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Abstract—Due to simplicity and low cost, rotordynamic system 

is often modeled by using lumped parameters. Recently, finite 

elements have been used to model rotordynamic system as it offers 

higher accuracy. However, it involves high degrees of freedom. In 

some applications such as control design, this requires higher cost. 

For this reason, various model reduction methods have been 

proposed. This work demonstrates the quality of model reduction of 

rotor-bearing-support system through substructuring. The quality of 

the model reduction is evaluated by comparing some first natural 

frequencies, modal damping ratio, critical speeds, and response of 

both the full system and the reduced system. The simulation shows 

that the substructuring is proven adequate to reduce finite element 

rotor model in the frequency range of interest as long as the number 

and the location of master nodes are determined appropriately. 

However, the reduction is less accurate in an unstable or nearly-

unstable system. 

 

Keywords—Finite element model, rotordynamic system, model 

reduction, substructuring. 

I. INTRODUCTION 

OTORDYNAMIC studies typically involve three main 

components: rotor, bearings, and supports. Beside these 

three components, many studies also have been conducted 

involving other components such as seals, impellers, blades, 

and stators. In general, the bearings can be fluid film bearings, 

rolling element bearings, or magnetic bearings. The stiffness 

and damping coefficients of the bearings usually consist of 

direct as well as cross-coupling coefficients. In the case of 

fluid film bearings, these coefficients are obtained by solving 

the Reynolds equation representing the fluid dynamics in the 

bearing, either using long bearing solution or short bearing 

solution. The coefficients depend on the journal eccentricity 

which is a function of the Sommerfeld number and ratio 

between length and diameter of the bearings [1]-[3]. 

The rotordynamic system can be modeled as a continuous 

or discrete system. The first mostly can be applied to simple 

problems because it involves partial differential equations 

which are difficult to solve for complex problems. The latter, 

on the other hand, is widely used because it is easier to solve. 

The most widely used discrete modeling of rotordynamic 

system is the lumped parameters model and the finite element 
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(FE) model. The lumped parameters model was widely used in 

the past due to its minimum computation requirement. It is 

even still widely used today in industry because some systems 

already meet acceptable accuracy using this model. The most 

popular numerical approach using the lumped parameters 

model is the Transfer Matrix Method (TMM). Along with the 

advance of computer hardwares, FE model recently has been 

widely used due to its high accuracy, particularly if the rotor 

has a complex geometry. Using this method, consistent mass 

formulation is more commonly used. Beam elements are still 

used today to model the shaft. In this case, either Euler-

Bernoulli beam, Rayleigh beam, or Timoshenko beam is used. 

However, many rotor systems have geometry which is not 

adequate to be modeled by beam elements. Therefore, 

combined beam-shell, 2D axisymmetric, and cyclic elements 

have been used [4]. Eventually, 3D solid elements have been 

used to model rotors which are not adequate to be modeled 

with all the aforementioned elements. However, the 3D solid 

model can easily reach a high degree-of-freedom (DOF). 

Although the 3D solid elements are widely used to model the 

rotordynamic system, some components such as bearings and 

supports are often still represented by combinations of springs 

and dampers. In this case, only the rotor is modeled using the 

3D solid elements. 

Unfortunately, the use of FE model which offers high 

accuracy has been mainly limited to rotordynamic analysis, 

not in rotordynamic control due to its high cost. Hence, for the 

purpose of control design, the number of DOF obtained from 

FE model mostly has to be reduced. This is conducted through 

so-called model reduction (sometimes also called 

condensation). Many model reduction techniques have been 

proposed. For the purpose of control, Guyan reduction, modal 

analysis (MA), component mode synthesis (CMS), balanced 

truncation (BT), structure preserving transformations (SPT), 

system equivalent reduction expansion process (SEREP), and 

modified SEREP have been proposed [4], [5]. 

This work is aimed to demonstrate the quality of model 

reduction of rotor-bearing-support system through 

substructuring in ANSYS. The quality of the model reduction 

is evaluated by comparing some first natural frequencies, 

modal damping ratio, critical speeds, and response of both the 

full system and the reduced system. 

