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Region Based Hidden Markov Random Field 

Model for Brain MR Image Segmentation 

Terrence Chen, and Thomas S. Huang 

Abstract—In this paper, we present the region based hidden 

Markov random field model (RBHMRF), which encodes the 

characteristics of different brain regions into a probabilistic 

framework for brain MR image segmentation. The recently proposed

TV+L1 model is used for region extraction. By utilizing different

spatial characteristics in different brain regions, the RMHMRF model

performs beyond the current state-of-the-art method, the hidden 

Markov random field model (HMRF), which uses identical spatial 

information throughout the whole brain. Experiments on both real and 

synthetic 3D MR images show that the segmentation result of the 

proposed method has higher accuracy compared to existing

algorithms.

Keywords—Finite Gaussian mixture model, Hidden Markov

random field model, image segmentation, MRI. 

I. INTRODUCTION

ecent developments in neuroimaging technologies have 

created unprecedented opportunities to reveal the 

mysteries of the brain – how i t works and what goes wrong

when it is injured or diseased. For example, high-resolution, 3D 

anatomical information of the brain can now be obtained in a

routine manner with magnetic resonance imaging (MRI).

However, as the field of functional human brain mapping has

matured it has become apparent that a comprehensive

understanding of the human brain, and its relationship with

cognition, will require a quantitative assessment of individual

differences in both brain function and structure. This

observation has become increasingly obvious in both

neuropathological populations (e.g. multiple sclerosis, 

schizo-phrenia, Alzheimer's Dementia), as well as normal aged

populations. Nevertheless, optimally accurate and efficient 

methods for characterizing brain structure from medical images

remain elusive, and current methods remain imperfect. To

assess brain structure, accurate classification of magnetic

resonance images according to tissue type at voxel level is 

needed. Specifically, the global or local morphological features

of gray matter (GM), white matter (WM), or cerebrospinal fluid 

(CSF) are characteristic for describing disease severity or 

disease entities, and more recently have been linked to

individual differences in cognitive performance and brain

function, particularly in older adults. Due to the overwhelming

amount of data generated to represent each MR image, manual

analysis and interpretation of an entire 3D brain MR image is 

not practical. Therefore, automatic or semi-automatic

computer-aided analysis tools are important. Although MR

images have higher spatial resolution and better soft-tissue

contrast than the other diagnostic imaging modalities, fully

automatic segmentation of MR images remains difficult and the

results in current literature still have room for improvement.

This is due to somewhat noisy MR data caused by time and

equipment limitation. In this paper, we propose a novel region

based hidden Markov random field approach to quantify brain

structure that goes beyond current methods by incorporating an

enhanced model of spatial information into a statistical 

approach to MR image segmentation. The rest of the paper is

organized as follows: Section II introduces some existing

solutions for brain MR image segmentation. Section III further 

explains the FGM and the HMRF models. Section IV presents

the proposed RBHMRF model. We conduct experiments on

both synthetic and real 3D MR images in Section V, followed

by the discussion and conclusion in the last section.
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II. EXISTING SOLUTIONS

Several methods have been proposed to segment brain MR

images. The methods are either based on the intrinsic structure

of the data or based on statistical frameworks. Structural based

methods rely on apparent spatial regularities of image

structures such as edges [3], and regions [10]. However, the

performance is not satisfying when the images are with noise, 

artifacts, and local variations, which is often the case in real 

data. Instead, statistical based methods use a probability model

to classify the voxels into different tissue types based on the

intensity distribution of the image. Methods based on statistical

frameworks can be further divided into non-parametric

methods or parametric methods.. In non-parametric methods,

the density model of the prior relies entirely on the data itself,

i.e. the K-nearest-neighbors (K-NN) [7] method.

Non-parametric methods are adaptive, but its limitation is the

need of a large amount of labeled training data. In contrast,

non-parametric methods rely only on the explicit functional

form of intensity density function of the MR image. Finite

Gaussian mixture (FGM) model [8] and hidden Markov

random field (HMRF) model [9] are two representative

methods used in this category. We briefly introduce the FGM

and the HMRF models in the next section since they are highly
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related to the proposed model. We would like to note here that

the proposed RBHMRF model is a statistic framework but also

with the consideration of intrinsic structures of the data.

III. THE FGM AND THE HMRF MODELS

We begin with the simpler finite Gaussian mixture (FGM)

model. A finite Gaussian mixture model can be represented by

a simple graphical model in figure 1 (A). xi is the ground truth

label of a voxel and yi  is the observed intensity of that voxel.

Let L denote the set of tissue classes and S denote the set of the

voxel index. That is, L = { CSF, GM, WM}, S = { 1, 2, ... , N }. 

