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Abstract—Reentry trajectory optimization is a multi-constraints
optimal control problem which is hard to solve. To tackle it, we
proposed a new algorithm named CDEN(Constrained Differential
Evolution Newton-Raphson Algorithm) based on Differential Evolu-
tion(DE) and Newton-Raphson. We transform the infinite dimensional
optimal control problem to parameter optimization which is finite
dimensional by discretize control parameter. In order to simplify
the problem, we figure out the control parameter’s scope by process
constraints. To handle constraints, we proposed a parameterless con-
straints handle process. Through comprehensive analyze the problem,
we use a new algorithm integrated by DE and Newton-Raphson to
solve it. It is validated by a reentry vehicle X-33, simulation results
indicated that the algorithm is effective and robust.

Keywords—reentry vehicle, trajectory optimization, constraint op-
timal, differential evolution.

I. INTRODUCTION

AS one of critical technologies of advanced vehicle design,
reentry trajectory optimization is an important compo-

nent of vehicle design. It is formulated to a nonlinear multi-
constraints optimal control problem. Optimal control problem
can be solved by applying the calculus of variance and
Pontryagin’s maximum principle usually. Then the problem
becomes a two-point boundary value problem. It is difficult to
solve analytically, therefore numerical techniques are required
to determine an approximation to the continuous solution.
Numerical methods are normally divided into indirect methods
and direct methods.

Indirect methods[1, 2] transform the original optimal prob-
lem to two-point boundary problem, and using discrete points
to approximate the continuous solution. It has high accuracy
and assurances the solution satisfies the necessary optimality
conditions. However the radius of convergence is small, the
co-states is difficult to guess.

Direct methods overcome some of the deficiencies of in-
direct methods by transform the continuous optimal control
problem into a parameter optimization problem, which can be
solved by nonlinear programming algorithm. There are two
mainly types of transform methods: collection method[3] ,
pseudospectral method[4] . Collection method disperse control
variable and states simultaneously, transform state equations
and constrains to algebraic equations. Pseudospectral method
using orthogonal polynomials to approximate the differential
equations at collocation points.
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Due to determinate algorithm is sensitive and stagnated
at local optimal point easily, some researchers applied in-
telligent algorithm to solve reentry trajectory optimization
problem[5, 6, 7] . Arora set bank angle as zero, only angle
of attack is optimized and using genetic algorithm to solve
it[5] . Zhang transformed control variable optimization to
drag optimization to simplify original problem, then using
ant colony algorithm to solve it[6] . Chen optimal angle of
attack and bank angle simultaneously using genetic algorithm,
but bank angle is always positive, without considering lateral
motion[7] .

Differential evolution[8] is a simple, efficient and robust
evolutionary algorithm. It is widely used in a number of
scientific and engineering fields.

First, we transform the infinite dimensional optimal control
problem to parameter optimization which is finite dimensional
by discretize control parameters. It is difficult to optimize
angle of attack and bank angle simultaneously, so many
researches only optimize one of the two control variables.
This paper, we address the problem by figure out the scope
of angle of attack to simplify the transformed nonlinear
programming problem. Considering lateral motion, we use
two bank angle reverse points to control lateral motion, and
add them to the decision vector. Classic differential evolution
can only solve nonrestraint parameter optimal problem. We
incorporated a parameterless constraints handle process to
classic differential evolution to solve constrained parameter
optimization problem. Lateral motion is sensitive to bank angle
reverse points, and terminal lateral distance is monotone to the
first reverse point, terminal flight head angle is monotone to
the second reverse point. We use Newton-Raphson algorithm
to optimal the two reverse points. Our algorithm named CDEN
incorporated a parameterless constrained handle process and
Newton-Raphson algorithm to DE.

