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Remarks on Some Properties of Decision Rules
Songlin Yang and Ying Ge

Abstract—This paper shows that some properties of the decision
rules in the literature do not hold by presenting a counterexample. We
give sufficient and necessary conditions under which these properties
are valid. These results will be helpful when one tries to choose the
right decision rules in the research of rough set theory.
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I. INTRODUCTION

IN order to extract useful information hidden in voluminous
data, many methods in addition to classical logic have

been proposed. Rough set theory, which was proposed by Z.
Pawlak in [3], plays an important role in applications of these
methods. Their significance has been demonstrated by many
successful applications in pattern recognition and artificial
intelligence [1][2][5][9][10][11].An important application of
rough set theory is to induce decision rules that indicate the
decision class of an object based on its values on some condi-
tion attributes [3],[5]–[8]. In the past years, investigations for
decision algorithms aroused extensive attentions of research
community and some interesting results were obtained. The
following proposition was given for properties of decision
rules in [4][6].

Proposition 1: Let C →x D be a decision rule, Then the
following properties are valid:∑

y∈C(x)

cery(C,D) = 1, (1)

∑
y∈D(x)

covy(C,D) = 1, (2)

π(D(x)) =
∑

y∈C(x)

cery(C,D)π(C(y)) =
∑

y∈C(x)

σy(C,D),

(3)

π(C(x)) =
∑

y∈D(x)

covy(C,D)π(D(y)) =
∑

y∈D(x)

σy(C,D),

(4)

cerx(C,D) =
covx(C,D)π(D(x))

π(C(x))
=
σy(C,D)
π(C(x))

, (5)
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covx(C,D) =
cerx(C,D)π(C(x))

π(D(x))
=
σy(C,D)
π(D(x))

. (6)

Remark:Property (5) and (6) come from property
(1),(2),(3),(4).

We disprove Proposition 1 by a counterexample. Also, we
give sufficient and necessary conditions under which Propo-
sition 1 holds. These results will be helpful when one tries
to choose the right decision rules in the research of rough set
theory.

This paper is organized as follows. Section 2 recalls some
basic concepts from rough set theory. Section 3 presents
a counterexample. Section 4 gives sufficient and necessary
conditions under which these properties in Proposition 1 are
valid.

II. PRELIMINARIES

In this section, we recall some basic concepts from rough set
theory[6]. Let S = (U,C,D) be a decision table, where U is
a universe of discourse, C and D are disjoint sets of condition
and decision attributes. Every x ∈ U determines a se-
quence c1(x), c2(x), ..., cn(x), d1(x), d2(x), ..., dm(x) where
{c1, c2, ..., cn} = C and {d1, d2, ..., dm} = D. The sequence
will be called a decision rule induced by x and denoted by
c1(x), c2(x), ..., cn(x) → d1(x), d2(x), ..., dm(x) or in short
C →x D, C(x) and D(x) are referred to as the condition
granule and the decision granule induced by x, respectively.

Definition 1: The number

suppx(C,D) = |C(x) ∩D(x)|
is called the support of the rule C →x D in S. where |C|
denotes the cardinality of C.

Definition 2: The number

cerx(C,D) =
|C(x) ∩D(x)|

|C(x)|
is called the certainty factor of the decision rule C →x D in
S, where C(x) �= φ.

Definition 3: The number

covx(C,D) =
|C(x) ∩D(x)|

|D(x)|
is called the coverage factor of the decision rule C →x D in
S, where D(x) �= φ.

Definition 4: The number

σx(C,D) =
suppx(C,D)

|U |
is called the strength of the rule C →x D in S.

For x ∈ U , let π(C(x)) = |C(x)|
|U | and π(D(x)) = |D(x)|

|U | .
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III. A COUNTEREXAMPLE

In this section, we exemplify that the properties (1)-(6) in
Proposition 1 are invalid by a counterexample.

Example 1: In Table 1, 7 facts concerning 7 cases of
driving a car in various driving conditions are presented. In
the table columns labeled weather, road and time, are called
condition attributes, which represent driving conditions. The
table columns labeled accident are called decision attributes.

