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Abstract—The authors present an algorithm for order reduction 
of linear time invariant dynamic systems using the combined 
advantages of the eigen spectrum analysis and the error minimization 
by particle swarm optimization technique. Pole centroid and system 
stiffness of both original and reduced order systems remain same in 
this method to determine the poles, whereas zeros are synthesized by 
minimizing the integral square error in between the transient 
responses of original and reduced order models using particle swarm 
optimization technique, pertaining to a unit step input. It is shown 
that the algorithm has several advantages, e.g. the reduced order 
models retain the steady-state value and stability of the original 
system. The algorithm is illustrated with the help of two numerical 
examples and the results are compared with the other existing 
techniques. 
 

Keywords—Eigen spectrum, Integral square error, Order 
reduction, Particle swarm optimization, Stability.  

I. INTRODUCTION 
VERY physical system can be translated into mathematical 
model. The mathematical procedure of system modelling 

often leads to comprehensive description of a process in the 
form of high order differential equations which are difficult to 
use either for analysis or controller synthesis. It is hence 
useful, and sometimes necessary, to find the possibility of 
finding some equation of the same type but of lower order that 
may be considered to adequately reflect the dominant 
characteristics of the system under consideration. Some of the 
reasons for using reduced order models of high order linear 
systems could be:  

(i) To have a better understanding of the system. 
(ii) To reduce computational complexity. 
(iii) To reduce hardware complexity. 
(iv) To make feasible controller design. 
Numerous methods are available in the literature for order-
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reduction of linear continuous systems in time domain as well 
as in frequency domain [1]-[8]. Further, several methods have 
also been suggested by combining the features of two 
different methods [9]-[14]. In spite of the significant number 
of methods available, no approach always gives the best 
results for all systems. Almost all methods, however, aim at 
accurate reduced models for a low computational cost.     

Further, numerous methods of order reduction are also 
available in the literature [15]-[22], which are based on the 
minimization of the integral square error (ISE) criterion. 
However, a common feature in these methods [15]-[21] is that 
the values of the denominator coefficients of the low order 
system (LOS) are chosen arbitrarily by some stability 
preserving methods such as dominant pole, Routh 
approximation methods, etc. and then the numerator 
coefficients of the LOS are determined by minimization of the 
ISE. In [22], Howitt and Luss suggested a technique, in which 
both the numerator and denominator coefficients are 
considered to be free parameters and are chosen to minimize 
the ISE in impulse or step responses.         

Recently, particle swarm optimization (PSO) technique 
appeared as a promising algorithm for handling the 
optimization problems. PSO is a population based stochastic 
optimization technique, inspired by social behavior of bird 
flocking or fish schooling [23]. PSO shares many similarities 
with Genetic Algorithm (GA); like initialization of population 
of random solutions and search for the optimal by updating 
generations. However, unlike GA, PSO has no evolution 
operators such as crossover and mutation. One of the most 
promising advantage of PSO over GA is its algorithmic 
simplicity, as it uses a few parameters and easy to implement. 
In PSO, the potential solutions, called particles, fly through 
the problem space by following the current optimum particles. 

In the present work, the authors present an algorithm for 
order reduction in which both the pole centroid and system 
stiffness of the original and reduced order systems are kept 
exactly same to obtain the reduced order system poles, while 
the zeros are synthesized by minimizing the integral square 
error between the transient responses of original and reduced 
order systems using particle swarm optimization technique, 
pertaining to a unit step input. The algorithm is developed 
only for the systems with real distinct poles and is illustrated 
with the help of two numerical examples. The comparison 
between the proposed and other well known existing order 
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reduction techniques is also shown in the present work.  

II. DESCRIPTION OF THE ALGORITHM   
     Let the transfer function of the high order system (HOS) of 
order 'n' is : 
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where, - λ1 < - λ2 < …….< - λn are poles of the HOS. 

Let, the transfer function of low order system (LOS) of 
order 'r' to be synthesized is: 
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where, - 1'λ  < - 2'λ  < …….< - 'rλ  are poles of the LOS then 
steps are as under : 

 
Step-1: Fixing of the eigen spectrum zone (ESZ) of the HOS 
as shown in Fig. 1:  
     If poles -λi (i = 1,…,n) are located at – ( Re iλ Im iλ± )            
(i = 1,…,p) within the ESZ, then the two lines passing through 
the nearest (Reλ1) and farthest (Reλp) real poles when cut by 
two lines passing through the farthest imaginary pole pairs 
( Im (max)± ) form the ESZ. 
 
