. The two vertical dashed lines indicate this 

phenomenon. These traffic patterns were recorded over a 

period of 86 days (April 30th 1998 to July 26th 1998). 

Therefore, on the days when there was no scheduled match, a 

replica placement algorithm (in our case the EVA) could be 

initiated twice daily: 1) at 0900 hrs and 2) at 2200 hrs. The 

time interval t for 0900 hrs would be t = (2200-0900) = 11 

hours and for 2200 hrs would be t = (0900-2200) = 13 hours. 

Hours

A
v

e
ra

g
e

 H
it

s

12:00:00.00 AM 6:00:00.00 AM 12:00:00.00 PM 6:00:00.00 PM 12:00:00.00 AM
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

1600000

1700000

1800000

1900000

2000000

Fig. 2(A). Access on Days when there were no Scheduled Games. 

TABLE II 

OVERVIEW OF TOPOLOGIES.

Topology Mathematical Representation 

SGRG [6] 

(12 topologies) 

Randomized layout with node degree (d*) and 

Euclidian distance (d) between nodes as parameters. 

GT-ITM PR [35] 

(5 topologies) 

Randomized layout with edges added between the 

randomly located vertices with a probability (p). 

GT-ITM W [35]  

(9 topologies) 

P(u,v)= e-d/( L)

SGFCGUD [6] 

(5 topologies) 

Fully connected graph with uniform link distances. 

SGFCGRD [6] 

(5 topologies) 

Fully connected graph with random link distances. 

SGRGLND [6] 

(9 topologies) 

Random layout with link distance having a 

lognormal distribution [36]. 

Hours
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e
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e

 H
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s

12:00:00.00 AM 6:00:00.00 AM 12:00:00.00 PM 6:00:00.00 PM 12:00:00.00 AM
0

2500000

5000000

7500000

1E+7

1.25E+7

1.5E+7

1.75E+7

Figure 2(B). Access on Days when there were Scheduled Games. 

TABLE III 

RUNNING TIME IN SECONDS 

Problem Size Greedy GRA A -Star EVA GMM

M= 500, N= 1350 81.69 117.60 110.46 78.48 90.09

M= 500, N= 1400 98.28 127.89 127.89 81.87 95.34

M= 500, N= 1450 122.43 139.02 139.02 87.81 98.91

M= 500, N= 1500 134.61 148.47 155.40 90.75 104.37

M= 500, N= 1550 146.58 168.84 169.47 95.06 105.63

M= 500, N= 2000 152.25 177.66 189.21 105.46 108.57
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On the other hand the days when there were scheduled 

matches, EVA could be initiated at 1900 hrs and 0100 hrs. It is 

to be noted that the autonomous agents can easily obtain all the 

other required parameters (for the ORP) via the user access 

logs and the underlying network architecture. 

B. Experimental Setup 

To establish diversity in our experimental setups, the 

network connectively was changed considerably. In this paper, 

we only present the results that were obtained using a 

maximum of 500 sites. We used existing topology generator 

toolkits and also self generated networks. Table II summarizes 

the various techniques used to gather forty-five various 

topologies. All the results reported, represent the average 

performance over all the topologies.  

To evaluate our proposed technique on realistic traffic 

patterns, we used the access logs collected at the Soccer World 

Cup 1998 website [31]. Each experimental setup was 

evaluated thirteen times, i.e., Friday (24 hours) logs from May 

1, 1998 to July 24, 1998. Thus, each experimental setup in fact 

represents an average of the 585 (13×45) data set points. To 

process the logs, we wrote a script that returned: only those 

objects which were present in all the logs (2000 in our case), 

the total number of requests from a particular client for an 

object, the average and the variance of the object size. From 

this log we choose the top five hundred clients (maximum 

experimental setup), which were randomly mapped to one of 

the nodes of the topologies. Note that this mapping is not 1-1, 

rather 1-M. This gave us enough skewed workload to mimic 

real world scenarios. It is also worthwhile to mention that the 

total amount of requests entertained for each problem instance 

was in the range of 1-2 million. The primary replicas’ original 

site was mimicked by choosing random locations. The 

capacities of the sites C% were generated randomly with range 

from Total Primary Object Sizes/2 to 1.5×Total Primary 

Object Sizes. The variance in the object size collected from the 

access logs helped to instill enough diversity to benchmark 

object updates. The updates were randomly pushed onto 

different sites, and the total system update load was measured 

in terms of the percentage update requests U% compared that 

to the initial network with no updates.  