II. PROBLEM FORMULATION

A. Model
Three degree of freedom dynamic equations of reentry

vehicle is:

dr

dt
=v sin γ (1)

dθ

dt
=

v cos γ sinψ

r cos φ
(2)

dφ

dt
=

v cos γ cos ψ

r
(3)
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dv

dt
=ω2r cos φ (sin γ cos φ − cos γ sinφ cos ψ)

− D − g sin γ
(4)

dγ

dt
=

L cos σ

v
− g

v
cos γ +

v

r
cos γ + 2ω cos φ sinψ

+
ω2r

v
cos φ (cos γ cos φ + sin γ cos ψ sin φ)

(5)

dψ

dt
=

v

r
cos γ sinψ tanφ +

ω2r

v cos γ
sinψ sinφ cos φ

+
L sinσ

v cos γ
− 2ω (tan γ cos ψ cos φ − sinφ)

(6)

g =
μ

r2
, ρ = ρ0e

− r−r0
hs ,

L =
ρv2S

2m
CL , D =

ρv2S

2m
CD.

(7)

where r is the radial distance from the Earth center to the
vehicle, θ and φ are the longitude and latitude, v is the Earth-
relative velocity, γ is the relative flight-path angle, ψ is the
relative velocity heading angle measured clockwise from the
north, ω is Earth self-rotation rate, m is vehicle’s mass, S is
reference area, ρ is density of atmosphere, ρ0 is density of
atmosphere at sealevel, r0 is Earth’s radius, CL and CD are
lift and drag coefficient determined by angle of attack α and
Ma, g is gravity acceleration, t is time, control variables are
angle of attack α and bank angle σ.

Reentry process must satisfy heating rate, dynamic pressure
and normal acceleration constraints:

Q̇ = c
√

ρvkq ≤ Q̇max. (8)

q =
ρv2

2
≤ qmax. (9)

n = L cos α + D sin α ≤ nmax. (10)

where Q̇max, qmax, nmax represent allowable maximum heat-
ing rate, dynamic pressure and acceleration separately.

In order to convenience design controller, reentry trajectory
should not oscillate acutely(γ ≈ 0, γ̇ ≈ 0), should satisfy
Quasi-Equilibrium Glide Condition(QEGC) as Eq. (11). Let
γ = 0, γ̇ = 0, ignore earth rotation(let ω = 0), from Eq. (5),
we can get Eq. (11).

L cos σ − g +
v2

r
= 0. (11)

Heating rate, dynamic pressure and normal acceleration
constraints are hard constraints, must be satisfied. QEGC is
soft constraint, may be violated a little.

Following reentry phase is Terminal Area Energy Manage-
ment(TAEM), reentry terminate point must be restrained:

|r(tf ) − rf | ≤ Δr, |θ(tf ) − θf | ≤ Δθ,

|φ(tf ) − φf | ≤ Δφ, |v(tf ) − vf | ≤ Δv,

|γ(tf ) − γf | ≤ Δγ, |ψ(tf ) − ψf | ≤ Δψ.

(12)

where tf is reentry terminate time, rf , θf , φf , vf , γf , ψf rep-
resent ideal reentry terminate state.

B. Trajectory optimization formulation

Let J represent objective function:

J = χ (S (tf ) , tf ) +
∫ tf

t0

g (S, t) dt (13)

where S = [r, θ, φ, v, γ, ψ], t0, tf represent reentry time and
reentry terminate time respectively.

Reentry trajectory optimization formulate to an optimal
control problem which satisfy constraints Eq. (8)-Eq. (12),
dynamic characterize as Eq. (1)-Eq. (6) and optimal objective
described by Eq. (13).

III. TRAJECTORY OPTIMIZATION ALGORITHM

The original optimal control problem has infinite dimen-
sions, we transformed it to finite dimensional parameter op-
timal problem by discretize angle of attack and bank angle
simultaneous. It is difficult to optimize angle of attack and
bank angle simultaneous, we figure out the angle of attack’s
scope by process constraints(Eq. (8)-Eq. (11)) to simplify
the problem. In order to handle constraints, we introduce
a parameterless constraints handle process to DE algorithm.
Lateral motion include terminal cross-range and terminal flight
heading angle. We used two bank angle reverse points to adjust
lateral motion. Lateral motion is sensitive to bank angle reverse
points, and terminal lateral distance is monotone to the first
reverse point, terminal flight head angle is monotone to the
second reverse point. Through the analysis, we find the two
bank angle reverse points are difficult for DE to optimal, here
we using Newton-Raphson algorithm to solve it efficiently. So
we incorporated parameterless constraints handle process and
New-Raphson algorithm to DE form a new algorithm CDEN
to solve the transformed parameter optimal problem.