Step-2: Quantification of pole centroid and stiffness of HOS: 
     Pole centroid is defined as the mean of real parts of the 
poles and is expressed as: 
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     System stiffness is defined as the ratio of the nearest to the 
farthest pole of a system in terms of real parts only and is put 
as: 
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Step-3: Determination of eigen spectral points of LOS: 
     If '

mλ  and '
sλ  are pole centroid and system stiffness of 

LOS such that '
mλ  = λm and '

sλ  = λs then following situation 

arise: 
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where, '
iλ  (i = 1,…,r) are the poles of LOS located at             

– ( 'Re iλ 'Im iλ± ) i = 1,…, p' . Now if, 
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i.e., Reλ'1 + M = Reλ'2, Reλ'2 + M = Reλ'3 and so on till  
Reλ'p'-1 + M = Reλ'p' then (7) can be put as : 
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or, λmp' = 1 ' 1Re ' Re ' (Re ' )p Mλ λ λ+ + + 1(Re ' 2 ) ........+ + +Mλ   
                                               1..... (Re ' ( ' 2) )p Mλ+ + −  
          = 1 'Re ' Re 'pλ λ+ + Reλ'1 (p'-2) +  
                                                (M+2M+……+ (p' - 2)M) 

 
or,     N = Reλ'1 (p'-1) + Reλ'p' + QM                                    (9) 
 
where, N = λmp'  and  QM = M +2M +…+ (p' - 2) M. 
 
By putting Reλ'1 = λs Reλ'p', (8) and (9) will be as under: 
 
           Reλ'p' - λs Reλ'p' = M (p' - 1)                                     (10) 
 
           λs Reλ'p' (p' - 1) + Reλ'p' + QM = N                          (11) 
 
Equations (10) and (11) can be put as : 
 
            Reλ'p' (1 - λs) + M (1 - p') = 0 

 
            Reλ'p' [λs (p' - 1) + 1] + MQ = N 
or, 
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Equation (12) can be solved for Reλ'p' and M enabling thereby 
to locate the eigen spectral points (ESP) as shown in Fig. 1. 

Therefore, the denominator polynomial in (3) is now 
known, which is given by : 
 2 1

1 2 1( ) ....... r r
o rD s d d s d s d s s−

−= + + + + +%           (13) 
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Fig. 1 Eigen spectrum zones and points of system. 
 

Step-4: Determination of the numerator coefficients of the 
LOS by particle swarm optimization technique: 
     The PSO method is a population based search algorithm 
where each individual is referred to as particle and represents 
a candidate solution. Each particle flies through the search 
space with an adaptable velocity that is dynamically modified 
according to its own flying experience and also the flying 
experience of the other particles. In PSO, each particle strives 
to improve itself by imitating traits from their successful 
peers. Further, each particle has a memory and hence it is 
capable of remembering the best position in the search space 
ever visited by it. The position corresponding to the best 
fitness is known as pbest and the overall best out of all the 
particles in the population is called gbest [24].  

     In a d-dimensional search space, the best particle updates 
its velocity and positions with following equations: 

 
1

1 1 2 2( ) ( )n n n n n n n n
id id id id gd idv wv c r p x c r p x+ = + − + −                   (14) 

   
1 1n n n

id id idx x v+ += +                                                            (15) 
where,  
w = inertia weight. 
 c1, c2 = cognitive and social acceleration, respectively. 
r1, r2 = random numbers uniformly distributed in the range 
(0, 1). 
     The i-th particle in the swarm is represented by a d-
dimensional vector Xi = (xi1, xi2, …, xid) and its velocity is 
denoted by another d-dimensional vector Vi = (vi1, vi2, …, vid). 
The best previously visited position of the i-th particle is 
represented by Pi = (pi1, pi2, …, pid). 
     In PSO, each particle moves in the search space with a 
velocity according to its own previous best solution and its 
group’s previous best solution. The velocity update in particle 
swarm consists of three parts; namely momentum, cognitive 
and social parts. The balance among these parts determines 
the performance of a PSO algorithm [25]. The parameters c1 
& c2 determine the relative pull of pbest and gbest and the 
parameters r1 & r2 help in stochastically varying these pulls. 
In the above equations (14) and (15), superscripts denote the 
iteration number. Fig. 2 shows the position updates of a 
particle for a two-dimensional parameter space. 
     

