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Abstract—The paper discuses the effect of initial stresses on the 

reflection coefficients of plane waves in a dissipative medium. Basic 
governing equations are formulated in context of Biot's incremental 
deformation theory. These governing equations are solved 
analytically to obtain the dimensional phase velocities of plane 
waves propagating in plane of symmetry. Closed-form expressions 
for the reflection coefficients of P and SV waves’ incident at the free 
surface of an initially stressed dissipative medium are obtained. 
Numerical computations, using these expressions, are carried out for 
a particular model. Computations made with the results predicted in 
presence and absence of the initial stresses and the results have been 
shown graphically. The study shows that the presence of compressive 
initial stresses increases the velocity of longitudinal wave (P-wave) 
but diminishes that of transverse wave (SV-wave). Also the 
numerical results presented indicate that initial stresses and 
dissipation might affect the reflection coefficients significantly.  
 

Keywords—Dissipation medium, initial stress, longitudinal 
waves, reflection coefficients, reflection of plane waves, transverse 
waves. 

I. INTRODUCTION 
HE reflection coefficient of elastic waves from planar 
boundaries is important for calculations of amplitudes of 

various seismic signals. The coefficient has been studies for 
the case of homogenous and inhomogeneous media with 
several types of velocity distributions by Sinha [1], Tooly et 
al.,[2], Gupta [3,4,5], Acharya[6], Cerveny[7], Singh et al.,[8], 
Saini[9], Singh et al.,[10], Tomar et al.[11], Sharma[12] and 
others. In the existing literature the effects of dissipation and 
initial stresses present together in the medium has not been 
considered. A large amount of initial stresses may develop and 
may present in the medium caused by various factors, such as 
creep, gravity, external forces, difference of temperature etc. 
In fact, the Earth is an initially stressed and dissipative 
medium and the stresses are hydrostatic and compressive. 
Therefore, it is of interest to study the phenomenon of 
reflection of plane waves in the presence of initial stresses as 
well as dissipation.     
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In this work, an attempt has been done to apply the theory 
of Biot's incremental deformation to derive closed-form 
algebraic expressions for the reflection coefficients when 
plane waves of P or SV type are incident at the plane free 
boundary of an initially stressed dissipative half-space. Basic 
governing equations are formulated in context of Biot's 
incremental deformation theory. Closed-form expressions for 
the reflection coefficients of P and SV waves incident at the 
free surface of an initially stressed dissipative medium are 
obtained. Numerical results presented indicate that the 
presence of compressive initial stresses increases the velocity 
of longitudinal wave (P-wave) but diminishes that of 
transverse wave (SV-wave). Also the initial stresses, present 
in the medium and dissipation, have an effect of the 
reflection coefficients.   

II.  FORMULATION OF THE PROBLEM AND ITS SOLUTION 
According to Biot [13], the basic dynamical equations of 

motion for an infinite, initially stressed medium, in the 
absence of external body forces, in case of plane strain are  

 

,2

2
1211

t
u

y
P

y
s

x
s

∂
∂

=
∂
∂

−
∂

∂
+

∂
∂ ρω

 

  2

2
2221   

t
v

x
P

y
s

x
s

∂
∂

=
∂
∂

−
∂

∂
+

∂
∂

ρω
                   (1) 

 
where jis  ( 2,1, =ji ) are the incremental stress 
components and  ω  is rational component given by 
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where u and v  are the displacement components. 
 
     Assuming the anisotropy induced by initial stresses as 
orthotropic (in two dimensions) where the principal axes of 
initial stresses are identified with x, y axes, the stress-strain 
relations are taken as [13] 
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where jiB (i, j = 1, 2)  and 3Q are the incremental elastic 

coefficients and shear modulus, respectively. 
These incremental elastic coefficients are related to Lame's 

coefficients μλ  and  of the isotropic unstressed state. For 
the present case [13], these are: 
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where 11SP −=  is the normal initial stress along the 
horizontal direction. 
The incremental strain components eij (i, j = 1, 2) are related 
with the displacement components (u , v) through the relations  
 

,        , 2211 y
ve

x
ue

∂
∂

=
∂
∂

=
 

       
)(

2
1

12 y
u

x
ve

∂
∂

+
∂
∂

=
.                              (5) 