II.  FINITE ELEMENT MODEL OF ROTOR-BEARING-SUPPORT 

SYSTEM 

Formulation of rotor model using beam elements is 

presented in many references, such as [6]-[9]. If a Timoshenko 

beam model is used, its stiffness matrix can be modified from 
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that of Euler-Bernoulli beam by introducing shear correction 

factor κ. For solid circular cross section, the shear correction 

factor is given by: 
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and for hollow circular cross section by: 
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where Λ is ratio of the inner radius to the outer radius

To make easier, a non-dimensional shear correction term φ 

which is equivalent to shear correction factor κ is usually used 

in the formulation. 

In recent modeling of rotordynamic system, disks can be 

modeled either as rigid bodies or flexible bodies. In the first 

case, the disks cannot undergo deformation. To represent the 

dynamic behavior of the disks, their mass and moment inertias 

are used. In the latter case, the disks may u

deformation. In this case, either a 3D solid

Timoshenko beam is used to model the disks.

Similarly, bearing supports may also be considered either 

rigid or flexible. The choice usually depends on whether the 

flexibility of the supports is significantly large or not. If it is 

not significantly large, then considering the supports flexible 

will only increase the complexity and cost of the modeling 

without giving quite different results in the analysis. In 

contrary, if the flexibility of the supports is significantly large, 

then considering the supports flexible will give an advantage. 

In such a case, mass of each bearings is also usually modeled 

as point mass located at the connectivity between the bearing 

and its support. Figs. 1 (a) and (b) show both rotor

support models with rigid and flexible bearing supports.

 

(a) 

 

(b) 

Fig. 1 Rotor-bearing-support models with (a) rigid bearing supports 

and (b) flexible bearing supports

 

The bearing, including fluid film bearing which is used in 

the current work, is usually modeled by eight linear dynamic 

coefficients: four stiffness and four damping coefficients, as 

 

ducing shear correction 

factor κ. For solid circular cross section, the shear correction 
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where Λ is ratio of the inner radius to the outer radius [10]. 

dimensional shear correction term φ 

which is equivalent to shear correction factor κ is usually used 

ic system, disks can be 

modeled either as rigid bodies or flexible bodies. In the first 

case, the disks cannot undergo deformation. To represent the 

dynamic behavior of the disks, their mass and moment inertias 

are used. In the latter case, the disks may undergo 

deformation. In this case, either a 3D solid shell or 

eam is used to model the disks. 

Similarly, bearing supports may also be considered either 

rigid or flexible. The choice usually depends on whether the 

ignificantly large or not. If it is 

not significantly large, then considering the supports flexible 

will only increase the complexity and cost of the modeling 

without giving quite different results in the analysis. In 

pports is significantly large, 

then considering the supports flexible will give an advantage. 

In such a case, mass of each bearings is also usually modeled 

as point mass located at the connectivity between the bearing 

how both rotor-bearing-

support models with rigid and flexible bearing supports. 

 

 

support models with (a) rigid bearing supports 

and (b) flexible bearing supports 

The bearing, including fluid film bearing which is used in 

the current work, is usually modeled by eight linear dynamic 

coefficients: four stiffness and four damping coefficients, as 

shown in Fig. 2. Two spring

coefficients, whereas the other two pairs are called cross

coupling coefficients. The latter is the main cause of 

instability in a rotordynamic system. Some types of fluid film 

bearings such as plain, fixed journal bearing (PFJB) have large 

cross-coupling coefficients, while some others have less cross

coupling coefficients. Tilting pad journal bearing (TPJB) is 

fluid film bearing type which has almost no cross

coefficients, therefore it is more stable.

A bearing support can be a bearing housing while 

considering the foundation rigid. It also can be combination of 

bearing housing along with the foundation, considered as a 

single unit. The bearing supports considered flexible are 

usually modeled by direct coefficients only in two 

perpendicular directions, as there are no significant cross

coupling coefficients. Furthermor

coefficients are isotropic. 
 

Fig. 2 Model of fluid

III. MODEL REDUCTION 

There are many model reduction methods having been 

proposed as mentioned earlier. The reduction methods are 

required to provide as low computational cost as possible but 

retain physical interpretability as well as accuracy in the 

frequency range of interest. In this current work, Guyan 

reduction and component mode synthesis (CMS) are used to 

reduce the size of system matrices

Both of the Guyan reduction and CMS are used through 

ANSYS as the package provides both the techniques. The 

ANSYS Guyan reduction can include mass, stiffness, and 

damping matrices, but not gyroscopic matrix. To provide 

gyroscopic matrix in the reduced system, manual assembly of 

gyroscopic matrix is conducted based on gyroscopic matrix 

formulation for finite beam rotor elements. The ANSYS CMS 

is only used for the reduction of free

CMS in ANSYS cannot hand

the case in the current rotor-bearing system due to asymmetry 

of bearings) as well as cannot include damping and gyroscopic 

matrices (which are important in rotordynamic system).

