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Reflection of Plane Waves at Free Surface of an
Initially Stressed Dissipative Medium

M. M. Selim

Abstract—The paper discuses the effect of initial stresses on the
reflection coefficients of plane waves in a dissipative medium. Basic
governing equations are formulated in context of Biot's incremental
deformation theory. These governing equations are solved
analytically to obtain the dimensional phase velocities of plane
waves propagating in plane of symmetry. Closed-form expressions
for the reflection coefficients of P and SV waves’ incident at the free
surface of an initially stressed dissipative medium are obtained.
Numerical computations, using these expressions, are carried out for
a particular model. Computations made with the results predicted in
presence and absence of the initial stresses and the results have been
shown graphically. The study shows that the presence of compressive
initial stresses increases the velocity of longitudinal wave (P-wave)
but diminishes that of transverse wave (SV-wave). Also the
numerical results presented indicate that initial stresses and
dissipation might affect the reflection coefficients significantly.

Keywords—Dissipation medium, initial stress, longitudinal
waves, reflection coefficients, reflection of plane waves, transverse
waves.

1. INTRODUCTION

HE reflection coefficient of elastic waves from planar

boundaries is important for calculations of amplitudes of
various seismic signals. The coefficient has been studies for
the case of homogenous and inhomogeneous media with
several types of velocity distributions by Sinha [1], Tooly et
al.,[2], Gupta [3,4,5], Acharya[6], Cerveny[7], Singh et al.,[8],
Saini[9], Singh et al.,[10], Tomar et al.[11], Sharma[12] and
others. In the existing literature the effects of dissipation and
initial stresses present together in the medium has not been
considered. A large amount of initial stresses may develop and
may present in the medium caused by various factors, such as
creep, gravity, external forces, difference of temperature etc.
In fact, the Earth is an initially stressed and dissipative
medium and the stresses are hydrostatic and compressive.
Therefore, it is of interest to study the phenomenon of
reflection of plane waves in the presence of initial stresses as
well as dissipation.
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In this work, an attempt has been done to apply the theory
of Biot's incremental deformation to derive closed-form
algebraic expressions for the reflection coefficients when
plane waves of P or SV type are incident at the plane free
boundary of an initially stressed dissipative half-space. Basic
governing equations are formulated in context of Biot's
incremental deformation theory. Closed-form expressions for
the reflection coefficients of P and SV waves incident at the
free surface of an initially stressed dissipative medium are
obtained. Numerical results presented indicate that the
presence of compressive initial stresses increases the velocity
of longitudinal wave (P-wave) but diminishes that of
transverse wave (SV-wave). Also the initial stresses, present
in the medium and dissipation, have an effect of the
reflection coefficients.

II. FORMULATION OF THE PROBLEM AND ITS SOLUTION

According to Biot [13], the basic dynamical equations of
motion for an infinite, initially stressed medium, in the
absence of external body forces, in case of plane strain are
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where S (i,j=1,2) are the incremental stress

ij
components and @ is rational component given by
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where U and V are the displacement components.

Assuming the anisotropy induced by initial stresses as
orthotropic (in two dimensions) where the principal axes of
initial stresses are identified with X, y axes, the stress-strain
relations are taken as [13]

Sy = Bn €+ B]z €,
Sy =(By, = P)e,; + By ey,
S, =2Qe ,,

)
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where B; j,j=1,2) and Q;are the incremental elastic
coefficients and shear modulus, respectively.

These incremental elastic coefficients are related to Lame's
coefficients A and g of the isotropic unstressed state. For
the present case [13], these are:

B 1= (A+2u+P), Blzz(/1+P),
“
By1=4 By=A+2u Q=pu
where P = —S“ is the normal initial stress along the

horizontal direction.
The incremental strain components ¢; (i, j = 1, 2) are related
with the displacement components (U , V) through the relations
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For assuming dissipative medium, the two Lame's coefficients
Aand g for isotropic unstressed state of the medium are
replaced by complex constants:

A=A 4ia,  HEMIM ©)

wherel =\/—71,22 andy, arerealand A, << A, 1, <<u,.

The stress and strain components in dissipative medium are
given by Fung [14],

S = sjexp(imt),

& = e exp(iazt),
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where U; =Gi exp(i @ 1), @ being the angular frequency
and (i ,]=1,2).