For every l L and i S,

P (l) = P ( xi  = l ) = l         (1)

p ( yi | l ) = f ( yi ; l )          (2)

where )
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result, let  be the model parameter set,  = { l ; l | l L }, 

The marginal distribution of yi = y  can be obtained by
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The FGM model is mathematically simple and can be

computed efficiently. However, no consideration of spatial

information becomes its limitation, especially when data is

noisy. The segmentation only relies on the intensity histogram

of the data and therefore is sensitive to noise and other artifacts

or variations. To overcome this limitation, a hidden Markov

random field (HMRF) model is derived [9]. The HMRF model

is based on the Markov random field (MRF) theory, in which

the spatial information is encoded through a neighborhood

system. For each voxel xi, denote as its neighborhood,

which is a set of voxels neighboring x

iNx

i, where xi , x
iNx i

x
jNx j . Let x = ( x

iNx 1, x2,..., xN) denote a single

configuration. According to the MRF theory,

P( x ) > 0             (4)

P ( xi | xS-{i}) = P ( xi | )         (5)
iNx

where S denotes index of the whole set of voxels. Based on the

Hammersley-Clifford theorem [1],

P ( x ) = Z-1 exp( U(x)), and U(x) = V

Cc

c (x) (6)

where Z is a normalizing constant, U( x ) is the energy function,

and Vc denotes a clique potential.

The intuition behinds the HMRF model is that a voxel is

more likely to be of a certain tissue type if the neighboring

voxels in are also of that type. Based on this assumption, the

clique potential is normally defined as 

Vc = (xi xj ), where i j   (7) 

or in similar manner. Finally, a HMRF model with a Gaussian

emission distribution can be derived as 

Ll

NliNi ii
xlpyfxyp )|();()|( ,

     (8)

where f ( yi ; l ) is the same as it in (2). The difference between

the HMRF model and the FGM model are the term p ( l | ) in 

(8) and the term p ( l ) in (3). If we discard the relationship 

between neighboring voxels, p ( l | ) is the same as p ( l ). In 

other words, the only difference between FGM and HMRF

model lies in whether the spatial constraint is encoded. Figure 1

(B) illustrates the idea of the HMRF model with a two

dimensional first order neighborhood system. Normally, an

Expectation-Maximization (EM) algorithm is used to fit both

the FGM and the HMRF model. Zh ang et. al. [9] incorporated a 

bias field correction algorithm [5] into the HMRF model and 

the complete framework can be illustrated by figure 1 (C). 

iNx

iNx

Fig. 1. (A) The FGM model. (B) The HMRF model. (C) The

HMRF model with bias field estimation. 

IV. THE RBHMRF MODEL

Although HMRF models have yielded relatively better

results by taking into account the spatial relationships between

neighboring voxels, it is criticized that the improvement of

segmentation accuracy is with no significant differences 

especially in cleaner data but the computation overhead of it is

much larger than the FGM model [4]. This can be easily

understood because the spatial constraint encoded through the

HMRF model is only aiming to solve the data with noise and

local variations but not taking the characteristics of human

brain structure into account.  Therefore, HMRF model treats

the probability of a voxel being WM, GM, or CSF all the same.

However, we notice that in human brain, WM and CSF are only 

adjacent to each other in the regions around the ventricles. In 

most of the brain regions, WM are covered by GM and is not

adjacent to CSF at all. We encode this information into the

segmentation framework and propose the region based hidden

Markov random field model (RBHMRF).

In the RBHMRF model, the brain is separated into two

regions showed in figure 2. Region B contains the voxels

surrounding and inside the ventricles while region A includes

all the other voxels. The RBHMRF model can also be

illustrated by figure 1 (C). Each voxel in an image corresponds 

to one of the number of classes xi = l L  {CSF(0), GM(1),

WM(2)} which are characterized by an intensity distribution
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(i.e. Gaussian distribution). b represents the bias field effect. 

The probability density of the vector of voxel values x for the

latent image corresponding to class l is p( x | l ) = N( l , l ). l

is the mean of the latent image and l is the covariance matrix

that specifies the variability of each voxel in the latent image. y

is the final observed image. Given the prior image p( x | l ), the 

initial estimation of the bias field b,  and the observed image

p( y | b, x ), the posterior distribution p( l | y ) can be calculated 

by the MAP estimation of the bias field p(b | y, x) and the p( x | 

y, b) through the EM algorithm. For fair comparison, we 

directly apply the method of Guillemaud and Brady [5] to 

estimate the bias field since it is also used in the HMRF model

[9] used to compare with the proposed model.

Fig. 2. Region A and B of the RBHMRF model. 

