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Abstract—This study aimed at investigating whether the 

functional brain networks constructed using the initial EEG (obtained 

when patients first visited hospital) can be correlated with the 

progression of cognitive decline calculated as the changes of 

mini-mental state examination (MMSE) scores between the latest and 

initial examinations. We integrated the time–frequency cross mutual 

information (TFCMI) method to estimate the EEG functional 

connectivity between cortical regions, and the network analysis based 

on graph theory to investigate the organization of functional networks 

in aMCI. Our finding suggested that higher integrated functional 

network with sufficient connection strengths, dense connection 

between local regions, and high network efficiency in processing 

information at the initial stage may result in a better prognosis of the 

subsequent cognitive functions for aMCI. In conclusion, the functional 

connectivity can be a useful biomarker to assist in prediction of 

cognitive declines in aMCI. 

 

Keywords—Cognitive decline, functional connectivity, MCI, 

MMSE.  

I. INTRODUCTION 

ILD cognitive impairment (MCI) was regarded as an 

intermediate state of cognitive function between changes 

seen in normal aging and those fulfilling the criteria for 

Alzheimer’s disease (AD) [1]. MCI, especially the amnestic 

subtype MCI (aMCI), may convert to AD at about 30-50% 

within 3-5 years, which is much more higher than the 

conversion rate in normal aging individuals [2]-[4]. 

Accordingly, identifying a neurophysiological marker that is 

associated with the progression of cognitive decline in aMCI is 

of clinical importance.  

 Previous studies reported that aMCI were not only 

associated with regional alterations, but also with disrupted 

functional integration between different brain regions, and 

therefore aMCI were considered as a disconnection syndrome 
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[5]. To investigate the network architecture in aMCI, we used 

functional connectivity analysis based on the resting-state 

electroencephography (EEG) data for 21 patients with aMCI 

and further correlated the properties of functional networks 

with the changes of cognitive functions. 

Functional connectivity can be measured by estimating 

synchrony of the EEG signal oscillations between cortical 

regions. The conventional coherence analysis was commonly 

used to measure functional connections; however, it only 

measures linear dependency between neural signals and may be 

insufficient for studying complex and nonlinear brain dynamics 

[6]. Furthermore, the coherence method can be problematic if 

the signals are contaminated by noise or the oscillatory 

frequency band is not carefully defined [7], [8]. The 

time–frequency cross mutual information (TFCMI) method 

offers an alternative solution [9], [10], which calculates the 

mutual information between two temporal power sequences 

within a specific band, and serves as a statistical measure of 

linear and nonlinear dependencies between cortical regions 

[11].  

In the present study, we integrated the TFCMI method to 

estimate the EEG functional connectivity between cortical 

regions followed by the network analysis based on graph theory 

to investigate the network organization for six different 

frequency bands, including delta, theta, alpha, beta1, beta2, and 

gamma bands. This study aimed at investigating whether the 

functional brain networks constructed using the initial EEG 

(obtained when patients first visited Taipei City Hospital) can 

be correlated with the progression of cognitive decline 

calculated as the changes of mini-mental state examination 

(MMSE) scores between the latest and initial examinations. We 

hypothesized that the integrity of functional network at the 

initial stage, characterized by the strengths of functional 

connectivity, density of between locally functional-connected 

regions, and network efficiency in information transmission, 

may be a useful biomarker to predict the subsequent declines in 

cognitive functions for aMCI.  

II. MATERIALS AND METHODS 

A. Participants 

This study received prior approval from the Institutional 

Review Board of Taipei City Hospital. We retrospectively 

enrolled amnestic subtype of MCI (aMCI) patients with EEG 

examinations. Their clinical data regarding dementia and 

cognitive decline were collected, including clinical histories, 
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neurological examinations, neuroimaging studies (CT or MRI), 

neuropsychological interview, mini-mental state examination 

(MMSE) [12], and clinical dementia rating (CDR) [13], when 

they first visited the Department of Neurology in Taipei City 

Hospital during 2008-2011. All recorded clinical data were 

reviewed by two expert neurologists (Y.J. Wang and S.H. Yan) 

to exclude participants with (1) evidence of other neurological 

or psychiatric diseases characterized by the cognitive 

impairment; (2) uncontrolled or complicated systemic diseases 

or traumatic brain injuries.  

