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 
Abstract—In this paper, we focus on the reliability and 

performance analysis of Computer Centre (CC) at Yobe State 
University, Damaturu, Nigeria. The CC consists of three servers: one 
database mail server, one redundant and one for sharing with the 
client computers in the CC (called as a local server). Observing the 
different possibilities of the functioning of the CC, the analysis has 
been done to evaluate the various popular measures of reliability 
such as availability, reliability, mean time to failure (MTTF), profit 
analysis due to the operation of the system. The system can 
ultimately fail due to the failure of router, redundant server before 
repairing the mail server and switch failure. The system can also 
partially fail when a local server fails. The failed devices have 
restored according to Least Recently Used (LRU) techniques. The 
system can also fail entirely due to a cooling failure of the server, 
electricity failure or some natural calamity like earthquake, fire 
tsunami, etc. All the failure rates are assumed to be constant and 
follow exponential time distribution, while the repair follows two 
types of distributions: i.e. general and Gumbel-Hougaard family 
copula distribution.  

 
Keywords—Reliability, availability Gumbel-Hougaard family 

copula, MTTF, internet data center.  

I. INTRODUCTION 

ELIABILITY of a system plays a significant role in 
operations of industry and organization. It involves 

effective methods to improve the reliability and availability of 
complex systems under different failure and repair policies. 
The system reliability has been extensively studied and used 
by various authors like Govil [2], Gupta and Sharma [9] Cui 
and Lirong [6] and many others. They have discussed the 
reliability characteristics of complex systems by taking 
several failures and one repair policy. Examine the present 
scenario with the complexity of advanced technology and 
modern demands of the networking system; it is necessary to 
study the computer center that has become an essential 
requirement of usual life. Singh et al. [11] have investigated 
the reliability characteristic for Internet data center with a 
redundant server including a main mail server. In continuation 
to the 

 study of Internet data center, Rawal et al. [5] have 
discussed the reliability of Internet Data Centre having one 
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mail server and one redundant server especially for the use of 
Internet. In this paper, the authors have put their attention 
toward many other factors which were not taken into account 
in the earlier study, but still, they have left many necessary 
parameters. For example, the authors in this paper do not 
consider the connectivity and sharing (of files and data) with 
clients’ computers. 

In this article, we study the functioning of Computer Centre 
(CC) at Yobe State University, Damaturu, Nigeria, under 
various repair and maintenance policies using the Least 
Recently Used (LRU) algorithm. The function of CC is to 
provide the Internet to whole the University and provide labs 
(for all the computing related activities) to all the students of 
the University. The CC consists of three servers: one database 
(mail server), one redundant server and one for sharing (files 
and data) with the client computers in the CC (called as a 
local server). The CC is having 100 computers, two routers, 
and five switches. All systems are interconnected by the local 
server. The CC has two types of failure: partial failure and 
complete failure. Whenever local server fails, all 100 
computers become disconnected from the Internet but 
working for other kinds of use. However, all other systems 
which are directly connected to either mail server or 
redundant server are unaffected by this. Whenever the mail 
server fails, the redundant server comes into function 
automatically by a switchover device. The switch-over device 
is instantaneous and automatic. The system can fail due to the 
following: 

I. Failure of redundant server before repair of the central 
server 

II. Failure of local server 
III. Failure of switch 
IV. Failure of router 
V. Failure of cooling system            

VI. Failure due to natural calamity like earthquake or fire 
etc. 

The system will be in complete failure mode if a redundant 
server fails before repairing of the main mail server. The 
system will be in degraded mode: (i) when the central mail 
server fails completely, and the redundant server is in the 
partial failure mode, (ii) local server fails. The failed systems 
are repaired according to Least Recent Used (LRU) algorithm. 
The idea behind the use of this algorithm is that if the server 
which has been ideal for a long time needs not to be repaired 
first after it fails. Since there may be the possibility that it may 
not be used for a long time in future too. 

The authors in [1], [3], [4], [9] have studied the reliability 
measures of a system, with different types of failures and one 

Reliability Analysis of Computer Centre at Yobe State 
University Using LRU Algorithm 

V. V. Singh, Yusuf Ibrahim Gwanda, Rajesh Prasad 

R 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:11, 2015

697

type of repair. However, there are many situations in real life 
systems where more than one repair is possible between two 
adjacent transition states. When this possibility exists, the 
reliability of the system can analyze with the help of copula 
[10]. The authors [7], [8], [12]-[14], [16]-[18] have studied the 
reliability models with different types of failure, and different 
types of repair are employing Copula distribution.  