A. Control disperse algorithm

From Eq. (7)-Eq. (9) we have:

r ≥ r0 − 2hs ln

(
Q̇max√
ρ0cvkq

)
� rQ (v)

r ≥ r0 − hs ln
2qmax
ρ0v2

� rq (v)

(14)

Let σ = 0, from Eq. (11) we have α = α(v, r). Assign y =
L − g + v2

r , then

∂y

∂r
=

2g

r
− v2

r2
− L

hs
+

L

CL

∂CL
∂r

,
∂y

∂α
=

ρv2S

2m

∂CL
∂α

Usually lift coefficient CL is increase as α increase, so
∂y/∂α > 0. ∂CL/∂r is comparable small, we can ignore it,
2g/r is relatively small compare to L/hs, we can also ignore

it, so ∂y/∂r < 0,
∂α (v, r)

∂r
= − ∂y/∂r

∂y/∂α
> 0, then

α = α (v, r) ≥ α (v, rl) ≥ α (v, max (rQ (v) , rq (v))) (15)

Suppose maximum allowable angle of attack and bank angle
are αmax and σmax , number of angle of attack discrete points
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is N1, bank angle discrete points number is N2, then angle of
attack and bank angle are described by Eq. (16):⎧⎪⎪⎨

⎪⎪⎩
vk = vi + k

vf−vi

N1−1 , k = 0, 1, ..., N1 − 1.

η = ηk−1 + ηk−ηk−1
vk−vk−1

(v − vk−1) , v ∈ [vk, vk−1]
α (v) = η.αmax + (1 − η)

.α (v, max (rQ (v) , rq (v)))⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vk = vi + k
vf−vi

N2−1 , k = 0, 1, ..., N2 − 1.

ξ = ξk−1 + ξk−ξk−1
vk−vk−1

(v − vk−1) , v ∈ [vk, vk−1]
|σ (v)| = ξ.σmax + (1 − ξ) .σmin

σ =

{
−|σ (v)|, e1 ≤ e ≤ e2

|σ (v)|, otherwise

(16)

where e = mv2/2 − mμ/r is vehicle’s mechanical en-
ergy at present, ei and ef represent vehicle’s mechani-
cal energy at reentry point and terminal point. Let X =
[η0, η1, . . . , ηN−1, ξ0, ξ1, . . . , ξN−1, e1, e2], ηk, ξk ∈ [0, 1],
e1, e2 ∈ [ef , ei]. e1 and e2 corresponding to the two bank
angle reverse points, are used to adjust lateral motion. Vector
X determine all control variables angle of attack and bank
angle. Then we can integrate Eq. (1)-Eq. (6) to figure out
objective function Eq. (13) and constraints Eq. (8)-Eq. (12).

B. Classic differential evolution

Unconstraint parameter optimization can be
formulated to minimum a single D-dimensional
function f(X), X = [x1, x2, . . . , xD], xi ∈ [xl,i, xu,i].
Let PG = {XG,1,XG,2, . . . ,XG,NP } represent G-
th population, where i-th individual’s position is
XG,i = [xG,i,1, xG,i,2, . . . , xG,i,D], i = 1, 2, . . . NP , NP
is the population’s scale.

DE involves two stages: initialization and evolution. Ini-
tialization stage using Eq. (17) generates initial population P0
randomly. Then P0 evolves to P1, P1 evolves to P2, ..., and so
on, until the termination conditions are fulfilled. Each evolve
process include three operation, namely differential mutation,
crossover and selection.

xG,i,j = xl,j + rand[0, 1] × (xu,j − xl,j) ,

i = 1, 2, . . . , NP, j = 1, 2, . . . D
(17)

where rand[0, 1] is a uniform random number in [0, 1].
1) Mutation: Let VG,i = [vG,i,1, vG,i,2, . . . , vG,i,D] de-

notes i-th mutant individual. There are many mutation strate-
gies in the literature. Among them, the commonly used oper-
ator is “DE/rand/1”, which is described as:

VG,i = XG,r1 + F × (XG,r2 − XG,r3) (18)

where r1, r2, r3 are mutually exclusive indices randomly cho-
sen in the range [1, NP ] , which is different from base vector
index i. F > 0 is mutant scale factor.