 
For assuming dissipative medium, the two Lame's coefficients 

μλ  and  for isotropic unstressed state of the medium are 
replaced by complex constants: 
 

     21 λλλ i+=  ,     21 μμμ i+= ,                  (6) 
                                                  

where 1 −=i ,   and 22 μλ are real and  1212     , μμλλ <<<< . 
 The stress and strain components in dissipative medium are 
given by Fung [14], 
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where )  exp( tiuu ii ϖ= , ϖ being  the angular frequency 

and  ( 2,1, =ji ) . 
From (4) – (7) in relation (3), the stress-strain relations 
become 

 

. )  (2

,  )] 2(    ) 2[( )  (

, ])([  )] 2(    ) 2[(

122112

222211112122

222111221111

eis

eieis

eiPeiPs

μμ

μλμλλλ

λλμλμλ

+=

+++++=

+++++++=      (8) 

From (2), (3), (5) and (8), the equation of motion in terms of 
the displacement components u  and v  can be written as 
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The displacement Vector 0) , ,( )()()( nnn vuU =
r

 is given by 
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where the index n  assigns an arbitrary direction of 

propagation of waves, ) ,( )(
2

)(
1

)( nnn ddd =
r

 is the unit 
displacement vector and  
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is the phase factor in which ) ,( )(
2
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 is the 

unit propagation vector, nc is the velocity of propagation, 

),( x yx=
r

and  nk  is the corresponding wave number, 
which is related to the angular frequency by                       

                         nn ck    =ϖ .                                (13) 

In matrix form, the displacement components (11) may be 
expressed as 
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This can be written in the form 
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Omitting, for convenience, the bared notations of 
displacement components and angular frequency, and 
inserting relations (13) and (15) in equations(9) and (10),one 
gets 
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For non-zero solution of A and B, from equations (16) and 
(17), one must have   
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The last equation gives two values of  2
nc may be obtained 

which give the square of velocities of a plane wave 
propagating in the direction )(nΓ . These are given by 
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= is the initial stress parameter and 
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Equation (19) gives the square of velocities of propagation 

as well as damping. Real parts of the right hand sides 
correspond to phase velocities and the respective imaginary 
parts correspond to damping velocities of P and SV waves, 
respectively. It is observed that both 

2
Pc and

2
SVc depend on initial stresses, damping and 

direction of propagation
n

1Γ . In absence of initial stresses and 
damping, the above analysis corresponds to the case for 
classic dynamics of elastic solid.   

When the effect of initial stresses is absent and the medium 
is non-dissipative (i.e. 0 ,0
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μ

ζ P ).  

In this case, equation (19) in non-dimensional form can be 
written as 
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the result of Selim et al.[15]. 
 

Also, from equations (16) and (17), we obtain                                          
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Equation (23)may used to find )( nd
r

in terms of )( nΓ
r

. 
 

 
Fig. 1 Reflection of P and SV waves at free surface of initially 

stressed medium 
 

III. REFLECTION OF PLANE WAVES AT STRESS-FREE       
SURFACES 

We consider an initially stressed dissipative half-space 
occupying the region 0≥y  (Fig. 1). The plane of elastic 
symmetry is taken as the yx  plane. In this section, we shall 
derive the closed-form expressions for the reflection 
coefficients, when plane (P or SV) waves incident at the 
traction-free boundary 0=y . We consider plane strain case 
in which the displacement components are independent of z 
and are of the type   

                  
( ).0 ,),,( ),,,( )()()( tyxvtyxuU nnn =         (24) 

 
Incident P or SV waves will generate reflected P and SV 
waves as shown in Fig. 1. Accordingly, the total 
displacements field may be represented by 
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The subscripts (1) be assumed for incident P waves , (2) for 
incident SV waves, (3) for reflected P waves and (4) for 
reflected SV waves respectively.  