They have concluded that reliability of system improves by 
using Copula. M. Ram et al. [7] have discussed the reliability 
of a system with different failure rates and common cause 
failure under the preemptive resume policy with the concept 
of Gumbel-Hougaard family copula distribution. References 
[12], [14] discussed the reliability analysis of a system which 
has two subsystems under k-out-of-n: G; policy using Copula 
distribution. Waiting repair policy also play a significant role 
in reliability theory, whenever the repair is employed to a 
failed unit and mean time the other operating unit of the 
system fails, then recently failed unit has to wait for getting 
repair until it is not a priority unit. Authors [8], [15] studied 
the reliability characteristics of complex repairable systems 
using Copula distribution. 

Therefore, about the earlier models discussed, here we have 
considered Computer Centre in which we highlighted 
improvement of reliability due to two different repair facilities 
available between adjacent states, i.e. the initial state and 
complete failed states. All failure rates are assumed to be 
constant and follow an exponential distribution. The repair 
follows general and Gumbel-Hougaard family copula 
distributions. 

This paper is organized as follows: Section II describes the 
notation and assumptions used in the article. Section III 
illustrates the state transition diagram of the model. Section 
IV explains the mathematical formulation and solution of the 
model. Finally, we conclude in Section V. 

II. NOTATIONS AND ASSUMPTIONS 

A. Notations 

t Time variable on time scale. 

s Laplace transform variable. 

C // 21
 Failure rates for Main mail server/ Redundant server/ 

local server.  

CLRS  //  Failure rates for switch/ Router/ Natural calamity like 
earthquake Tsunami are suddenly getting fire etc. 

1(x)/ 2(x)/c 
(x)/ µ0(x) 

General repair rates for Main mail server/ Redundant 
server/ local server/ repair rate for complete failed 
states. 

Pi(t) The notation, Pi(t) represents the probability the 
probability of the system to be in state Si  at instant’s’ 
for i =0 to 9. 

( )P s  Laplace transformation of P (t). 

Pj (x, t) The state transition probability that  the system is in 
state So for j=1 to 8; the system is under repair and 
elapsed repair time lies in interval x, x+∆x,  

Ep(t) Notation for expected profit during the interval [0, t). 
K1, K2 Revenue and service cost per unit time respectively. 
µ0(x)=C(u1(x),u2

(x)) 
The expression of joint probability (failed state Si to 
good state S0) according to Gumbel-Hougaard family 
copula is given as 1/

1 2( ( ), ( )) exp[ {log ( )} ]C u x u x x x  
   , 

where, u1 = (x), and u2 = ex, where  is a parameter. 

B. Assumptions  

The following assumptions are taken throughout the study 
of the mathematical model. 
i. Initially, the system is in S0 state where all servers are in 

good condition. 
ii. When the main mail server fails, the redundant server 

takes over the load, and repair is assigned to the failed 
main mail server. 

iii. When the local server fails, the client computers in CC 
are disconnected from local server and waits for repair. 
However, there is no effect on other systems which are 
connected directly from the main or redundant server. 
This needs fast repairing, i.e. Copula distribution is 
employed to repair. 

iv. The system waits for repair if repair facility is not 
available; as soon as the repair service is available, the 
repairing is employed to the failed unit.  

v. During repair, the preference to the server is given in the 
order of Least Recently Used (LRU), because the server 
which has been ideal for a long time needs not to be 
repaired first after it fails. Since there may be the 
possibility that it may not be used for a long time in 
future too. 

vi. All failure rates are assumed to be constant. 
vii. A switch failure, router failure, cooling failure, and 

failure due to natural calamity needs fast repairing and 
Gumbel- Hougaard copula distribution is employed for 
repairing complete failed states. 

viii. Repaired system works like a new, and the repair does not 
damage anything.  

III. FORMULATION AND SOLUTION OF MATHEMATICAL MODEL 

A. Mathematical Formulation of Model 

By the probability of considerations and continuity of 
arguments, the following set of difference-differential 
equations governing the present mathematical model can be 
obtained as: 
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Fig. 1 State Transition Diagram of Model 
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Boundary conditions: 

                              

)),0()((),0( 011 tPtPtP C                      (10)          

)),0()((),0( 022 tPtPtP C                        (11)      

)(),0( 0 tPtP CC                                  (12)   

),0(),0( 124 tPtP                                   (13) 

),0(),0( 215 tPtP                                   (14) 

)),0(),0(),0()((),0( 2106 tPtPtPtPtP CS            (15)  

)),0(),0(),0()((),0( 2107 tPtPtPtPtP CR             (16) 

)),0(),0(),0()((),0( 2108 tPtPtPtPtP CCL             (17) 