 
Fig. 2  Position updates in PSO for a two dimensional parameter 

               space. 
      
     In the present study, PSO is employed to minimize the 
objective function ‘E’, which is the integral square error in 
between the transient responses of HOS and LOS and is given 
by: 
 
               E= 2

0
[ ( ) ( )]ry t y t dt

∞
−∫                                        (16) 

 
where, ( )y t  and ( )ry t  are the unit step responses of original 
and reduced order systems, and the parameters to be 
determined are the numerator coefficients of the LOS 

( 0,1, ...., ( 1))i i rα = − . 
In Table I, the specified parameters for the PSO algorithm 
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used in the present study are given. The computational flow 
chart of the proposed algorithm is shown in Fig. 3 

  

TABLE I 
PARAMETERS USED FOR PSO ALGORITHM 

Parameters Value 

Swarm Size 20 

Max. Generation 100 

1 2,c c  2.0, 2.0 

wstart, wend 0.9, 0.4 

 
Start

Specify the parameters for PSO

Generate initial population

Objective function
evaluation 'E'

Find the fittness of each particle in
the current population

Gen. > Max. Gen.? Stop

Update the particle position and velocity
using equations (14) & (15)

Gen.=1

Gen.=Gen.+1

Yes

No

 
Fig. 3  Flowchart of PSO Algorithm. 

      
  III.   NUMERICAL EXAMPLES 

 
Two numerical examples are chosen from the literature for 

the comparison of the low order system (LOS) with the 
original high order system (HOS). The proposed algorithm is 
described in detail for one example while only the result of the 
other example is given. 

Two error indices [26], known as relative integral square 
errors in between the transient parts of original and reduced 
order systems are also calculated to measure the goodness of 
the LOS, which are given by : 

 
2 2

0 0
[ ( ) ( )] ( )I g t g t dt g t dt

∞ ∞
= −∫ ∫%                  (17) 

 
2 2

0 0
[ ( ) ( )] [ ( ) ( ) ]J r t r t dt r t r dt

∞ ∞
= − − ∞∫ ∫%    (18) 

 

where, ( )g t  and ( )r t  are the impulse and step responses of 
original system, respectively, and ( )g t% and ( )r t% are that of 
their approximents. 
 
Example-1. Consider a fourth-order system taken from 
Mukherjee and Mishra [16] and Mittal et al. [21]: 
 

         
3 2

4 4 3 2

7 24 24( )
10 35 50 24
s s sG s

s s s s
+ + +

=
+ + + +

                        (19) 

 
The poles of the above system are all real and given by: 
 

       λ1 = -1, λ2 = -2, λ3 = -3, λ4 = -4.  
 
If a second-order order model 2 ( )G s  is to be synthesized 

using this algorithm, steps to be followed are as under: 
 

Step-1: Fixing of ESZ of HOS: 
Since all poles are real, it will be a line joining the nearest 

and farthest poles. 
Step-2: Quantification of pole centroid and stiffness of HOS: 
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Step-3: Determination of eigen spectral points of LOS: 

Equation (12) can be formed as under: 
 

            'Re '1.25 0 5
0.75 -1 0

⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥
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p

M

λ
                  (20) 

where, the values of sλ , Q, p' and N are to be put as 0.25, 0, 
2, 5 respectively.  

Solution of (20) gives the location of the farthest pole 
'
'Re pλ  and M.  

where,  M = (Farthest pole-Nearest pole)/(p'-1),  
and since p' = 2; Reλ'p' = 4; M = 3, ESPs of LOS are its two 
poles as λ'1 = 1 and λ'2 = 4.  

Therefore, 2( ) 5 4D s s s= + +% . 
Step-4: By using PSO to minimize the objective function ‘E’, 

as described earlier, we have ( ) 0.6349 4N s s= +% . 