From (4) — (7) in relation (3), the stress-strain relations
become

S =[(4 +224 +P) +i (4, +2m)]en +[(4 +P) +id,]exn, ®)
So=(4 +id)en +[(4 +24) +i(4 +21,)] ex,

S12=2(44+1 ) €12
From (2), (3), (5) and (8), the equation of motion in terms of

the displacement components U and V can be written as
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The displacement VectorU ™ = (u ™ , V(n) , 0) is given by
U®=A_d"exp(iQ,). (n
where the index I assigns an arbitrary direction of

propagation of waves, d " = (d " d (n)) is the unit

displacement vector and

Kk, [c,t— (X oeT "), (12)

is the phase factor in which rm= (1“(”) F(”)) is the

unit propagation vector, C n is the velocity of propagation,

X = (X, y) and K n is the corresponding wave number,
which is related to the angular frequency by

@ =k, c,. (13)
In matrix form, the displacement components (11) may be
expressed as

(n) (n)
(“(H)Jz(:jm)Jepokn(xrmuyr(”) bl P
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This can be written in the form

v

u™ A
:&}mwmm@wwhwn<m

Omitting, for convenience, the bared notations of
displacement components and angular frequency, and
inserting relations (13) and (15) in equations(9) and (10),one
gets

2 P 2 B 2
AL +24+ PO (24 +5)r§“> —pC 1+ [(A +2u)I"

2 P .
el B BIG +4+ ) NVEY + i +46) VLY ]
=Aa +Bb =0, (16)

A+ TP I+ )T+ B+ 201
=T PG I 2 + )
—Aa, +Bb, =0. a7
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For non-zero solution of A and B, from equations (16) and
(17), one must have
(18)

a, b,
a, b,

=0

The last equation gives two values of ¢ 2 may be obtained
n

which give the square of velocities of a plane wave

propagating in the direction | ™. These are given by

T 17 Ty (19)
Cn - CSV - 2,0 (I ‘Jn)
where
| = {4+ 1,3+ )+i (A, +3u,)},
m* m?

2 2
Jn =- 8@2 + yz) 1"] +8§,ul[il + 4 1+ /,‘)]+8(12 + yz) 1"]

U+ =0T =Gy + 1)

2
+ i(8é’,ul Ayt )rl(”) 2, 4y YAy 1) -2604 (10 )j.
(20)

where = P is the initial stress parameter and
2,

n)2 ny2
r'm o +rim =1.

Equation (19) gives the square of velocities of propagation
as well as damping. Real parts of the right hand sides
correspond to phase velocities and the respective imaginary
parts correspond to damping velocities of P and SV waves,
respectively. It is observed that both

2 2 N .
C p and C gy depend on initial stresses, damping and

L . n o
direction of propagation Fl . In absence of initial stresses and

damping, the above analysis corresponds to the case for
classic dynamics of elastic solid.

When the effect of initial stresses is absent and the medium
is non-dissipative ie. . P

¢=-—=0,4,
2p,

In this case, equation (19) in non-dimensional form can be
written as

:/1220)'

G _1,,/ £ <) ey
=5 1+az+(4§£1—a2 +2Jsmzel J{I_Q’Z_ZD

S g )

1 1 . . . .
where ., =|:M+2ﬂ):|§ s 5 - {i}; which coincides with
P P
the result of Selim et al.[15].

Also, from equations (16) and (17), we obtain
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Equation (23)may used to find d (n) in terms of 1: () .
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Fig. 1 Reflection of P and SV waves at free surface of initially
stressed medium

III. REFLECTION OF PLANE WAVES AT STRESS-FREE
SURFACES

We consider an initially stressed dissipative half-space
occupying the region y >0 (Fig. 1). The plane of elastic

symmetry is taken as the XY plane. In this section, we shall

derive the closed-form expressions for the reflection
coefficients, when plane (P or SV) waves incident at the
traction-free boundary y =(). We consider plane strain case

in which the displacement components are independent of z
and are of the type

U™ =[x y.0,v"(xy.0,0) e

Incident P or SV waves will generate reflected P and SV
waves as shown in Fig. 1. Accordingly, the total
displacements field may be represented by
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4 . .
u(x,y,t)= 3 A,d? e,
=1

4 N
v(x,y,t)= Y A dP eI, (25)
j=1

= k,[c;t — (xsin e, — y cos e,)],
Q, =Kk,[c,t —(xsin e, — ycos e,)],
Q, =k;[cit — (xsine; + ycose;)],
Kyl

Q, =k,[c,t—(xsine, + ycose,)]. (26)

The subscripts (1) be assumed for incident P waves , (2) for
incident SV waves, (3) for reflected P waves and (4) for
reflected SV waves respectively.