Now we come to the main difference between RBHMRF 

model and the HMRF model.  In the RBHMRF model, different

weightings are assigned to the neighborhood system in

different brain regions. In the RBHMRF model, the energy

function is

U(x) = V(x)          (9)

Cc

which is the same as (6). In region B, the clique potential is the

same as (7), however, in region A, the clique potential is 

modified as 

Vc = (xi xj )  (| xi xj| 1)      (10)

where  is the weighting factor. By this way, a CSF voxel in

the neighborhood system can also contribute to the central

voxel being a gray matter but not being a white matter, and vice

versa. Therefore, this reduces the probability that WM and CSF

are adjacent to each other.

Fig. 3. TV+L1
 model for brain and ventricle extraction. (A) 

Input brain MR image, f ; (B) u with = 0.2; (C) 

Thresholding on (B) to get brain region; (D) u with = 0.6; 

(E) Thresholding on (D) to get ventricle regions.

A. The TV+L1 model with RBHMRF 

One of the issues of the proposed RBHMRF model is to

extract the region of the ventricles (region B) for different 

weightings. This can be achieved by the TV+L1 model [2]

defined as:

,)()(..)(min 1Lu
xuxftsdxxu    (11)

where  is the image support and functions f and u are defined

on . By changing the only parameter , the TV+L1 model has 

the capability of selecting different scale objects in u of an 

image f with very good edge-preserving characteristic. Figure 3 

shows how the TV+L1 model can be used for ventricle regions

extraction. The detail of using the TV+L1 model for ventricles

extraction is under another working paper, which is not the

main focus here. 

Fig. 4. Improvement ratio (%) of the RBHMRF model to

the HMRF model with different values of  on images with

different noise and bias field levels. 

Fig. 5. Comparison of the percentages of correctly classified 

voxels on images with different noise and bias field levels. 

V. EXPERIMENTAL RESULTS

We evaluate the results on both T1-weighted synthetic and 

real 3D MR images. Synthetic images are with size 181  217 

181 and voxel size 1  1  1 mm3 from Montreal Neurological

Institute [6] BrainWeb. Real images are with size 208  256 

120 and voxel size 1  1  1.3 mm3. Results are compared with 

the HMRF model [9] and/or the FGM model. We first

experiment on synthetic brain MR images with known labels
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for all tissues. Figure 4 shows the effect of different values of 

on images with different noise (%N) and different bias field

level (%RF). The noise in the synthetic data has Rayleigh

statistics in the background and Rician statistics in the signal

regions. The "percent noise" number represents the percent

ratio of the standard deviation of the white Gaussian noise

versus the signal for a reference tissue. The RF level represents

the bias field effect. For example, a 20% level RF means the 

multiplicative bias field has a range of values of 0.90 ... 1.10 

over the brain area. The vertical axis is the accuracy

improvement ratio of the RBHMRF model to the HMRF model

on all voxels near the boundaries between different tissue types.

The accuracy has apparent improvement in cleaner data with

larger  and small improvement in noisy data with smaller . It 

has negative effect when the noise is severe and is large. This

is due to the corruption of the structure of the brain under 

severe noise. In such cases, using the characteristics of human

brain structure becomes problematic. Figure 5 compares

segmentation accuracy on the whole MR images of the FGM 

model, the HMRF model, and the RBHMRF model with best .

The HMRF model is criticized with little improvement on

cleaner data compared to the FGM model [4]. RBHMRF 

successfully solves this problem by considering the intrinsic

structures of the brain. Figure 6 shows one slice of synthetic

images with ground truth labels and the segmentation results.

Next, we experiment on 10 real MR images and investigate the

results. It can be seen that the RBHMRF model has better

segmentation results on real data as well. Figure 7 shows two

example slices of the segmentation results on real MR images.

Fig. 6. Comparison of the segmentation results on synthetic

data (3%N, 20%RF). 1
st
 row: Original image, ground truth 

CSF, ground truth GM, ground truth WM, respectively. 

2
nd

 and 3
rd

 rows: Segmentation results by HMRF, and

RBHMRF ( = 0.5). 

VI. DISCUSSION AND CONCLUSION

In this paper, we propose the region-based hidden Markov

random field model for brain MR image segmentation and 

illustrate its effectiveness. The improved accuracy rate

according to the experimental results is due to better

characterization of natural brain structure. Empirically, = 0.3 

to 0.5 is a good setting for real MR images. For noisier data, 

should be set smaller. Besides, the TV+L1 model is used for 

larger-scale region selection. Hidden Markov random field is

used widely in many other image processing or pattern

recognition applications. We believe the idea of using different

regions with different weighting functions according to the 

characteristics of the data may be contributive to other

applications as well. Our future work will be automatically and

adaptively choosing the optimal  based on the noise level of 

the image according to its intensity distribution.

Fig. 7. Segmentation results on real data. 
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