2. Two spring-damper pairs are called direct 

coefficients, whereas the other two pairs are called cross-

icients. The latter is the main cause of 

instability in a rotordynamic system. Some types of fluid film 

bearings such as plain, fixed journal bearing (PFJB) have large 

coupling coefficients, while some others have less cross-

lting pad journal bearing (TPJB) is 

fluid film bearing type which has almost no cross-coupling 

coefficients, therefore it is more stable. 

A bearing support can be a bearing housing while 

considering the foundation rigid. It also can be combination of 

ng housing along with the foundation, considered as a 

single unit. The bearing supports considered flexible are 

usually modeled by direct coefficients only in two 

perpendicular directions, as there are no significant cross-

coupling coefficients. Furthermore, in many cases, the direct 

 

2 Model of fluid-film bearing 

EDUCTION THROUGH SUBSTRUCTURING 

There are many model reduction methods having been 

proposed as mentioned earlier. The reduction methods are 

ovide as low computational cost as possible but 

retain physical interpretability as well as accuracy in the 

frequency range of interest. In this current work, Guyan 

reduction and component mode synthesis (CMS) are used to 

reduce the size of system matrices as well as force vectors. 

Both of the Guyan reduction and CMS are used through 

ANSYS as the package provides both the techniques. The 

ANSYS Guyan reduction can include mass, stiffness, and 

damping matrices, but not gyroscopic matrix. To provide 

matrix in the reduced system, manual assembly of 

gyroscopic matrix is conducted based on gyroscopic matrix 

formulation for finite beam rotor elements. The ANSYS CMS 

is only used for the reduction of free-free non-rotating rotor as 

CMS in ANSYS cannot handle unsymmetric system (which is 

bearing system due to asymmetry 

of bearings) as well as cannot include damping and gyroscopic 

matrices (which are important in rotordynamic system). 
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A.  Guyan Reduction 

Guyan reduction method reduces the system matrices of a 

system by dividing the DOF into master and slave DOF. The 

slave DOF are assumed to have low inertia relative to stiffness 

and are constrained to displace as dictated by elastic properties 

and displacements associated with other coordinates defined 

as the masters. The master DOF is then retained while the 

slave DOF is dropped. 

Firstly, the matrix to be reduced is partitioned accordingly 

to the choice of master and slave DOF. For example, stiffness 

matrix [K] will be partitioned as follows: 

 

[ ] [ ] [ ]
[ ] [ ]

11 12

21 22

K K
K

K K

 
=  

 

                                  (3) 

 

where subscript 1 refers to master DOF whereas subscript 2 

refers to slave DOF. 

The corresponding DOF vector is (x1, x2) where x1 contains 

master DOF whereas x2 contains slave DOF. The reduced 

stiffness matrix [Kred] is given by: 

 

[ ] [ ] [ ][ ] [ ]1
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T
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−

= −               (4) 

 

Being derived from kinetic energy expression, the reduced 

mass matrix [Mred] is given by: 
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Similarly, being derived from the part of kinetic energy due 

to gyroscopic effect, the reduced gyroscopic matrix [Gred] is 

given by: 
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Also in similar way, being derived from dissipation energy 

expression, the reduced damping matrix [Cred] is given by: 

 

[ ] [ ] [ ][ ] [ ] [ ][ ] [ ]( )
[ ][ ] [ ][ ] [ ]
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   (7) 

 

Finally, the reduced force vector due to unbalance [Fred] is 

given by: 

 

{ } { } [ ][ ] { }1

1 12 22 2redF F K K F
−

= −                    (8) 

 

where {F1} is force vector which corresponds to DOF vector 

{x1} whereas {F2} is force vector which corresponds to DOF 

vector {x2}. 

B. Component Mode Synthesis (CMS) 

In the CMS, the structure is divided into some 

substructures. Some DOF located at the intersection between 

the substructures are called boundary DOF (also called 

interface DOF or constraint DOF), whereas some other DOF 

are called internal DOF. The simplest scheme is to assign all 

of the boundary DOF as master DOF while assigning all the 

internal DOF as slave DOF. Another scheme can be to assign 

some internal DOF as additional master DOF. 