In the plane 0=y , the displacement and stress components 
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In the plane 0=y , the displacement and stress components 

due to incident  SV-wave  )cos)2(  ,sin)2(
1( 222 ee −=Γ=Γ  

may be written as 
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In the plane 0=y , the displacement and stress components 

due to reflected P-wave 
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In the plane 0=y , the displacement and stress 
components due to reflected SV-wave 
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1( 424 ee =Γ=Γ  may be written as 
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IV.  BOUNDARY CONDITIONS 
The boundary conditions appropriate for the free surfaces 

are vanishing of incremental boundary forces. So, the two 
boundary conditions required to be satisfied at the 
plane 0=y , are  
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These equations can be written as: 
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Inserting equations (27), (29), (30) and (31) in equations (33), 
we obtain 
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Since equations (34) and (35) are to be satisfied for all values 
of x and t , hence 

    (x,0), 4(x,0) 3(x,0) 2(x,0) 1 Ω=Ω=Ω=Ω          (36)     

which means   
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CCCC are phase velocities of 

incident P-wave, incident SV-wave, reflected P-wave and 
reflected SV-wave, respectively.  
The above equation gives 
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From relation (13) equation.(38) can be written as 
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where
aC is the apparent phase velocity. The above relation 

represents Snell's Law for orthotropic medium.  
Equations (34) and (35) after using relations (36)-(39), may 

be written as,  
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A.  Incident P-Waves  
In the case of incident P-waves, 02 =A and equation (40) 

becomes 
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Solving equation(42), we obtained the amplitude ratios in the 
form 
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          (43) 
 

B.  Incident SV-Waves  
In the case of incident SV-waves, 01 =A  and equation 

(40) becomes 
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Solving equation(44), we obtained the amplitude ratios in the 
form 
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System of equations (43) and (45) contain both real and 
imaginary parts. Real parts of expressions (43) and (45) allow 
one to determine the reflection coefficients of the reflected P 
and SV-waves at a given incident P and SV waves amplitudes, 
respectively. 

V.  NUMERICAL CALCULATIONS AND CONCLUSIONS 
     For the purpose of numerical computations, the following 
Physical constants are considered for the infinite medium as 
Aswan geological crustal structures given by Kebeasy et 
al.[16].  

.
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2
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2
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1
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Using all these data, the dimensional velocities of P-

wave( 2

2

α
pc

) and SV-wave( 2

2

α
sc

) are calculated for different 

angles of propagation under different initial stress 

parameter(ζ ). To avoid instability created by the 

compressive initial stress, the values of ζ  have been taken 
within the range 0.6 [17]. The real parts of the values obtained 
from equation (19) give the phase velocities and imaginary 
parts give the corresponding damping in P and SV waves for 
an dissipative medium under initial stresses. In the case of   
ζ=0, this gives the results for initial stress–free medium. The 
results of computations are presented in Figs. 2 to 5.  Fig. 2 
shows the effect of initial compressive stresses on the velocity 
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of propagation of longitudinal wave (P-wave). The velocity of 
longitudinal wave is clearly depends on the initial 
compressive stress present on the medium. The curves also, 
show that initial compressive stress increases the velocity of 
longitudinal wave and it is different at different direction of 
propagation. The velocity of propagation is independent of 
initial stresses at 00=θ  i.e., along the x- direction (direction 
of initial stress) and effect is more prominent along 
perpendicular direction. 
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Fig. 2 Variation of 22 /αPC  with the direction of propagation θ  

for different  values of ζ  
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Fig. 3 Variation of 22 /αSVC with the direction of propagation θ  

for different values of ζ  

 
Fig. 3 gives the variation of 22 /αSVC  with direction of 

propagation 0θ  for different values of initial stress 
parameterζ . It is clear that from curves, the square of 
velocity of SV-wave is higher nearer to the y-direction and it 
goes on decreasing as the direction changes towards x-axis. It 
is also observed that phase velocity increases with an increase 
in initial stress parameter for any particular angle of incidence 
within the range 00 to 040  and reverse is the case within the 
range 040 to 090 approximately.  
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Fig. 4 Variation of damping velocity of P-waves with the direction of 

propagation θ  for different  values of ζ  

 
Figs. 4 and 5 give the variations of the square of damping 

velocities corresponding to PC and SVC , respectively. From 

Fig. 4 it is seen that damping corresponding to PC  is 
minimum nearer to the y-direction and it goes on increasing as 
the direction changes towards x-axis, the damping velocity 
decreases with an increase in initial stress parameter for any 
particular angle of incidence within the range 00 to 040  and 
reverse is the case within the range 040 to 090 approximately.  
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Fig. 5 Variation of damping velocity of  SV-waves with the direction 