2) Crossover: In order to enhance the diversity of the pop-
ulation, a crossover operation comes into play after generating
the mutant individual. Mutant individual VG,i exchanges its
components with base vector XG,i through crossover opera-
tion get the trial vector UG,i = [uG,i,1, uG,i,2, . . . , uG,i,D].

Common crossover operation is described as:

uG,i,j =

{
vG,i,j , j = jrand or rand[0, 1] ≤ CR

xG,i,j , otherwise
(19)

where jrand is a random index in the range [1,D], it ensure
the trial vector has at least one component from mutant vector.
CR > 0 is crossover probability.

3) Selection: Using one to one greedy selection operation
decide whether trial vector UG,i substitute XG,i to next
iteration. It is described as:

XG+1,i =

{
UG,i, f(UG,i) ≤ f(XG,i)
XG,i, otherwise

(20)

C. Constraints handling

Many researchers added a penalty function to the objective
function to deal with constrained optimization. But it is dif-
ficult to choose adequate coefficient of each constraint. Here,
we use a simple parameterless constraints handle process. Let
CG,i = [cG,i,1, cG,i,2, . . . , cG,i,m], i = 1, 2, . . . , NP represent
each individual’s m-dimensional constraints. If violate the
constraint its corresponding component is positive, other-
wise is zero. Due to CG,i is multidimensional, it is hard
to compare between two constraints. We transform it to a
scalar using dimension scale method. Define CMG,i as i-th
individual’s constraint scalar to measure violate constraints.
Let DG = {UG,1,UG,2, . . . ,UG,NP } denote offspring pop-
ulation, and i-th offspring’s constrain vector is CDG,i =
[cdG,i,1, cdG,i,2, . . . , cdG,i,m], constraint scalar is CDMG,i.
Tab. I described how to calculate CMG,i and CDMG,i.

Tab. I. Pseudo-code to calculate constraint scalar

CMG,i = 0, CDMG,i = 0, i = 1, 2, . . . , NP

for k = 1 to m
a. Find maximum k-th dimension constraint(denoted as cmax,k) in

PG and DG

b. for i = 1 to NP

CMG,i = CMG,i +
cG,i,k

cmax,k + eps
,

CDMG,i = CDMG,i +
cdG,i,k

cmax,k + eps

where eps is a small positive number to avoid singularity.
end for

end for

D. CDEN algorithm

Mutation operation is critical to DE algorithm’s quality, here
we choose a new mutation operation described by Eq. (21)[9]
. This mutation operation balanced exploit ability and explore
ability, has more robustness than the classical DE mutation
operation.

CDEN algorithm is described by Tab. II. We regard the
two bank angle reverse points as population’s common
information shared by each individual. First, initialization the
population and calculate the corresponding objective function
and constraints. Then evolve the population. Before each
evolve process, we figure ...
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For each individual do mutation operation and crossover
operation to create trial vector and calculate the corresponding
objective and constraints, calculate each individual’s constraint
scalar, using selection operation to decide whether trial vector
is substitute base vector to the next iteration.

Tab. II. Pseudo-code of CDEN algorithm

step 1 : Assign DE’s parameter NP, F, CR, G = 0.
for i = 1 to NP

Initialize population P0 according to Eq. (17) and calculate
the corresponding objective function f

(
XG,i

)
and constraints

CG,i
end for

step 2 : Using Newton-Raphson algorithm determinate the two bank angle
reverse points e1, e2 with the best individual in the current popula-
tion PG.
for i = 1 to NP

step 2.1 : Generate mutant vector VG,i using Eq. (21),
step 2.2 : Generate trial vector UG,i using Eq. (19),
step 2.3 : Calculate objective function f

(
UG,i

)
and constraints

CDG,i .
end for

step 3 : Calculate CMG,i, CDMG,i, i = 1, 2, . . . , NP using the algo-
rithm described by section III-C.

step 4 : for i = 1 to NP
Selection a individual between trial vector UG,i and base vector
XG,i to the next iteration using Eq. (22).

end for
step 5 : G = G + 1, if terminate condition is satisfied output the best

individual in the current population, otherwise goto step2.