Table 1: An example of information system

Fact Weather Road T ime Accident

No1 misty icy day yes
No2 foggy icy night yes
No3 misty not icy night yes
No4 sunny icy day no
No5 foggy icy night no
No6 misty not icy night no
No7 sunny icy day no

The certainty and coverage factors for the decision algo-
rithm are shown in Table 2.

Table 2: Certainty and coverage factors

Fact No. Certainty Coverage Strength

No1 x1 1.0000 0.3333 0.1429
No2 x2 0.5000 0.3333 0.1429
No3 x3 0.5000 0.3333 0.1429
No4 x4 1.0000 0.5000 0.2857
No5 x5 0.5000 0.2500 0.1429
No6 x6 0.5000 0.2500 0.1429
No7 x7 1.0000 0.5000 0.2857

Now we check the properties (1)-(4) in Proposition 1.
For No4, we obtain following results.

∑
y∈C(x4)

cery(C,D) = 2 �= 1.

∑
y∈D(x4)

covy(C,D) = 1.5 �= 1.

These show that the property (1) and (2) in Proposition 1 are
not true.

For No1, we get following results.

π(D(x1)) = 0.4286∑
y∈C(x1)

cery(C,D)π(C(y)) = 0.1429.

It is clear that

π(D(x1)) �=
∑

y∈C(x1)

cery(C,D)π(C(y)),

thus the property (3) in Proposition 1 is not true.
For No4, we have the results as below.

π(C(x4)) = 0.2857

∑
y∈D(x4)

covy(C,D)π(D(y)) = 0.8571.

It is clear that

π(C(x4)) �=
∑

y∈D(x4)

covy(C,D)π(D(y)),

thus the property (4) in Proposition 1 is not true.
But for No4,

π(D(x4)) = 0.5714∑
y∈C(x4)

cery(C,D)π(C(y)) = 0.5714.

These show that the property (3) in Proposition 1 is true.

IV. SUFFICIENT AND NECESSARY CONDITIONS OF THE

PROPERTIES

In this section we give the sufficient and necessary condi-
tions such that the properties (1)-(6) in Proposition 1 are true.

Lemma 1: Let x, y ∈ U , we have
(1).C(x) = C(y) if and only if y ∈ C(x).
(2).D(x) = D(y) if and only if y ∈ D(x).
Firstly, we study the property (1) and the property (2) in

Proposition 1.

Theorem 1: Let x ∈ U and C →x D be a decision rule,
then the following are equivalent.

(1)
∑

y∈C(x)

cery(C,D) = 1.

(2)C(y)
⋂
D(y) = {y} for each y ∈ C(x).

Proof: (1) ⇒ (2) :If
∑

y∈C(x)

cery(C,D) = 1,

i.e.
∑

y∈C(x)

|C(y)∩D(y)|
|C(y)| = 1.

By Lemma 1(1), we have C(y) = C(x) for each y ∈ C(x).
so ∑

y∈C(x)

|C(y) ∩D(y)| = |C(x)|,

For each y ∈ C(x), we have y ∈ C(y) ∩ D(y), hence
|C(y) ∩D(y)| ≥ 1.

In fact, if |C(y′) ∩D(y′)| > 1 for some y′ ∈ C(x), then∑
y∈C(x)

|C(y) ∩D(y)| > |C(x)|,

This is a contradiction.
Thus we obtain that |C(y)∩D(y)| = 1 for each y ∈ C(x),

i.e. C(y) ∩D(y) = {y} for each y ∈ C(x).
(2) ⇒ (1) : If C(y)

⋂
D(y) = {y} for each y ∈ C(x),

then ∑
y∈C(x)

cery(C,D) =
∑

y∈C(x)

|C(y)∩D(y)|
|C(y)|

=
∑

y∈C(x)

|{y}|
|C(x)|

=

∑
y∈C(x)

1

|C(x)| = 1.

Similarly, we have
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Theorem 2: Let x ∈ U and C →x D be a decision rule,
then the following are equivalent.