The CMS is basically Guyan reduction which includes 

some of modal data in the reduced matrix to increase the 

accuracy. Beside the master DOF, some modal DOF are added 

to the reduced matrix. Exact results are obtained if all the 

modes are retained, but this will lead to similar size of the 

reduced matrix to that of the full system, and therefore it is no 

more a reduction. Fortunately, retaining only some of the 

modes is sufficient to obtain quite accurate results. Certainly, 

the more modes are retained, the more accurate the results but 

the larger size of the reduced matrix. 

It is to notice that a full matrix has (m + n) DOF where m is 

the number of master DOF whereas n is the number of slave 

DOF. After the reduction is conducted, the reduced matrix has 

(m + k) DOF where k is the number of modal data included in 

the reduction. Therefore, if no modal data is included (k = 0) 

then the method reduces to Guyan reduction method. 

Similar to Guyan reduction procedure, firstly the full matrix 

is partitioned accordingly to the choice of master and slave 

DOF, as shown in (3). The corresponding DOF vector is 

defined by (x1, x2) where: 

 

2 2 2x x x′ ′′= +                                       (9) 
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x2''  is obtained by solving the following eigen problem: 
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Then modal transformation is conducted as follows: 

 

2 2
x φη′′ =                                     (12) 

 

The generalized coordinates, therefore, can be expressed as: 
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or can be written as: 
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where is called transformation matrix and given by: 
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by using the transformation matrix Ψ, the reduced matrices are 

defined by: 

 

[ ] [ ] [ ][ ]T
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{ } [ ] { }T

redF Fψ=                              (20) 

C. Substructuring in ANSYS 

Guyan reduction and CMS can be conducted using 

substructuring in ANSYS. Substructuring is a procedure that 

condenses a group of finite elements into one element 

represented as a matrix. The single-matrix element is called a 

superelement. Substructuring reduces computer time and 

allows solution of large problems with limited computer 

resources. The substructure analysis uses the technique of 

matrix reduction to reduce the system matrices to a smaller set 

of DOF. In the substructuring, the superelements are created to 

result in reduced number of DOF. 

General substructuring in ANSYS uses Guyan reduction 

procedure to calculate the reduced matrices. The key 

assumption in this procedure is that for the lower frequencies, 

inertia forces on the slave degrees of freedom (those degrees 

of freedom being reduced out) are negligible compared to 

elastic forces transmitted by the master degrees of freedom 

(MDOF). Therefore, the total mass of the structure is 

apportioned among only the MDOF. The net result is that the 

reduced stiffness matrix is exact, whereas the reduced mass 

and damping matrices are approximate. Guyan reduction in 

ANSYS is improved so that it can include damping matrix.  

A special substructuring using CMS is also available in 

ANSYS. However, CMS in ANSYS now does not yet include 

damping matrix although in theory the CMS can include the 

damping matrix. Furthermore, CMS in ANSYS only work 

with symmetric matrix. In general, CMS gives better reduction 

for higher frequencies because it includes the modal data in 

the reduction process. However, the reduced matrices can be 

larger as some additional DOF coming from the modal data 

are added in the matrices. 

In superelements, some master nodes have to be selected. 

Selecting the master nodes is an important step in a reduced 

analysis. The accuracy of the reduced mass matrix (and hence 

the accuracy of the solution) depends on the number and 

location of masters. The master nodes are selected based on 

the following guidelines: 

1) The total number of MDOF should be at least twice the 

number of modes of interest. 

2) Selected MDOF should be in directions in which the 

structure or component is expected to vibrate. 

3) Zero lateral displacement are assigned as master nodes. 

4) Nodes at which forces are applied are assigned as master 

nodes. 

5) Nodes at which inertia is relatively large and stiffness is 

relatively low are assigned as master nodes. 

Substructuring involves three distinct steps called passes: 

(1) generation pass, (2) use pass, and (3) expansion pass. The 

generation pass is condensing a group of "regular" finite 

elements into a single superelement. The condensation is done 

by identifying a set of MDOF. The procedure to generate a 

superelement consists of two main steps: (1) building the 

model and (2) applying loads and creating the superelement 

matrices. 