VG,i = XG,n1 + F × (XG,n2 − XG,n3) (21)

where r1, r2, r3 are mutually exclusive indices randomly cho-
sen in the range [1, NP ] ,which is different from base vector
index i. n1 is the best index of r1, r2, r3 , n2, n3 are different
from n1 of r1, r2, r3 . F > 0 is scale factor.

XG+1,i =

⎧⎨
⎩UG,i,

CDMG,i < CDG,i or
(
CDMG,i =

CDG,i and f(UG,i) ≤ f(XG,i)
)

XG,i, otherwise
(22)

IV. SIMULATION

We used X-33[10, 11] to validate our algorithm CDEN,
the optimal objective is minimize flight path angle variance,
described by Eq. (23). The smaller flight path angle variance,
the flatness the trajectory have.

J =
L−1∑
i=1

|γi+1 − γi| (23)

where L is integrate number between reentry point to reentry
terminate point.
Parameters Setting:

[ri, θi, φi, vi, γi, ψi] = [6499518 m,−117.010,−18.2550,

7622 m/s,−1.43790, 38.3290]

[rf , θf , φf , vf , γf , ψf ] = [6408427 m,−80.480,

28.61120, 908 m/s,−7.50, 40.00]

[Δr,Δθ, Δφ,Δv, Δγ, Δψ] = [2000 m, 0.080, 0.080, 20 m/s,

1.00, 5.00]

Qmax = 431259 W/m2, qmax = 11970 N/m2, nmax = 2.5 g
50 ≤ α ≤ 500, |α̇| ≤ 50/s, |σ| ≤ 800, |σ̇| ≤ 50/s
Attack angle discrete points number is 5, bank angle discrete
points number is 12. DE algorithm parameters setting: NP =
75, F = 0.6, CR = 0.9, maximum iteration is 300.
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Fig. 1. Flight path angle
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Because CDEN using random searching algorithm DE as its
critical component, each run has different performance. We run
30 times to evaluate it. The results described by Tab. III-Tab.
IV, trajectory depicted by Fig. 1-Fig. 4. As can be see from the
tables and the figures, all process constraints and terminative
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Fig. 4. Bank angle

Tab. III. Objective and Partial Constraints

J max(Q̇) max(q) max(n) |Δr(tf )|
(rad) (W/m2) (N/m2) (g) (m)

Max 0.1705 423201 10157 1.552 1982
Mean 0.1488 392097 6314 1.329 848
Min 0.1433 375510 5180 1.197 112
Std 0.0058 12288 917 0.097 525

Tab. IV. Terminate Constraints

|Δθ(tf )| |Δφ(tf )| |Δv(tf )| |Δγ(tf )| |Δψ(tf )|
(degree) (degree) (m/s) (degree) (degree)

Max 0.067 0.053 19.7 1.00 4.9
Mean 0.029 0.019 11.3 0.98 2.7
Min 0.001 0.001 1.4 0.72 0.1
Std 0.018 0.013 4.9 0.05 1.4

constraints satisfied, each trajectory is flatness and objective
function has small variance. It is indicated that our algorithm
is efficient to handle constraints, has good performance and
robustness.

V. CONCLUSION

In order to tackle the complexity of optimize angle of
attack and bank angle simultaneously, we figure out the
control parameter’s scope. We incorporated a parameterless
constraints handle process and Newton-Raphson algorithm to
DE algorithm form a new algorithm CDEN to solve reentry
trajectory optimization. It is validated by X-33, simulation
results indicated that CDEN is effective and robust.
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