     Therefore, finally 2 ( )G s is given as: 

          2 2

0.6349 4( )
5 4

sG s
s s

+
=

+ +
                                      (21)             

A comparison of the proposed algorithm with the other well 
known existing order reduction techniques for a second-order 
reduced model is given in Table II. Fig. 4(a)–(c) presents 
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diagrams of convergence of the objective function ‘E’ for 
gbest, movement of the particles in the PSO algorithm, step 
responses of 4 ( )G s  and 2 ( )G s , respectively. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4 (a) Convergence of objective function ‘E’ for gbest.               
(b) Movement of the particles in the PSO algorithm. (c) Step 
responses of 4 ( )G s and 2 ( )G s .           
 

TABLE  II 
COMPARISON OF REDUCED ORDER MODELS  

Method of 
order 
reduction 

Reduced Models I J 

Proposed 
Algorithm 2

0.6349 4
5 4

+
+ +

s
s s

 1.85206 x 10-2 4.19238 x 10-4

Shamash [9] 
2
0.8334 2

3 2
s

s s
+

+ +
 6.96747 x 10-3 5.80219 x 10-4

Pal [10] 
2

16.0008 24
30 42 24

s
s s

+
+ +

 5.65090 x 10-2 2.04971 x 10-2

Chen et al. 
[11] 2

0.6997( 1)
1.45771 0.6997

s
s s

+
+ +

 1.45853 x 10-2 4.67444 x 10-3

Prasad and 
Pal [12] 2

34.2465
239.8082 34.2465

s
s s

+
+ +

 5.65229 x 10-1 2.690595 

Mukherjee 
and Mishra 
[16] 

2

0.80000033 2
3 2

s
s s

+
+ +

 6.71044 x 10-3 4.17119 x 10-4

Mittal et al. 
[21] 2

0.799803 2
3 2

s
s s

+
+ +

 6.71125 x 10-3 4.17124 x 10-4

Hutton and 
Friedland 
[27] 

2
0.7947( 1)
1.65563 0.7947

s
s s

+
+ +

 5.84858 x 10-3 6.29239 x 10-4

Krishnamur – 
-thy and 
Seshadri [28] 

2
20.5714 24

30 42 24
s

s s
+

+ +
 2.01033 x 10-2 1.68161 x 10-2

Gutman et al. 
[29] 2

2[48 144]
70 300 288

s
s s

+
+ +

 1.65857 x 10-1 7.99545 x 10-2

Lucas [30] 
 2

0.833 2
3 2

s
s s

+
+ +

 6.95984 x 10-3 5.76337 x 10-4

Moore [31] 
2

0.8217 0.4543
1.268 0.4663

s
s s

+
+ +

 5.37477 x 10-3 2.75246 x 10-4

Safonov and 
Chiang [32] 2

0.8213 0.4545
1.268 0.4664

s
s s

+
+ +

 5.37629 x 10-3 2.77375 x 10-4

Safonov et al.  
[33] 2

0.7431 1.057
1.879 1.084

s
s s

+
+ +

 7.78347 x 10-3 1.85358 x 10-3

 

 
Example-2. Consider a eighth-order system [9] described by 
the transfer function: 
 

8
( )

( )
( )

a s
G s

b s
=                                                                    (22) 

where, 
7 6 5 4 3( ) 18 514 5982 36380 122664a s s s s s s= + + + +  

    2222088 185760 40320s s+ + +  
8 7 6 5 4 3( ) 36 546 4536 22449 67284b s s s s s s s= + + + + +  

  2118124 109584 40320s s+ + +  
      
     By using the proposed algorithm, the following reduced 
second-order approximant is obtained: 
  
 

    2 2

22.8360 8( )
9 8

sG s
s s

+
=

+ +
                                                    (23) 

      
     A comparison of the proposed algorithm with the other 

well known existing order reduction techniques for a second-
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order reduced model is given in Table III. Fig. 5(a)–(c) 
presents diagrams of convergence of the objective function 
‘E’, for gbest, movement of the particles in the PSO 
algorithm, step responses of 8 ( )G s and 2 ( )G s , respectively. 