B. Solution of the Model 

Taking Laplace transformation of (1)-(17) and using these 
with help of initial condition, P 0 (t) =1 and other state 
probabilities are zero at t: 
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Laplace transform of boundary conditions: 
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Solving the (19)-(26) with help of (27)- (34) and then using 

in (18), one may have: 
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The sum of Laplace transformations of the state 

probabilities when the  system is in up state and in failed state 
at any time is as follows: 
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IV. PARTICULAR CASES 

A. Availability Analysis  

For particular cases the study of availability is focus on 
following cases: when repair follows exponential distribution 
setting: 
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Taking the values of different parameters as, λ1=0.05, λ2 = 

0.03, λC = 0.04, λS = 0.045, λR = 0.12, λCL = 0.01, Ø, θ = 1, x = 
1, in (44), then taking inverse Laplace transform, one can 
obtain: 

 
Availability=  - 0.031027e (-1.47000 t) - 0 .00461e (-1.06200t) 

+  0 .00580 e (-2 .7339 t) +0.03705 e (-1 .172639t) 

+  0.001129 e (-1 .10096 t)-0 .010098 e (-1 .074933 t) 

+1.00400 e (-0.08812t)                

  
(46a) 

 
Taking λC = 0, i.e. local server is not in existence and for 

same values of failure rates of parametric values in (44), and 
taking inverse Laplace transform the expression for 
availability is given as in (46 b). 

 
Availability= 0 .00.3318 e (-1.0700t) +0.006305 e (-2.73530 t) 

+0.012187 e (-1.16938 t)   - 0.020156    e (1.090609t)

+ 0.99835 e (-0 . 043207 t)                        

   
(46b)

 

 
For, the time t= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, …; units of time, 

one may get different values of Availability with the help of 
(45A), (45b) and as shown in Fig. 2.  

B. Reliability Analysis of the System  
Assuming all  repairs in (44) equal to zero and then  taking 

inverse Laplace transform,  one may get an  expression for the 
reliability of system and for given values of failure rates 
λ1=0.05, λ2=0.03, λC = 0.04, λS = 0.045, λR = 0.012 and λCL = 
0.010 in (44), we get (46 a) and (46b): 
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Reliability=0.57778e(-0.09700 t)+0.44572e(- 0.11700 t)+e(-0.14700t)-1.0235e(-0.18700t)                              
(46c) 

 
TABLE I 

AVAILABILITY VARIATION WITH RESPECT TO TIME T 

Time (t) 
Availability 

A1 A2, (λC = 0) 

0 1.000 1.000 

1 0.919 0.955 

2 0.842 0.915 

3 0.771 0.877 

4 0.706 0.840 

5 0.646 0.804 

6 0.592 0.770 

7 0.542 0.738 

8 0.496 0.707 

9 0.454 0.677 

10 0.416 0.639 
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Fig. 2 Availability as a function of time t 

 
TABLE II  

VARIATION OF RELIABILITY WITH RESPECT TO TIME T 

Time(t) Reliability 

0 1.000 

1 0.935 

2 0.870 

3 0.805 

4 0.742 

5 0.682 

6 0.625 

7 0.570 

8 0.520 

9 0.473 

10 0.430 

C. Mean Time to Failure (MTTF) Analysis 

Taking all repairs zero and then taking  limit, 0s  , one 
can obtain the expression for  mean time to failure(MTTF) as: 
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     (47) 

Setting λ1=0.05, λ2=0.03, λC=0.015, λS=0.045, λR=0.012, 
λCL=0.010 and varying λ1, λ2, λC, λS, λR, λCL, one by one 
respectively as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 in (47), 
one can obtain the variation of (MTTF) with respect to failure 
rates as shown in Fig. 4. 
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Fig. 3 Reliability as function of time t 
 

TABLE III  
VARIATION OF MTTF WITH RESPECT TO FAILURE RATES  

Failure Rate MTTF λ1 MTTF λ 2 MTTF λC MTTF λS MTTF λR MTTF λCL

0.1 6.17 5.39 6.19 2.98 2.195 2.157 

0.2 7.11 5.88 6.59 1.32 2.195 1.065 

0.3 7.79 6.36 6.81 0.75 1.077 0.634 

0.4 8.26 6.72 6.95 0.48 0.640 0.421 

0.5 8.61 7.0 7.05 0.34 0.424 0.300 

0.6 8.87 7.22 7.12 0.25 0.301 0.224 

0.7 9.08 7.40 7.17 0.19 0.225 0.174 

0.8 9.24 7.54 7.21 0.15 0.175 0.139 

0.9 9.38 7.66 7.25 0.12 0.140 0.114 

1.0 9.49 7.76 7.28 0.10 0.112 0.094 
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Fig. 4 MTTF as a function of failure rates 

D. Cost Analysis 

Assuming  that the service facility be always available, then 
expected profit during the interval [0, t) is; 
 