The use pass is using the superelement in an analysis by 

making it part of the model. The entire model may be a 

superelement, or, the superelement may be connected to other 

nonsuperelements. The solution from the use pass consists 

only of the reduced solution for the superelement and 

complete solution for nonsuperelements. 

The expansion pass is starting with the reduced solution and 

calculating the results at all DOF in the superelement. If 

multiple superelements are used in the use pass, a separate 

expansion pass will be required for each superelement. The 

backsubstitution method uses the reduced solution from the 

use pass and substitutes it back into the available factorized 

matrix file to calculate the complete solution. 

Based on how the substructuring is conducted, there are two 

kinds of substructuring which can be conducted in ANSYS. 

The first is called bottom-up substructuring, meaning that each 

superelement is separately generated in an individual 

generation pass, and all superelements are assembled together 

in the use pass. This method is suitable for very large models 

which are divided into smaller superelements so that they can 

"fit" on the computer. 

The second is called top-down substructuring. This is 

suitable for substructuring of smaller models. An advantage of 

this method is that the results for multiple superelements can 

be assembled in postprocessing. The procedure for top-down 

substructuring is in general similar to that of bottom-up 

substructuring. What makes the top-down substructuring 

different is that the whole model is built first. 

IV. NUMERICAL EXAMPLE 

In the following example, a rotor-bearing-support system of 

a steam turbine, which has been analyzed in a previous work 

[11], is used. Some data and results of the previous work are 
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used as reference for validation purpose. 

A. Component Specifications 

The geometry of the rotor is shown in Fig. 3. The shaft and 

the disks are a single piece machined, forged steel. As the 

disks are not shrunk into the shaft, the system does not 

undergo stress stiffening. The overall length of the rotor is 

524.56cm (206.52in). The properties of the rotor steel are: 

density of 8450 kg/m
3
 (0.30531 lb/in

3
), Young modulus of 190 

GPa (isotropic), and Poisson ratio of 0.3. 

There are two bearings in the system: one at the high 

pressure end (HPE) and another one at the low pressure end 

(LPE). The distance between the bearings is 410.36cm (161.56 

in). The ratio of length over diameter of the bearings is 

assumed to be L/D = 1 as required by standard for steam 

turbine rotor-bearing system. The oil used as bearing fluid 

film has a constant viscosity = 2.3206 x 10
-6

 reyns. Two types 

of bearings are evaluated in this work: TPJB and PFJB. The 

two different bearings are used in order to evaluate the quality 

of the model reduction with different stability level. It is 

important to notice that the bearing dynamic coefficients vary 

with the rotor speed. Furthermore, the behavior of the bearings 

makes the overall system unsymmetric. 

Bearing supports are taken into account because they are 

quite flexible (their stiffness is worthy compared to the 

bearing stiffness). The stiffness of the bearing supports is 1.4 

GN/m (8.0 x 10
6
 lb/in) at both LPE and HPE. The stiffness in 

horizontal and vertical direction are the same. The damping of 

the bearing supports is negligible as its value is very small 

compared to the stiffness of the supports as well as the 

damping of the bearings. 

 

 

Fig. 3 Geometry of the rotor (length in cm) 

B. Finite Element Modeling 

The finite element modeling of the system is conducted by 

using non-commercial ANSYS package. The following 

elements are used for modeling: 

1) The rotor is modeled by using Timoshenko beam 

elements. Both the shaft and the disks are flexible. 

2) The bearings as well as their supports are modeled by 

ANSYS element called COMBI214 which supports both 

direct and cross-coupling coefficients. 

3) Mass of the bearings is modeled by ANSYS element 

called MASS21 which is a point mass. 

The Timoshenko rotor elements have 6 DOF per node: three 

of them are translational and three others are rotational. The 

springs and dampers in COMBI214 have only 1 translational 

DOF per node per axis, or 3 translational DOF per node in 3 

axis. Due to different number and/or type of DOF per node 

between the beam rotor elements and the bearing elements, 

some special elements called multi-point constraints (MPC) 

are added at connection points between the rotor and the 

bearings. By adding the MPC elements, the energy in all DOF 

of the rotor can be transferred well to the bearings. 

The boundary conditions consist of some constraints and 

loads. The constraints are as follows: 

1) The nodes where the bearings are attached on the axis are 

prevented from longitudinal translation. 

2) The bearings are attached to certain positions of the axis. 