The diagnosis of aMCI met the Petersen criteria [4]. The 

inclusion criteria for aMCI participants in this study were: (1) 

CDR score of 0.5; (2) MMSE score of 20–25; and (3) memory 

decline in the absence of dementia or significant functional 

loss. Finally, the clinical data and EEG of 21 aMCI (5 males 

and 16 females) were enrolled in this study for the subsequent 

analysis.  

The 1-year and the latest follow-up MMSE after the first 

EEG examination for aMCI patients were also collected in this 

study. The 1-year and the latest follow-up MMSE were 

separately compared with the initial MMSE to determine 

whether the follow-up MMSE were significant different from 

the initial MMSE using paired t test. Only the latest MMSE 

were significantly decreased (p = 0.022) compared with the 

initial MMSE. Table I summarizes the demographic features 

and clinical data of aMCI patients.  
 

TABLE I 

DEMOGRAPHIC FEATURES AND CLINICAL DATA OF AMCI 

No. Sex Age 
Initial 

MMSE 
1-year 
MMSE 

Latest 
 MMSE 

Initial-to-late

st duration 
(months) 

1 M 86 26 -- 23 48 

2 M 81 21 21 20 50 

3 M 84 26 -- 19 52 

4 F 87 21 24 25 26 

5 F 82 25 23 23 15 

6 F 78 12 -- 14 45 

7 M 85 23 25 14 24 

8 F 83 18 16 21 19 

9 F 83 9 15 14 53 

10 F 81 22 21 14 48 

11 F 82 22 20 21 34 

12 F 70 20 23 21 40 

13 F 75 22 20 20 13 

14 F 79 26 19 22 31 

15 F 82 13 -- 10 34 

16 F 76 13 14 10 38 

17 F 79 21 21 22 53 

18 F 84 25 25 24 62 

19 F 84 17 19 9 52 

20 F 80 24 20 17 34 

21 M 82 25 26 22 44 

p 
value 

-- -- -- 0.442 0.022 -- 

mean -- 81.1 ± 4.0 20.5 ± 5.1 20.7 ± 3.5 18.3 ± 5.0 38.8 ± 13.8 

MMSE, mini-mental state examination. 

B. EEG Recordings and Preprocessing 

The EEG data during resting state were recorded from 19 

scalp electrodes using a Nihon-Kohden EEG-1000 system 

(Nihon-Kohden Inc., Tokyo, Japan) at a sampling rate of 200 

Hz and impedance of less than 7 kΩ at each electrode. The 19 

electrodes were positioned according to the international 10–20 

system including Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, 

F8, T3, T4, T5, T6, Fz, Cz, and Pz. All the EEG activities were 

referenced to the average signal of the two linked mastoid 

electrodes and bandpass filtered between 1 and 40 Hz. Both 

eyes-closed and eyes-opened conditions were recorded for 

20–30 s alternately to a total of 4 minutes for each condition. 

Subjects remained awake and alert during the recording 

without increased attentional demand or cognitive load. Only 

the eyes-closed EEG data were extracted and segmented into 

approximate 110 consecutive epochs of 2 s in the present study.  

To eliminate the ocular, muscular, and other types of 

physiological artifacts, we first reviewed each epoch and 

manually discarded the bad epochs with aberrant waveforms or 

large signal drifts. The averaged rejection rates of epochs are 

24.90 ± 9.94%. Second, the algorithm of independent 

component analysis was utilized to decompose the EEG signals 

into multiple independent components, allowing artifacts to be 

easily detected and rejected [14]. The rejection criteria of 

independent components were that: (1) the scalp voltage map 

presents a far-frontal projection which is a typical artifact of 

eye movement; (2) the map is marginally localized with 

high-frequency powers; or (3) the component activities 

originated from few specific epochs and did not consistently 

distribute across epochs. The number of rejected components is 

3.38 ± 1.69%. Finally, approximate 80 artifact-free epochs for 

each participant were used for further analysis. 