In the plane Y =0, the displacement and stress components

due to incident P-wave (F( ) =sineg|, F( ) = —cosep) may

be written as

u® = A, d(l) el V(l) — Ad(l) ein
s =iAk, Q, (d\"cose, —d{’sine,) e @7)
s =iAk, (Q3d cose, —Q,d!"’sine, )e‘Q‘ ,

where

Qi =(u +1u,),
Q, =4 +i4,),
Qs =[(A+2u) +i1(1,+2u,)]

In the plane Y = 0, the displacement and stress components

(28)

due to incident SV-wave (1“1(2) =sine,, F2(2) = -cose,)
may be written as
u® = A d(2) ein
v = A, d(Z) eIQz
s =iAk, Q (dPcose, — d(z)smez) e, (29
s =iAk, (Q3d(2 cose, —Q,d! )sinez)elgz ,

In the planey = , the displacement and stress components

due to reflected P-wave
(F1(3) = sin ey, F2(3) = cos e ) may be written as

u® = A,d® 23 v =Ad) e

s =—iAk, Q (d’cose, +dsine,) e,
S =—iAK, [d'Qsine, +Qucose k™, 5

In the plane y:O, the displacement and stress

components due to reflected SV-wave

(4)
(T3

=sin ey, r2(4) = cos e,) May be written as
U = AdY e,
v = AdY e
sty =—iAk, Q, (dl“)cose4 +d¢ )s1ne4) e, 31)

55‘2‘) =—iAKk, (Q2d§4)sine4 + Q3d(24)cose3 )eiQ“ ,

IV. BOUNDARY CONDITIONS

The boundary conditions appropriate for the free surfaces
are vanishing of incremental boundary forces. So, the two
boundary conditions required to be satisfied at the
planey =0, are

—cM L a(Mp_ —cM_
Af, =5 +eMP=0,  Af, =5 =0. (32)
These equations can be written as:

(12>+ (2>+ (3)+ (4)+2/Jl§( @ +e(2) +e‘3)+e( )) 0,

(33)

Inserting equations (27), (29), (30) and (31) in equations (33),
we obtain
iAk Q (dVcose —d!sine ) e
+iAK, Q (dPcose, —dPsine, ) 2
—iAk; Q (d¥cose, +dsine,) 3
—iAKk, Q (d¥cose, +d'Vsine,) e
Ak, (d"cose —d{sine ) e
| +AKk, (dPcose, —dPsine, ) e
+ IlLll o) = 0,
— Ak, (dPcose, +dsine;) e

. . (34)
—AKk, (dYcose, +d\sine,) e

and
IAK (Q3d(21)cose1 ~Q,d"sine, )ein
ik, (QdPcose, ~Q,d%sine, k2 (35)
—iAK, (de?)sine2 +Q,dcose, )eiQ3
—iAK, (def4)sine4 +Q,d{"cose, )eig“ =0

Since equations (34) and (35) are to be satisfied for all values
of Xand [, hence

Q) (x0) =Qj5 (x0) =Q3(x0) =Qy (x0), (36)

which means
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i . i . Solving equation(42), we obtained the amplitude ratios in the
ki (Cp t—xsiney) = kz(CSV t - xsine,),

(37) form
=k Crt—xsine):k c' t-xsiney). 506 -60 A _
35 3=y 4) A oso%) Ay (66-60)
8,8,-38,8.) -
oAl r r - A 0%=90) A (56-0,0) (43)
where C |, C ,C ,C are phase velocities of
P sV P sv
incident P-wave, incident SV-wave, reflected P-wave and )
reflected SV-wave, respectively. B. Incident SV-Waves
The above equation gives In the case of incident SV-waves, Al =0 and equation
40) becomes
k;sine, =k, sine, =k;sine, =k, sine,, 0
and 2 3 4
i i r r (38) (44)
ki€, = k€ =kC  =k,C Ay + S+ AyS =0,
From relation (13) equation.(38) can be written as Solving equation(44), we obtained the amplitude ratios in the
. . . . form
sine, _sine, sine; sine, 1 (39)
C, Co» Gy Gy G A B5-58) A (58,-505)
. . . 3 46 28 4 36 2 45
where C a8 the apparent phase velocity. The above relation =56 65 =— 56 -85
represents Snell's Law for orthotropic medium. AQ ( 38 4 7) Aﬁ ( 38T % 7)
Equations (34) and (35) after using relations (36)-(39), may
be written as, System of equations (43) and (45) contain both real and
AS + A+ A0+ A0 =0, imaginary parts. Real parts of expressions (43) and (45) allow
1 2 3 4 (40)  one to determine the reflection coefficients of the reflected P
AS_+ A+ A+ A =0, and SV-waves at a given incident P and SV waves amplitudes,
5 6 7 8 respectively.
where
V. NUMERICAL CALCULATIONS AND CONCLUSIONS
1 1) .
o =k L (d{ ) cose 1~ d(2 ) sine 1) For the purpose of numerical computations, the following

Physical constants are considered for the infinite medium as
Aswan geological crustal structures given by Kebeasy et
al.[16].