3) The mass of the bearings can move in radial direction. 

4) The bearing supports are attached to ground. 

The loads are comprised of rotational velocity of the rotor 

and unbalance forces. The latter is used only in the harmonic 

unbalance force analysis. 

Fig. 4 shows the mesh of the rotor model. It has been 

evaluated that the mesh gives identical response to more 

refined mesh. Hence, the mesh is adequate. The 

dimensionality of the model is shown in Table I. Finally, the 

system model has been validated by comparing its critical 

speeds to those of the reference work. A quite good agreement 

is achieved. 

 

 

Fig. 4 Mesh of the system using Timoshenko beam rotor model 

 
TABLE I 

DIMENSIONALITY OF THE FINITE ELEMENT ROTOR MODEL 

Quantity Value 

Number of nodes 99 

Number of elements 49 

Size of M, C, K matrix 1230 x 1230 

Size of F vector 1230 x 1 

C. Model Reduction Results 

1. Model Reduction of Free-Free Rotor 

By ignoring rotating (hysteretic) damping, both Guyan 

reduction and CMS can be used to create reduced mass and 

stiffness matrix. The reduction results show that CMS gives 

better accuracy. Table II shows some first natural frequencies 

of the rotor model after reduction into 30 DOF using Guyan 

reduction as well as CMS with 12 additional modal DOF, 

compared to those of the full system. As the mode increases, 

the accuracy of the Guyan reduction decreases whereas that of 

the CMS remains good. Furthermore, reducing the rotor model 

into less number of DOF using Guyan reduction is evidenced 

to reduce the model accuracy, particularly at higher modes. 

2. Model Reduction of Rotor-Bearing-Support System 

Since damping in the system cannot be ignored and the 

assembled global matrices are unsymmetric, ANSYS CMS 
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cannot be used for reduction. Therefore, the reduction was 

only conducted by using ANSYS Guyan reduction feature. As 

the rotor is rotating, gyroscopic effect is included. The 

selection of master nodes is shown in Fig. 5. Master nodes are 

indicated by circles. The total reduced DOF is 30, as 

calculated in Table III.  

Tables IV and V show some first damped natural 

frequencies of the reduced system with TPJB and PFJB, 

respectively, using ANSYS Guyan reduction compared to 

those of the full system. It can be seen that the system with 

PFJB is unstable/nearly-unstable as some values in the real 

part of the complex frequency are positive or very near to 

zero. The first damped natural frequencies along the speeds of 

interest represented in Campbell diagrams of both the full and 

reduced system with TPJB and PFJB are shown in Figs. 6 and 

7 respectively. The 1x synchronous critical speeds are 

determined by putting a straight line with gradient of 1 in the 

Campbell diagram so that it intersects with the natural 

frequency curves. Both the tables of natural frequencies and 

the Campbell diagrams show that the model reduction is quite 

accurate for both the systems, but less accurate for the system 

with PFJB. Furthermore, it is shown that the third natural 

frequency in the reduced system with PFJB is an additional 

natural frequency which is not captured in the full system. 

Finally, due to a certain amount of rotating unbalance, the 

unbalance responses are also compared between the full and 

the reduced system. For both of the systems with TPJB and 

PFJB, the frequency response to the rotating unbalance at 

midspan and HPE bearing is shown in Figs. 8 to 11, 

comparing that of the reduced system to that of the full 

system. 

 

 

Fig. 5 Selected master nodes 

 
TABLE II 

NATURAL FREQUENCIES OF THE FULL AND REDUCED FREE-FREE ROTOR 

Mode 
Full 

system, Hz 

Reduced system 

using Guyan reduction, Hz 

Reduced system 

using CMS, Hz 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 0 0 0 

6 0 0 0 

7 66.0361 66.3230 66.0528 

8 66.0361 66.3230 66.0528 

9 149.4047 156.2477 149.5194 

10 149.4047 156.2477 149.5194 

11 187.6451 189.6003 187.9358 

12 256.6236 278.6275 257.1861 

 