C. Source Signal Estimation 

In this study, the signals of cortical source were estimated 

from the scalp EEG data by two steps, namely, the forward 

model followed by an inverse operation. The forward head 

model was constructed based on a symmetric boundary element 

using OpenMEEG package (http://openmeeg.github.io/) [15]. 

To compute the inverse operator, minimum-norm estimation 

(MNE) with depth-weighting approach was used to obtain the 

source signals along the entire cortical surface of the EEG data 

[16]. The specific parameters are given as follows: (a) the 

source orientations were set to be unconstrained on the cortical 

surface; (b) a depth weighting algorithm was used to 

compensate for the biased calculations of superficial sources 

[17]; and (c) a regularization parameter, λ2 = 0.1, was used to 

reduce numerical instability of the MNE and obtain a spatially 

smoothed solution [16]. The MNE analysis was performed 

using Brainstorm software 

(http://neuroimage.usc.edu/brainstorm) [18]. 

Cortical surface maps of source activity in each subject were 

displayed on the standard Colin27 anatomical images in 

Montreal Neurological Institute (MNI) space [19]. We further 

extracted the time-varying current strengths in 62 cortical 

surface regions covering entire cerebral cortex for each epoch 

based on a Mindboggle atlas (Table II) [20]. 
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TABLE II 

CORTICAL SURFACE REGIONS AND THEIR ABBREVIATIONS  

(ALL FOR BOTH HEMISPHERES) 

Type Name Label Type Name Label 

PF Medial 

orbitofrontal 

MOF PF Lateral 

orbitofrontal 

LOF 

PF Parsorbitalis PO F Superior frontal SF 

F Caudal middle 

frontal 

CMF F Rostral middle 

frontal 

RMF 

F Parsopercularis  POP F Parstrangularis  PT 

C Paracentral  paraC C Precentral  preC 

C Postcentral postC P Precuneus  precun 

P Surperior parietal  SP P Inferior parietal IP 

P Supramarginal  SM T Superior temporal  ST 

T Middle temporal MT T Inferior temporal IT 

T Transverse 
temporal 

TT T Insula  insula 

T Parahippocampus paraH T Entrohinal  EC 

T Fusiform  fusiform L Rostral anterior 
cingulate 

RAC 

L Caudal anterior 
cingulate 

CAC L Posterior cingulate PC 

L Isthmus cingulate IC O Cuneus  cuneus 

O Lingual lingual O Pericalcarine periCal 

O Lateral occipital LO    

PF, prefrontal; F, frontal; C, central; P, parietal; T, temporal; L, limbic; O, 
occipital. 

D. Brain Network Construction 

The functional brain network for each participant was 

represented by a 62×62 graph consisting of 62 nodes (cortical 

regions) and edges (functional connectivity between regions). 

The functional connectivity between cortical surface regions 

was measured using the time-frequency cross mutual 

information (TFCMI) analysis, which is more resistant to 

reference selection and noise interference than the coherence 

method [9], [10]. The TFCMI analysis consists of two 

processing steps, i.e. the wavelet transformation and mutual 

information calculation. First, the surface source signal in each 

region and each epoch was transformed into the time-frequency 

domain using the Morlet wavelet transformation to obtain 

temporal spectral map (Fig. 1 (b)) [9]. The frequency resolution 

was 1 Hz and temporal resolution was 5 ms. Six sets of 

time-frequency maps encompassing the delta (1-4 Hz), theta 

(5-7 Hz), alpha (8-12 Hz), beta1 (13-20 Hz), beta2 (21-30 Hz), 

and gamma (31-40 Hz) activities were created separately. The 

power across selected frequency bands in each cortical region 

was averaged to produce a dynamic power curve (Fig. 1 (c)). 

The temporal series of averaged power signals were then used 

to compute the cross mutual information (CMI) between any 

two cortical regions in each epoch [9]. Denote the averaged 

power signals at the ith region by a random variable, Fi, and its 

probability density function (PDF) by p(Fi). 
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where b=1,2,…,40 represents the index of sampling bins used 

to construct the approximated PDF and joint PDF. Finally, the 

functional connections in each epoch and each frequency band 

were generated by a pair of regions, creating a 62×62 TFCMI 

map (Fig. 1 (d)). The TFCMI values were normalized so that 

the maximal values equal one. A schematic diagram for the 

construction of a functional network is shown in Fig. 1. 
 