(41) p=2.15 g/cm3, HI = l.90930x1011dyne/cm2, Xl = 2.22075x1011dyne/cm2,

6y =ky L(dfz) cose 5 — ng) sine 5 ),

63 = —kjzL (d?) cose 3 + d(23) sine 5 ),

o4 = -kyL (d ) cose 4 + d(4) sine 4 ),
* ’ ! 4 2 4 11 2 11 2
(1) () Hy =0.436x10 " dyne/cm™, 12 =0.305x10"  dyne/cm”,
S5 = ky (Q3d2 cose | — Qpd; sinel) S
o= 53x10"cm/s, B =2.98x105cm/s.

56 = ko (Q3d(22) cose 5 — del(z) sine 5 ),
3) 3) Using all these data, the dimensional velocities of P-
S7 :7k3 (Q2d1 sine 5 +Q3d2 cose3) C;Z) )
4) . 4 wave(—-) and SV-wave(—-) are calculated for different
dg = —ky (def)sme4 +Q3d(2)cose 4), (a2) (az)
L =(Q, + lu,). angles of propagation under different initial stress
parameter(g ). To avoid instability created by the
A. Incident P-Waves compressive initial stress, the values of ¢ have been taken

In the case of incident P-waves, A, = 0 and equation (40) within the range 0.6 [17]. The real parts of the values obtained
from equation (19) give the phase velocities and imaginary

parts give the corresponding damping in P and SV waves for
A151 + A353 + A454 =0, an dissipative medium under initial stresses. In the case of
(=0, this gives the results for initial stress—free medium. The
results of computations are presented in Figs. 2 to 5. Fig. 2
shows the effect of initial compressive stresses on the velocity

becomes

Alé's + A357 + A4§8 = 0. “2)
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of propagation of longitudinal wave (P-wave). The velocity of
longitudinal wave 1is clearly depends on the initial
compressive stress present on the medium. The curves also,
show that initial compressive stress increases the velocity of
longitudinal wave and it is different at different direction of
propagation. The velocity of propagation is independent of
initial stresses at @ = (° i.e., along the x- direction (direction
of initial stress) and effect is more prominent along
perpendicular direction.

1.6

0.8

50 60 70 80 90 100
& (Degree) —
. L 2 2 . L . 0
Fig. 2 Variation of CP / ¢~ with the direction of propagation
for different values of év

0 10 20 30 40

6
1L <=0
4 :
20202
3 34=04
472 o
. 4206 .
= 1
_;. 2
& 5] 3
0 T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100
8 (Degree) =

Fig. 3 Variation of CSZV la 2 with the direction of propagation 9

for different values of é’

Fig. 3 gives the variation of CZ, /c” with direction of

propagation @ ° for different values of initial stress
parameter { . It is clear that from curves, the square of
velocity of SV-wave is higher nearer to the y-direction and it
goes on decreasing as the direction changes towards x-axis. It
is also observed that phase velocity increases with an increase
in initial stress parameter for any particular angle of incidence

within the range 0°to 40 ° and reverse is the case within the

range 40 ° to 90 © approximately.

1.9
1¢=0
14202
¢
[
H
o
8
2
©
°
[
>
[=2)
=
g
1.5 1
1.4 T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100
H ( egeas ) -3

Fig. 4 Variation of damping velocity of P-waves with the direction of

propagation H for different values of é/

Figs. 4 and 5 give the variations of the square of damping
velocities corresponding to CpandCyg, , respectively. From

Fig. 4 it is seen that damping corresponding toC, is

minimum nearer to the y-direction and it goes on increasing as
the direction changes towards x-axis, the damping velocity
decreases with an increase in initial stress parameter for any

particular angle of incidence within the range 0°to 40° and

reverse is the case within the range 40° to 90° approximately.

116 Lo=0
4 20202
1=
¢ 3 i
g ) 4.0=06
7 1.04
8 1
2
3
o
I3
>
2 092
'§ 3
0.8 : : : : : : ‘ ‘ ‘

0 10 20 30 40 50 60 70 80 90 100
& (Dagres ) —

Fig. 5 Variation of damping velocity of SV-waves with the direction
of propagation @ for different values of §

Fig. 5 exhibits the variations of damping velocity
corresponding to Cg, waves with direction of propagation

for different values of initial stress parameter § . It is clear

that the variations are just the reverse as discussed in the case
of Fig. 4.

