
International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:9, No:6, 2015

664

 

 

 
Abstract—A reliability-based methodology which uses structural 

demand hazard curves to consider the increment of the ductility 
demands of structures with tilting is proposed. The approach 
considers the effect of two orthogonal components of the ground 
motions as well as the influence of soil-structure interaction. The 
approach involves the calculation of ductility demand hazard curves 
for symmetric systems and, alternatively, for systems with different 
degrees of asymmetry. To get this objective, demand hazard curves 
corresponding to different global ductility demands of the systems 
are calculated. Next, Uniform Exceedance Rate Spectra (UERS) are 
developed for a specific mean annual rate of exceedance value. 
Ratios between UERS corresponding to asymmetric and to 
symmetric systems located in soft soil of the valley of Mexico are 
obtained. Results indicate that the ductility demands corresponding to 
tilted structures may be several times higher than those corresponding 
to symmetric structures, depending on several factors such as tilting 
angle and vibration period of structure and soil. 

 
Keywords—Asymmetric yielding, tilted structures, seismic 

performance, structural reliability. 

I. INTRODUCTION 

TRUCTURES built in soft soil may suffer tilting due to 
differential settlements, leading to asymmetric yield 

strength which causes accumulation of plastic deformation 
demands in only one direction. This may significantly affect 
the seismic response and the seismic reliability of structures 
subjected to long duration intense ground motions. The 
asymmetric behavior may also be caused by the asymmetry of 
vertical loads and by the presence of adjacent buildings with 
different weight, height, and foundation characteristics, 
located in soft soils. 

There are several buildings with tilting problems in the 
valley of Mexico City, which is due to the particular 
characteristics of the soft soil of the valley. The requirements 
for the design of tilted structures were included for the first 
time in Mexico City Building Code in 1987 (RCDF-1987) [1], 
since then, several Mexican researchers have studied this 
problem. In the next section, a literature review related to the 
seismic behavior of tilted structures is presented. 

 
Federico Valenzuela-Beltran is a PhD. student at Instituto de Ingeniería, 

Universidad Nacional Autónoma de México, Coyoacán, C.P. 04510, México, 
D.F. (corresponding author, e-mail: FValenzuelaB@iingen.unam.mx). 

Sonia E. Ruiz, Professor, and Juan Bojorquez, PhD. student are with the 
Instituto de Ingeniería, Universidad Nacional Autónoma de México, 
Coyoacán, 04510, México, D.F. (e-mail: SRuizG@iingen.unam.mx, 
JBojorquezM@iingen.unam.mx). 

Alfredo Reyes-Salazar is a Professor at Facultad de Ingeniería, 
Universidad Autónoma de Sinaloa, Calzada de las Américas y Boulevard 
Universitarios S/N, Ciudad Universitaria, Culiacán, Sinaloa, México, 80040. 
(e-mail: reyes@uas.edu.mx). 

II. PREVIOUS WORK 

Ruiz et al. [2], using single degree of freedom (SDOF) 
systems with bilinear hysteresis behavior, found that the 
ductility demands of systems with asymmetric yield strength 
subjected to narrow band seismic motions are much higher 
than those corresponding to symmetric structures, and they 
proposed expressions to consider such increment in the 
ductility demands. Ruiz [3] proposed an expression to estimate 
the expected amplification factor of seismic design forces 
which takes into account the asymmetry in the structural yield 
strength, as well as the duration of the ground motion 
intensity. The author concluded that the expression was more 
conservative that the requirements included in RCDF-1987 
and suggested to modify these. Terán-Gilmore et al. [4] 
studied the dynamic response of tilted SDOF systems 
designed in accordance with RCDF-1987 requirements. They 
concluded that the design of structures with asymmetric 
yielding should consider the hysteretic behavior and the lateral 
strength of the structure, as well as the frequency content and 
the duration of the seismic excitation. Terán-Gilmore and 
Arroyo-Espinoza [5] through the studying of SDOF systems 
with different hysteretic behavior, proposed mathematical 
expressions to estimate the strength amplification factor for 
the design of earthquake resistant structures with asymmetric 
yield strength.  

Despite the important contributions of the studies just 
mentioned, all of them are limited to the analysis of SDOF 
systems subjected to unidirectional analyses. The influence of 
the two components of the seismic ground motions, the soil-
structure interaction, and the implicit levels of reliability in the 
analysis and design of structures with asymmetric yielding has 
not been studied. 

In this study, a methodology based on a reliability 
assessment to consider the increment of the ductility demands 
of tilted structures is proposed. It considers two horizontal 
components of the ground motions and soil-structure 
interaction.  

III. RELIABILITY ASSESSMENT 

In the seismic design guidelines exist several reliability 
based formats [6], for example: a) the semi-probabilistic [7], 
b) first order and second moments (FOSM) [8], c) load and 
resistance factors design (LRFD) format [9], d) those based on 
seismic hazard analysis [10], [11], and e) those based on 
optimization [12], [13]. 

In the present study the reliability is evaluated with the 
format based on a seismic hazard analysis, using structural 
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