 

Fig. 1 Schematic diagram of the functional network construction (a) 

The EEG source signals for 62 cortical surface regions of each epoch. 

(b) The source signal were processed using the Morlet wavelet 

transformation to obtain time–frequency power maps within the 

selected frequency band (beta1, 13–20 Hz shown here), in which 

colors indicate power amplitude in an arbitrary unit (a. u.). (c) The 

averaged power signal for each region was created by averaging the 

individual time–frequency maps across selected frequency band. (d) 

The 62×62 TFCMI map was obtained by calculating the cross mutual 

information from the averaged powers between any two channels 

E. Network Analysis  

The 62×62 TFCMI maps for each selected frequency band 

were first binarized by applying threshold T to the weighted 

edges. 

 



 ≥

=
otherwise      ,0

 if  ,1 TCMI
e

i,j

ij
                                  (2) 

 

where eij is referred to as the effective connection between 

cortical regions i and j. We set thresholds T equal to the mean 

value of whole TFCMI map added by one standard deviation 

for all participants. The threshold for each selected band in this 

study was 0.53 in delta, 0.42 in theta, 0.35 in alpha, 0.29 in 

beta1, 0.23 in beta2, and 0.19 in gamma, respectively. 
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Network organization can be estimated by topological 

properties based on graph theory. Two regional properties, 

including nodal clustering coefficient (Ci) and nodal shortest 

path length (Li) were computed for each node. The nodal 

clustering coefficient is the probability of interconnectivity 

between neighboring nodes in a network; the nodal shortest 

path length represents the separation between any pair of nodes 

in a network [21]-[24]. The topological properties were 

calculated as follows: 
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where ki is the number of functionally connected neighbors to 

the node i, n is the number of nodes, N is the set of full brain 

network, and dij is the minimal number of edges that must be 

traversed to form a connection between nodes i and j.  

F. Statistics 

Since only the latest MMSE for the recruited aMCI patient 

were significantly different (p < 0.05 using paired t test) from 

the initial MMSE (Table I), we calculated the changes in 

MMSE as the difference between the latest and initial MMSE 

and denoted it as ∆MMSE (= MMSElatest - MMSEinitial). 

Therefore, a negative value of∆MMSE represents the cognitive 

decline for a patient. 

We examined the relationships between the strength of each 

functional connectivity and ∆MMSE for aMCI patients using 

partial correlation coefficients controlling for age, sex, and 

initial-to-latest duration as confounding variables to confirm 

that the correlation analysis would not be biased by the various 

initial-to-latest durations across patients. The significant 

correlations were identified as p < 0.05 with false discovery 

rate (FDR) method for multiple comparisons [25]. Similarly, 

the relationships between the ∆MMSE and two topological 

properties (Ci and Li) for each cortical region (node) were 

calculated using partial correlation coefficients controlling for 

potential confounding variables. 

III. RESULTS AND DISCUSSIONS 

A. Functional Connectivity and Changes in MMSE 

The significant correlations between the strength of 

functional connectivity and ∆MMSE in different frequency 

bands are displayed in Fig. 2. All the significant correlations 

were positive correlations suggesting that stronger functional 

connectivity between cortical regions calculated from the initial 

EEG data may indicate larger values (less negative or more 

positive) of ∆MMSE, namely, less reduction in the subsequent 

MMSE. The results showed that more significantly positive 

correlations and more symmetric patterns across left and right 

hemispheres can be found in higher frequency bands compared 

with the findings in lower frequency bands (Fig. 2). Most 

functional connectivity with significant correlations with 

∆MMSE were the “long-distance” connections referring to the 

functional connectivity between distant brain regions, such as 

frontal-parietal, frontal-occipital, and frontal-temporal 

connections. Our results were in line with the previous reports 

that the progressive aMCI or AD usually exhibited the 

disruptions of long distance connectivity, especially related to 

the frontal cortex and anterior limbic systems [26]-[28]. The 

left lateralization of functional connectivity with significant 

correlations with ∆MMSE was found in the lower frequency 

bands (Figs. 2 (a)-(d)). 