The reflection coefficients of various reflected waves are
computed for a certain range of angle of incidence of P and
SV for different values of the initial stress
parameter (s = 0.0, 0.2, 0.4, 0.6) to observe the

impact of initial stress at each angle of incidence. The
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variations of the reflection coefficients A; / A, {]RPP‘} and

As AL {|Ros|

absolute values of the real parts of expressions (42) with the
angle of incidence are shown graphically in Figs. 6 and 7. The
numbers shown in the curves of these figure denotes the
reflection coefficients with initial stress parameter {1

means 4200 , 2 means 4/20.2, 3 means é/ =04 and
4 means ;:0,6}.

} for the case of incident P-waves as the

6
4
5,
L&=0
2, 28202
2 3.¢=04
53 3 4.2=06
S 2
22
1
1,
0 T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100
Angle of incidence (in degree)

Rep

the incident of P- wave

Fig. 6 Reflection coefficient under different values of é/ for

Figs. 6 and 7 show that when the incidence angle of P-wave

0

& =0 (vertical incidence) there is no reflection of SV-

wave and there only exists one reflected P-wave. And in the
0

case of horizontal incidence (el =90 ), there exist two

reflected waves ( P-wave and SV-wave). From these figures it

{JRPP‘} and

is observed that the reflection coefficients
{Res}

for any particular angle of incidence within the range 0°to

increases with an increase in initial stress parameter

0 0 0
45" and reverse is the case within the range 50" t090 . The

reflection coefficient ‘RPP‘ has its maximum value near

0
e = 25" at the value of stress parameter C =0.4. And

the reflection coefficient ‘ RPS ‘ of has its maximum value at

1.6
L¢=0 1
1.4 2
24=02
1.2 ’ 3
= 3{=04
g 1
2 7 -
£ 4 £=06 4
3
S 0.8
s
3
2 0.6
jo)
o
0.4
43
0.2
1
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 10 20 30 40 50 60 70O 80 90 100

Angle of incidence (in degree) of P-wave

Rps

the incident of P- wave

Fig. 7 Reflection coefficient under different values of é/ for

0

normal incidence e, =90 at the absence of the initial stress

(¢ =0.0)
The  variations of  the

A /A, {]RPS‘} and A,/ A, {|Rgs | for the case of

incident SV-waves as the absolute values of the real parts of
expressions (442) with the angle of incidence are shown
graphically in Figs. 8 and 9.

reflection  coefficients

35

Reflection coefficient

0 10 20 30 40 50 60 70 80 90 100

Angle of incidence (in degree)

Rsp

the incident of SV- wave

Fig. 8 Reflection coefficient under different values of § for
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31 L&=0

41 4 2¢=02
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o
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0.5

0 T T T T T T T T T

0 10 20 30 40 50 60 70 8 90 100

Angle of incidence (in degree)

RSS

the incident of SV- wave

Fig. 9 Reflection coefficient

under different values of é/ for

From Figs. 8 and 9 we can see that for the incidence SV-

wave ‘RPS‘ =0 and ‘RSS‘ =1 at incidence e, = 0° and

0 . . .
e, = 90 . This means, for the vertical and horizontal
incidence, there is only one reflected SV-wave. From these
figures it is observed that the reflection coefficients ﬂRSS‘}
and {‘RSP‘} decreases with an increase in initial stress

parameter for any particular angle of incidence within the
0 . s 0
range 0°to 45 and reverse is the case within the range 50

0
to 90" approximately. The reflection coefficient ‘RSP‘ has its

. 0 .
maximum value near el =30 at the absence of the initial

stress (¢ =0.0). the value of stress parameter {=(4. And the

reflection coefficient ‘Rps‘(’f has its maximum value at

0
normal incidence el =90 at the absence of the initial stress
(£ =0.0)- And the reflection coefficient ‘RSS‘ has its

maximum value near e = 65 O at the value of stress
parameter =(04. It is also observed from Figs. 6 -9 that the

change of the reflection coefficients does not go smoothly,
may due to the effect of a dissipation of the medium.

VI. CONCLUSION

From the above theoretical and numerical study, it can be
concluded that both the velocities and reflection coefficients
change with the initial stresses parameter. Also, it is observed
that the damping of the medium has strong effect in the

propagation of plane waves and reflection coefficients. Since
every medium has damping so it is more realistic to take in
account the dissipation of the medium instead of the non-
dissipation for the problem of reflection plane waves in the
elastic medium.
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