 
TABLE III 

COMPARISON OF REDUCED ORDER MODELS 

Method of 
order 
reduction 

Reduced Models I J 

Proposed 
Algorithm 2

22.8360 8
9 8

s
s s

+
+ +

 4.63051 x 10-2 2.50868 x 10-2

Mukherjee   
et al. [7] 2

11.3909 4.4357
4.2122 4.4357

s
s s

+
+ +

 8.99334 x 10-2 3.88109 x 10-2 

Shamash [9] 
2

6.7786 2
3 2

s
s s

+
+ +

 3.02978 x 10-1 1.90469 x 10-1

Pal [10] 
2

151776.576 40320
65520 75600 40320

s
s s

+
+ +

 7.29677 x 10-1 1.126099 

Chen et al. 
[11] 2

0.72046 0.36669
0.02768 0.36669

s
s s

+
+ +

 1.031795 4.918133 

Prasad and 
Pal [12] 2

17.98561 500
13.24571 500

s
s s

+
+ +

 7.88491 x 10-1 9.94796 x 10-1

Mukherjee 
and Mishra 
[16] 

2
7.0903 1.9907

3 2
s

s s
+

+ +
 2.86389 x 10-1 1.83434 x 10-1

Mittal et al. 
[21] 2

7.0908 1.9906
3 2
s

s s
+

+ +
 2.86362 x 10-1 1.83413 x 10-1 

Hutton and 
Friedland 
[27] 

2
1.98955 0.43184

1.17368 0.43184
s

s s
+

+ +
 7.59574 x 10-1 1.307654 

Krishnamur-
-thy and 
Seshadri 
[28] 

2

155658.6152 40320
65520 75600 40320

s
s s

+
+ +

 7.24657 x 10-1 1.127673 

Gutman et 
al. [29] 2

4[133747200 203212800]
85049280 552303360 812851200

s
s s

+
+ +

 3.64418 x 10-1 9.38578 x 10-1

Lucas [30] 
 2

6.7786 2
3 2

s
s s

+
+ +

 3.02978 x 10-1 1.90469 x 10-1

 

 
 

(a) 
 

 
 

(b) 

 
 

(c) 
 

Fig. 5 (a) Convergence of objective function, ‘E’ for gbest. (b) 
Movement of the particles in the PSO algorithm. (c)  Step response 
of 8( )G s  and 2 ( )G s .             

  IV.   STABILITY OF THE LOS 
 

The proposed algorithm leads to a stable low order system 
(LOS), if the original high order system is stable. The 
algorithm has been successfully applied to several examples 
from the literature. Due to the following inbuilt feature of the 
method, the resulting low order systems are found to be stable 
as shown in Numerical Examples 1 and 2. 

In this algorithm, the denominator of the LOS is found by 
Eigen spectrum analysis. For a stable system, all the poles 
should lie in the left half of the complex s-plane. So, if the 
original high order system is stable with all its poles lying in 
the left-hand side of the complex s-plane, the poles lying in 
the ESZ zone will always give a stable reduced order model as 
shown in Fig.1. 
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V.    CONCLUSIONS 
 

An algorithm for the order reduction of linear dynamic 
systems has been given based on the eigen spectrum analysis 
and the error minimization by particle swarm optimization 
technique. In this algorithm, the poles are synthesized by 
eigen spectrum analysis while the zeros are determined by 
minimizing the integral square error between the transient 
responses of original and low order systems using particle 
swarm optimization technique, pertaining to a unit step input. 
The algorithm is simple, rugged and computer oriented. It has 
been implemented in Matlab 7.0.1 on a Pentium-IV processor 
and the computation time is negligible being less than 1 
minute.  

The algorithm has been illustrated with the help of two 
numerical examples having real poles only. It is being 
extended for the systems with imaginary poles and also for 
multi-input multi-output (MIMO) systems. The numerical 
examples are chosen from the literature in such a way, so that 
a comparison of the proposed algorithm with some well 
known existing order reduction techniques can be made as 
shown in Tables II and III. It can be seen in Tables II and III 
that the proposed algorithm is comparable in quality with the 
other existing techniques. The algorithm preserves model 
stability and avoids any error in between the initial or final 
values of the responses of original and reduced order models.    
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