(1)
∑

y∈D(x)

covy(C,D) = 1.

(2)C(y)
⋂
D(y) = {y} for each y ∈ D(x).

Secondly, we look at the property (3) and the property (4)
in Proposition 1.

Lemma 2: Let x ∈ U and C →x D be a decision rule, if

π(D(x)) =
∑

y∈C(x)

cery(C,D)π(C(y))

and
π(C(x)) =

∑
y∈D(x)

covy(C,D)π(D(y)),

then the following hold.
(1). |C(x)| = |D(x)|.
(2).

∑
y∈C(x)

cery(C,D) = 1.

(3).
∑

y∈D(x)

covy(C,D) = 1.

Proof: If π(D(x)) =
∑

y∈C(x)

cery(C,D)π(C(y)), then

|D(x)| =
∑

y∈C(x)

|C(y)
⋂
D(y)|.

In fact
∑

y∈C(x)

|C(y)
⋂
D(y)| ≥ |C(x)|, so we have

|D(x)| ≥ |C(x)|.
If π(C(x)) =

∑
y∈D(x)

covy(C,D)π(D(y)) then

|C(x)| =
∑

y∈D(x)

|C(y)
⋂
D(y)|.

In fact
∑

y∈D(x)

|C(y)
⋂
D(y)| ≥ |D(x)|, so we have

|C(x)| ≥ |D(x)|.
Thus, we get

|C(x)| = |D(x)|.
If π(D(x)) =

∑
y∈C(x)

cery(C,D)π(C(y)), then by Lemma

1,
π(D(x)) = π(C(x))

∑
y∈C(x)

cery(C,D)

i.e.
|D(x))| = |C(x)|

∑
y∈C(x)

cery(C,D).

Thus,we get ∑
y∈C(x)

cery(C,D) = 1.

Similarly,we have∑
y∈D(x)

covy(C,D) = 1.

Similarly, we have

Lemma 3: Let x ∈ U and C →x D be a decision rule, if
two of the following conditions hold, then other holds.

(1).π(D(x)) =
∑

y∈C(x)

cery(C,D)π(C(y)) .

(2).
∑

y∈C(x)

cery(C,D) = 1.

(3).|C(x)| = |D(x)|.

Theorem 3: Let x ∈ U and C →x D be a decision rule,
then

π(D(x)) =
∑

y∈C(x)

cery(C,D)π(C(y))

and
π(C(x)) =

∑
y∈D(x)

covy(C,D)π(D(y)),

hold if and only if the following expressions hold.
(1). |C(x)| = |D(x)|.
(2).

∑
y∈C(x)

cery(C,D) = 1.

(3).
∑

y∈D(x)

covy(C,D) = 1.

Proof: The sufficiency can be obtained by Lemma 2 and
Lemma 3.

We prove the necessity as follows.
If π(D(x)) =

∑
y∈C(x)

cery(C,D)π(C(y)), then

|D(x)| =
∑

y∈C(x)

|C(y) ∩D(x)|.

Since ∑
y∈C(x)

|C(y) ∩D(x)| ≥ |C(x)|,

we have
|D(x)| ≥ |C(x)|.

If π(C(x)) =
∑

y∈D(x)

covy(C,D)π(D(y)), then

|C(x)| =
∑

y∈D(x)

|C(x) ∩D(y)|.

Since ∑
y∈D(x)

|C(x) ∩D(y)| ≥ |D(x)|,

we have
|C(x)| ≥ |D(x)|.

Thus, we have
|C(x)| = |D(x)|.

If π(D(x)) =
∑

y∈C(x)

cery(C,D)π(C(y)), then by Lemma

1(1),
π(D(x)) = π(C(x))

∑
y∈C(x)

cery(C,D),

by definition, we have

|D(x)| = |C(x)|
∑

y∈C(x)

cery(C,D).



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:1, 2010

98

Hence ∑
y∈C(x)

cery(C,D) = 1.

Similarly, we have∑
y∈D(x)

covy(C,D) = 1.
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