1 2
0

( ) ( )
t

p upE t K P t dt K t                   (48) 
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For the same set of the parameter as in (47), one can obtain 
(49 a) and (49 b) respectively. Therefore, expected profit in 
interval [0, 1) can be obtained by the expression; 
 
EP(t)= K1 (0.02111 e (-1.4700 t) +0.004337 e(-1.0620  t) - 0.002122 e (-2.73392 

t) -0.031597 e (-1.172639t) +0.001025 e (-1.100961 t)+ 0.0093942e (-1.07493 t)- 
11.393674 e(-.0.0881199 t) 11.392  K2t             (49a) 

 
Setting K1= 1and K2= 0.50, 0.40, 0.30, 0.20 and 0.01  

respectively and varying t =0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 units 
of time, the results for expected profit in [0, t) can be obtain as 
shown in Fig. 5. 

 
TABLE IV 

EXPECTED PROFIT WITH RESPECT OF TIME T 

Time(t) 
Expected profit for K1 =1 

K2=0.5 K2=0.4 K2=0.3 K2=0.2 K2=0.1

0 0.0 0.0 0.0 0.0 0.0 

1 0.459 0.559 0.659 0.759 0.859 

2 0.839 1.039 1.239 1.439 1.639 

3 1.145 1.445 1.745 2.045 2.345 

4 1.383 1.783 2.183 2.583 2.983 

5 1.558 2.058 2.558 3.058 3.558 

6 1.677 2.277 2.877 3.477 4.077 

7 1.743 2.443 3.143 3.843 4.543 

8 1.762 2.562 3.362 4.162 4.962 

9 1.737 2.637 3.537 4.437 5.337 

10 1.672 2.672 3.672 4.672 5.672 
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Fig. 5 Expected profit for various values of time t 
 

TABLE V  
EXPECTED PROFIT WHEN LOCAL SERVER FAILURE IS IGNORED 

Time(t) 
Expected profit for K1 =1, (λC =0) 

K2=0.5 K2=0.4 K2=0.3 K2=0.2 K2=0.1

0 0.0 0.0 0.0 0.0 0.0 

1 0.493 0.593 0.693 0.793 0.893 

2 0.976 1.176 1.376 1.576 1.776 

3 1.450 1.750 2.050 2.350 2.650 

4 1.913 2.313 2.713 3.113 3.513 

5 2.366 2.866 3.367 3.866 4.366 

6 2.810 3.410 4.010 4.610 5.210 

7 3.243 3.943 4.643 5.343 6.043 

8 3.666 4.466 5.266 6.066 6.866 

9 4.080 4.980 5.880 6.780 7.680 

10 4.483 5.483 6.483 7.483 8.483 

 

Expression for expected profit corresponding to non-
existence of local server: 

 
EP(t)=K1(0.0024495e(-1.0620t)-0.0022444e(-2.7351t)- 0.01043095e(-

1.167348t)+0.0149474e(-1.09035t)-93.3081e(-0.01072t)+93.3033)-K2t    (49b) 
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Fig. 6 Expected profit for ( λC =0) 

V. RESULT DISCUSSION AND CONCLUSIONS 

Fig. 2 provides information how the availability of the 
complex repairable system changes on the time when failure 
rates are fixed at different values. When failure rates are fixed 
at lower values λ1 = 0.05, λ2 = 0.03, λc = 0.045, λs = 0.040, λR = 
0.012, λCL = 0.01 availability of the system decreases and 
ultimately becomes steady to the value zero after a sufficient 
long interval of time. Consequently, one can safely predict the 
future behavior of a complex system at any time for any given 
set of parametric values, as is evident by the graphical 
consideration of the model. Availability of system increases as 
the parameter λc = 0 failure of a local server is ignored. In Fig. 
3 provides the variation in reliability of the non-repairable 
system. Fig. 4, yields the mean-time-to-failure (M.T.T.F.) of 
the system on variation in λ1, λ2, λC, λS, and λR and λCL 
respectively when the other parameters have fixed as constant. 
The variation in MTTF corresponding to failure rates λ1, λ2, 
λC, is increasing but corresponding to failure rates λS, λR, λCL it 
is decreasing, which gives the information regarding 
responsible factor for the proper functioning of the system. 
When revenue cost per unit time K1 is fixed at 1, service costs 
K2 = 0.5, 0.4, 0.30, 0.20, 0.10; profit has been calculated, and 
results are demonstrated by graphs in Figs 3-5. A critical 
examination from Figs. 5 and 6 reveals that expected profit 
increases at the time when the service cost K2 fixed at a 
minimum value. Expected profit increases when a failure in 
local server is ignored. Finally, one can observe that as service 
cost increase, profit decrease. In general, for low service cost, 
expected profit is high in comparison to high service cost. 
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