C. Comparative Algorithms 

For comparison, we selected four various types of replica 

placement techniques. To provide a fair comparison, the 

assumptions and system parameters were kept the same in all 

the approaches. We chose: 1) from [6] the efficient branch-

and-bound based technique (A -Star), 2) from [1] the genetic 

algorithm based technique (GRA) which showed excellent 

adaptability against skewed workload, 3) from [6] the bin-

packing based technique GMM 4) and from [10] the famous 

greedy approach (Greedy). Due to space limitations, we briefly 

describe the comparative approaches. Details for a specific 

technique can be obtained from the referenced papers.  

1) A -Star 

In [6] the authors proposed a 1+  admissible A-Star based 

technique called A -Star. This technique uses two lists: OPEN 

and FOCAL. The FOCAL list is the sub-list of OPEN, and 

only contains those nodes that do not deviate from the lowest 

cost node by a factor greater than 1+ . The technique works 

similar to A-Star, with the exception that the node selection is 

done not from the OPEN but from the FOCAL list. It is easy to 

see that this approach will never run into the problem of 

memory overflow, moreover, the FOCAL list always ensures 

that only the candidate solutions within a bound of 1+  of the 

A-Star are expanded. 

2) GMM 

In [6] the authors proposed a bin-packing based technique, 

which we describe as follows: Let Ok and Si
represent the set of 

objects and sites in the system. Let U be the set of unassigned 

objects and k be the global minimum of all the replication 

costs associated with an object. The minimum of such cost as a 

set T=min0 j N-1(k(Ok,S
i
), Ok U. If during the assignment, the 

minimum replication cost of an object is the same for two 

different sites, the tie is broken by the minimum object size. 

For a node n let mink(n) define the minimum element of set T.

Thus mink(n) represents the best minimum replication cost that 

would occur if object Ok is replicated to a site Si
, i.e., Global 

Min-Min (GMM). 

3) GRA  

In [1] the authors proposed a genetic algorithm based 

heuristic called GRA. GRA provides good solution quality, but 

suffers from slow termination time. This algorithm was 

selected since it realistically addressed the fine-grained data 

replication using the same problem formulation as undertaken 

in this article. 

4) Greedy 

We modify the greedy approach reported in [10] to fit our 

problem formulation. The greedy algorithm works in an 

iterative fashion. In the first iteration, all the M sites are 

investigated to find the replica location(s) of the first among a 

total of N objects. Consider that we choose an object j for 

replication. The algorithm recursively makes calculations 

based on the assumption that all the users in the system request 

for object j. Thus, we have to pick a site that yields the lowest 

cost of replication for the object j. In the second iteration, the 

location for the second site is considered. Based on the choice 

of object j, the algorithm now would identify the second site 

for replication, which, in conjunction with the site already 

picked, yields the lowest replication cost. Observe here that 

this assignment may or may not be for the same object j. The 

algorithm iterates forward till either one of the ORP 

constraints are violated.

D. Results and Discussions 

Table III (best times shown in bold) shows the algorithm 

execution times. The number of sites was kept constant at 500, 

and the number of objects was varied from 1350 to 2000. With 

maximum load (2000 objects and 500 sites), the proposed 

technique EVA saved approximately 50 seconds of 

termination time then the third fastest algorithm (Greedy). 

Superiority of execution time comes at the cost of loss in 

solution quality. However, EVA showed high solution quality. 

First, we observe the effects of system capacity increase. An 

increase in the storage capacity means that a large number of 

objects can be replicated. Replicating an object that is already 

extensively replicated, is unlikely to result in significant traffic 
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savings as only a small portion of the servers will be affected 

overall. Moreover, since objects are not equally read intensive, 

increase in the storage capacity would have a great impact at 

the beginning (initial increase in capacity), but has little effect 

after a certain point, where the most beneficial ones are 

already replicated. This is observable in Fig. 3, which shows 

the performance of the algorithms. Greedy and EVA showed 

an immediate initial increase (the point after which further 

replicating objects is inefficient) in its RC savings, but 

afterward showed a near constant performance. GMM and 

GRA although performed the worst, but observably gained the 

most RC savings (27% and 35%, respectively) followed by 

Greedy with 24%. Further experiments with various update 

ratios (5%, 10%, and 20%) showed similar plot trends. It is 

also noteworthy (plots not shown in this paper due to space 

restrictions) that the increase in capacity from 10% to 17%, 

resulted in 4 times (on average) more replicas for all the 

algorithms.  