Moreover, the core regions that had the most functional 

connections with other regions exhibiting significant 

correlations with ∆MMSE were located at the medial and 

lateral orbitofrontal regions (LOF and MOF) and rostral 

anterior cingulate (RAC). 
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Fig. 2 The functional connections with positively significant 

correlations (p < 0.05) with ∆MMSE in the (a) delta, (b) theta, and (c) 

alpha bands in aMCI. The plots are displayed from posterior (upper 

left plot), lateral (upper right plot) and top views (lower left plot) (d) 

beta1, (e) beta2, and (f) gamma bands in aMCI. The plots are displayed 

from posterior (upper left plot), lateral (upper right plot) and top views 

(lower left plot) 

B. Topological Properties and Changes in MMSE 

The results of significant correlations between the ∆MMSE 

and two topological properties (Ci and Li) in different frequency 

band are separately displayed in Figs. 3-7 (no significant 

correlation was found in the theta band and therefore the figure 

was omitted here). Generally, most significant correlations 

were positive between the clustering coefficient (Ci) and 

∆MMSE, and were negative between the shortest path length 

(Li) and ∆MMSE. Higher clustering coefficients represent 

denser inter-neighbor connections resulting a better 

cooperation or functional integration between connected 

regions. Lower shortest path lengths indicate smaller 

separations between cortical regions leading to a high efficient 

brain network to transmit, integrate, and process information. 

Accordingly, our results showed that the cortical regions with 

higher clustering coefficients or/and lower shortest path lengths 

during the initial EEG examinations may reflect a better 

preservation or less decline in cognitive functions. 

Similar to the results of the correlations between the strength 

of functional connectivity and ∆MMSE, we found more 

cortical regions in the higher frequency bands exhibiting 

significant correlations than those in the lower frequency bands. 

The orbitofrontal regions (MOF and LOF), anterior limbic 

system (RAC), inferior frontal regions (PT and PO) were most 

significant and less in the central regions (preC and postC). 

IV. CONCLUSION 

This study aimed to investigate whether the functional brain 

networks constructed using the initial EEG were correlated 

with the changes in cognitive decline (∆MMSE) between the 

latest and initial examinations. Our findings in local connection 
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strengths and nodal topological properties were in line with the 

previous literatures. The results supported our hypothesis that 

higher integrated functional network with sufficient connection 

strengths, dense connection between local regions, and high 

network efficiency in processing information at the initial stage 

can be a basis to anticipate better prognosis of the subsequent 

cognitive functions for aMCI. 

 

 

Fig. 3 The cortical regions with significant correlations (red for 

positive and blue for negative) between (a) the clustering coefficient 

and ∆MMSE; and (b) the shortest path length and ∆MMSE in the delta 

band. The plots are displayed from left (left column) and right (right 

column) lateral views 

 

 

Fig. 4 The cortical regions with significant correlations (red for 

positive and blue for negative) between (a) the clustering coefficient 

and ∆MMSE; and (b) the shortest path length and ∆MMSE in the 

alpha band. The plots are displayed from left (left column) and right 

(right column) lateral views 

 

 

Fig. 5 The cortical regions with significant correlations (red for 

positive and blue for negative) between (a) the clustering coefficient 

and ∆MMSE; and (b) the shortest path length and ∆MMSE in the 

beta1 band. The plots are displayed from left (left column) and right 

(right column) lateral views 

 

 

Fig. 6 The cortical regions with significant correlations (red for 

positive and blue for negative) between (a) the clustering coefficient 

and ∆MMSE; and (b) the shortest path length and ∆MMSE in the 

beta2 band. The plots are displayed from left (left column) and right 

(right column) lateral views 
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Fig. 7 The cortical regions with significant correlations (red for 

positive and blue for negative) between (a) the clustering coefficient 

and ∆MMSE; and (b) the shortest path length and ∆MMSE in the 

gamma band. The plots are displayed from left (left column) and right 

(right column) lateral views 
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