TABLE III 

CALCULATION OF THE TOTAL REDUCED DOF 

Master nodes Number of DOF 

6 master nodes taking place at the rotor 6 x 6 = 36 

2 master nodes at the ground (all DOF are fixed) 0 

Elimination of DOF due to zero axial displacement at 

all master nodes taking place at the rotor 
- 6 

Total number of DOF 30 

 
TABLE IV 

COMPLEX FREQUENCY AND MODAL DAMPING RATIO OF SYSTEM WITH TPJB 

Mode 

Complex frequency, Hz Modal damping ratio 

Real part Complex part 
Full Reduced 

Full Reduced Full Reduced 

1 - 0.479 - 0.449 - 31.18 - 31.39 1.5 E-2 1.4 E-2 

 - 0.479 - 0.449 +31.18 +31.39 1.5 E-2 1.4 E-2 

2 - 0.007 - 0.001 - 35.40 - 35.40 2.0 E-4 3.7 E-5 

 - 0.007 - 0.001 +35.40 +35.40 2.0 E-4 3.7 E-5 

3 - 0.613 - 0.629 - 41.47 - 41.71 1.5 E-2 1.5 E-2 

 - 0.613 - 0.629 +41.47 +41.71 1.5 E-2 1.5 E-2 

4 - 0.141 - 0.154 - 87.26 - 87.70 1.6 E-3 1.8 E-3 

 - 0.141 - 0.154 +87.26 +87.70 1.6 E-3 1.8 E-3 

5 - 0.079 - 0.055 - 91.29 - 91.25 8.7 E-4 6.0 E-4 

 - 0.079 - 0.055 +91.29 +91.25 8.7 E-4 6.0 E-4 

6 - 0.644 - 0.675 - 103.9 - 104.7 6.2 E-3 6.4 E-3 

 - 0.644 - 0.675 +103.9 +104.7 6.2 E-3 6.4 E-3 

7 - 0.053 - 0.030 - 111.4 - 111.9 4.8 E-4 2.7 E-4 

 - 0.053 - 0.030 +111.4 +111.9 4.8 E-4 2.7 E-4 

 
TABLE V 

COMPLEX FREQUENCY AND MODAL DAMPING RATIO OF SYSTEM WITH PFJB 

Mode 

Complex frequency, Hz Modal damping ratio 

Real part Complex part 
Full Reduced 

Full Reduced Full Reduced 

1 - 0.097 - 0.179 - 35.21 - 35.39 2.7 E-3 5.1 E-3 

 - 0.097 - 0.179 +35.21 +35.39 2.7 E-3 5.1 E-3 

2 - 0.031 - 0.032 - 36.14 - 35.50 8.6 E-4 8.9 E-4 

 - 0.031 - 0.032 +36.14 +35.50 8.6 E-4 8.9 E-4 

2b  - 0.000  - 68.84  1.2 E-5 

  - 0.000  +68.84  1.2 E-5 

3 - 0.360 - 0.815 - 88.15 - 89.57 4.1 E-3 9.1 E-3 

 - 0.360 - 0.815 +88.15 +89.57 4.1 E-3 9.1 E-3 

4 - 0.637 - 0.860 - 91.68 - 91.93 7.0 E-3 9.3 E-3 

 - 0.637 - 0.860 +91.68 +91.93 7.0 E-3 9.3 E-3 

5 - 3.940 - 7.757 - 110.9 - 112.5 3.6 E-2 6.9 E-2 

 - 3.940 - 7.757 +110.9 +112.5 3.6 E-2 6.9 E-2 

6 - 0.265 + 0.491 - 114.1 - 112.9 2.3 E-3 - 4  E-3 

 - 0.265 + 0.491 +114.1 +112.9 2.3 E-3 - 4  E-3 
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Fig. 6 Campbell diagram of (a) the full and (b) the reduced system 

with TPJB 

 

Fig. 7 Campbell diagram of (a) the full and (b) the reduced system 

with PFJB 

 

Fig. 8 Unbalance response of (a) full and (b) reduced system with 

TPJB at the midspan 

 

 

6 Campbell diagram of (a) the full and (b) the reduced system 

 

(b) the reduced system 

 

Unbalance response of (a) full and (b) reduced system with 

Fig. 9 Unbalance response of (a) full and (b) reduced system with 

TPJB at the HPE bearin

Fig. 10 Unbalance response of (a) full and (b) reduced system with 

PFJB at the midspan

 

Unbalance response of (a) full and (b) reduced system with 

TPJB at the HPE bearing 

 

 

Unbalance response of (a) full and (b) reduced system with 

PFJB at the midspan 
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Fig. 11 Unbalance response of (a) full and (b) reduced system with 

PFJB at the HPE bearing
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