Next, we observe the effects of increase in the read and 

update (write) frequencies. Since these two parameters are 

complementary to each other, we describe them together. In 

both the setups the number of sites and objects were kept 

constant. Increase in the number of reads in the system would 

mean that there is a need to replicate as many object as 

possible (closer to the users). However, the increase in the 

number of updates in the system requires the replicas be 

placed as close as to the primary site as possible (to reduce the 

update broadcast). This phenomenon is also interrelated with 

the system capacity, as the update ratio sets an upper bound on 

the possible traffic reduction through replication. Thus, if we 

consider a system with unlimited capacity, the “replicate 

everywhere anything” policy is strictly inadequate. The read 

and update parameters indeed help in drawing a line between 

good and marginal algorithms. The plots in Figs. 4 and 5 show 

the results of read and update frequencies, respectively. A 

clear classification can be made between the algorithms. A -

Star, Greedy and EVA incorporate the increase in the number 

of reads by replicating more objects and thus savings increase 

up to 89%. GMM gained the least of the RC savings of up to 

54%. To understand why there is such a gap in the 

performance between the algorithms, we recall from [1] that 

GMM maintains a localized network perception. Increase in 

updates result in objects having decreased local significance 

(unless the vicinity is in close proximity to the primary 

location). On the other hand, A -Star, Greedy and EVA never 
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TABLE IV 

AVERAGE RC SAVINGS IN PERCENTAGE

Problem Size Greedy GRA A -Star EVA GMM

N=150, M=20 [C=20%,U=25%] 70.46 69.74 74.62 75.70 64.21

N=200, M=50 [C=20%,U=20%] 73.94 70.18 77.42 78.43 66.62

N=300, M=50 [C=25%,U=5%] 70.01 64.29 70.33 82.25 61.01

N=300, M=60 [C=35%,U=5%] 71.66 65.94 72.01 74.43 60.95

N=400, M=100 [C=25%,U=25%] 67.40 62.07 71.26 73.89 59.21

N=500, M=100 [C=30%,U=35%] 66.15 61.62 71.50 75.45 54.56

N=800, M=200 [C=25%,U=15%] 67.46 65.91 70.15 73.68 60.52

N=1000, M=300 [C=25%,U=35%] 69.10 64.08 70.01 72.45 61.16

N=1500, M=400 [C=35%,U=50%] 70.59 63.49 70.51 74.01 62.63

N=2000, M=500 [C=10%,U=60%] 67.03 63.37 72.16 73.15 60.94
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tend to deviate from their global view of the problem domain.  

1) Summary 

In summary, Table IV shows the quality of the solution in 

terms of RC percentage for 10 problem instances (randomly 

chosen), each being a combination of various numbers of sites 

and objects, with varying storage capacity and update ratio. 

For each row, the best result is indicated in bold. The proposed 

EVA steals the show in the context of solution quality, but A -

Star and Greedy do indeed give a good competition, with 

savings within a range of 7%-10% of EVA.  

VI. CONCLUSIONS

Manual mirroring of data objects is a tedious and time 

consuming operation. This paper proposed a game theoretical 

extended Vickrey auction (EVA) mechanism for object based 

data replication in large-scale distributed computing systems, 

such as, the Internet. EVA is a protocol for automatic 

replication and migration of objects in response to demand 

changes. EVA aims to place objects in the proximity of a 

majority of requests while ensuring that no hosts become 

overloaded. 

EVA allows agents to compete for the scarce memory space 

at sites so that they can acquire the rights to place replicas. To 

cater for the possibility of cartel type behavior of the agents, 

EVA uses the extended Vickrey auction protocol. This leaves 

the agents with no option, then to report truthful valuations of 

the objects that they represent. 

EVA was compared against some well-known techniques, 

such as: greedy, branch and bound and genetic algorithms. To 

provide a fair comparison, the assumptions and system 

parameters were kept the same in all the approaches. The 

experimental setup was designed to mimic a large-scale 

distributed computing system (the Internet), by using several 

Internet topology generators and World Cup Soccer 1998 web 

server access logs. The experimental results revealed that EVA 

outperformed the four widely cited and powerful techniques in 

both the execution time and solution quality. In summary, 

EVA exhibited 7%-10% better solution quality and 10%-30% 

savings in the algorithm termination timings.  
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