of propagationθ for different  values of ζ  

      
Fig. 5 exhibits the variations of damping velocity 

corresponding to SVC  waves with direction of propagation 

for different values of initial stress parameter ζ . It is clear 
that the variations are just the reverse as discussed in the case 
of Fig. 4. 
     The reflection coefficients of various reflected waves are 
computed for a certain range of angle of incidence of P and 
SV for different values of the initial stress 
parameter )6.0  ,4.0 ,2.0 ,0.0( =ζ  to observe the 
impact of initial stress at each angle of incidence. The 
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variations of the reflection coefficients 13 / AA }{ PPR  and 

1/4 AA  }{ PSR  for the case of incident P-waves as the 

absolute values of the real parts of expressions (42) with the 
angle of incidence are shown graphically in Figs. 6 and 7. The 
numbers shown in the curves of these figure denotes the 
reflection coefficients with initial stress parameter {1 
means 0.0 =ζ  , 2 means 2.0 =ζ , 3 means 4.0 =ζ   and  
4 means 6.0 =ζ }. 

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100
Angle of incidence (in degree) 

R
ef

le
ct

io
n 

co
ef

fic
ie

nt

4

3

2

1

 
Fig. 6 Reflection coefficient PPR under different values of ζ  for 

the incident of P- wave 
 

Figs. 6 and 7 show that when the incidence angle of P-wave 
001 =e  (vertical incidence) there is no reflection of SV-

wave and there only exists one reflected P-wave. And in the 

case of horizontal incidence (
0901 =e ), there exist two 

reflected waves ( P-wave and SV-wave). From these figures it 

is observed that the reflection coefficients 
}{ PPR

 and 

}{ PSR
 increases with an increase in initial stress parameter 

for any particular angle of incidence within the range 00 to 
045  and reverse is the case within the range

050  to
090 . The 

reflection coefficient PPR  has its maximum value near 

0251 =e  at the value of stress parameter 4.0 =ζ . And 

the reflection coefficient PSR of has its maximum value at 
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Fig. 7 Reflection coefficient PSR under different values of ζ  for 

the incident of P- wave 
 
normal incidence 0901 =e  at the absence of the initial stress 

)0.0( =ζ .    
The variations of the reflection coefficients 

2/3 AA }{ PSR  and 24 / AA  }{ SSR  for the case of 

incident SV-waves as the absolute values of the real parts of 
expressions (442) with the angle of incidence are shown 
graphically in Figs. 8 and 9. 
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Fig. 8 Reflection coefficient SPR under different values of ζ  for 

the incident of SV- wave 
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Fig. 9 Reflection coefficient SSR under different values of ζ  for 

the incident of SV- wave 
 
From Figs. 8 and 9 we can see that for the incidence SV-

wave  0=PSR  and 1=SSR  at incidence 002 =e  and 

0902 =e . This means, for the vertical and horizontal 
incidence, there is only one reflected SV-wave. From these 
figures  it is observed that the reflection coefficients }{ SSR  

and }{ SPR  decreases with an increase in initial stress 

parameter for any particular angle of incidence within the 

range 00 to 
045  and reverse is the case within the range

050  

to
090  approximately. The reflection coefficient SPR  has its 

maximum value near 
0301 =e  at the absence of the initial 

stress )0.0 ( =ζ .    the value of stress parameter 4.0 =ζ . And the 

reflection coefficient PSR of has its maximum value at 

normal incidence 
0901 =e  at the absence of the initial stress 

)0.0 ( =ζ . And the reflection coefficient SSR  has its 

maximum value near 0651 =e  at the value of stress 

parameter 4.0 =ζ . It is also observed from Figs. 6 -9 that the 
change of the reflection coefficients does not go smoothly, 
may due to the effect of a dissipation of the medium.  

VI.  CONCLUSION 
From the above theoretical and numerical study, it can be 

concluded that both the velocities and reflection coefficients 
change with the initial stresses parameter. Also, it is observed 
that the damping of the medium has strong effect in the 

propagation of plane waves and reflection coefficients. Since 
every medium has damping so it is more realistic to take in 
account the dissipation of the medium instead of the non-
dissipation for the problem of reflection plane waves in the 
elastic medium. 
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