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hashing, based on the hierarchical clustering ¢d dat. This

Abstract—A new technique of topological multi-scale analyisis method can solve the inverse problem of buildirgtals, and
introduced. By performing a clustering recursivelly build a be applied more generally to any data, in ordeextract
hierarchy, anq analyzing the co-scale and intréessianilarities, an  g-scale similarities (redundant patterns in a miseale), and
B e T rans-cale dependencies (e ariaton of prapedcording
self-similarities, and can find elegant solutions inverse problem of O the scale); which provides a theoretical franméwto study a

building fractals. The theoretical aspects and tmac Vasthorizon of phenomena.
implementations are di together with nal f
implementations are discussed, together with exesnpli analyses o B. Related work

simple fractals.
Wavelet analysis, by finding the repetition of imgéy in the
Keywords—hierarchical ~ clustering, multi-scale  analysis,plan, and taking into account the scale factorgeharactical
Similarity hashing. application in image compression [11]. For the gtuaf
multi-fractals[12], wavelets can find a spectrum tfe
. INTRODUCTION self-similar intensities; not taking into accounetgeometrical
features of sub elements.
In terms of similarity analysis applied to fract#ta set,

o ) ) similarity hashing [13] explores the frequency df@ossible
M ULTISCALE analysis is the mathematical modeling of;ansformations (as translations, rotations betwakpairs of

phenomena from the point of view of scales. TheWgl9  glements): which provides a spectrum with a majodt
interest in non-linear equations has created a teeedderstand oqundant or hardly representative mappings coding
how systems react to scaling. Multiplying all cagéints by a  ge|f-similarities. All other attempts of solving ethinverse
ratio in a linear equation does not change the avieole proplem of building fractals, ranging from the “ments
behaviour; whereas scaling a non-linear equation lead to method”[14], wavelet analysis[15], to genetic algon[16], do
drastic changes: as scale increases, dynamicansyshay be ¢ provide an analysis depending on the scaley; lioevever
subject to chaotic behaviours on complex attractors provide prototypes of models to understand fractals
In order to simplify the representation of thesetems, More recently[17], a hierarchical decompositiondata set
models have incorporated conditions of their siBbil ychieved by a succession of dilatations and cotitrex have
(Hyperbolic systemsith stable and unstable manifolds[1]), oryje|ded interesting results, showing that the sitfilar parts of
conditions of plural stability Hifurcation theorf2]) , their 3 fractal can be identified, or clustered. Themptimethod to
geometric properties in their phase space [3], femally, of  5chieve this clustering is one of the topics ofs tpiaper.
their statistical multi-scale behaviour[4]. Curreafforts aim Clustering techniques, as SVM-RFE[18], density teltiag[19]
toward the interpretation of geometric propertiesalti-scales  qg ot provide the right answer for a recursionlysig of
(notablymulti-fractalgS]). geometrical self-similarities. A clustering basedsimple rules,
and its heuristic implementation (to some extemilarly to the
Multiscale also refers to systems which are thelred the k-means[20] algorithm) run recursively on self-tm data,
interaction of a large number of agents, asminlti-physics  ¢an pe used to rebuild a hierarchical structure @ordpute a
phenomena. To model a physical problem of highemexity,  simple representation of its self-similarities.
at each scale is applied a corresponding physicae This In next section will be defined the Recursive Sarity
technique has been used extensively in weathecdst6].  ashing technique, and introduced the Context-DepeiniFS,
Multi-scale analysis appears to be a transverspto@gh t0  from which the conditons on the clustering in its
numerous scientific domains, from complex networkith  jnplementation will be based. In section 4 are dbed the
small-world networkg] andfractal machinef8], to the extent qgits of the analysis of fractal data.
of the unification theory, with thimvariant set postulafé].
In this paper, a new technique of geometrical recétie
similarities will be introduced, performing a resiwe similarity II. RECURSIVESMILARITY HASHING

A. Multi-scale analysis
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In the field of databases, hashing is the act t¢faeking,
usually from a large amount of data, a smallergsgntation, of
fixed sized, in order to organize this data. Themdhashed” is
then classified according to a discriminating fimat which
will use a “key”, thehash keyto find the proper tables to
distribute the data. Entries which are “closerdbt® another are
grouped in common tables. For example, a databasmgs
clients according to their address, could use laasa function
the postal code, and as a discriminating functmput in the
same table the clients with identical postal code.

Similarity hashing (definition which differs froml8]) is
based on a similar idea. Applied to a target detatlse hashing
is applied to all possible combinations of groupslements,
and the “key” can be used to select the combinatairgroups
that have a potentiality to present similarities.

Formerly, the data studied is represented by aovesgace

associated to a metricX",d) (it could be for example the

phase space of dynamical system, " with the Euclidian
distance, N[0 the dimension). The hash functioh

operates on a combination of data points, and taitalkey,
which could be a scalar, or more generally a vector

h:(XM™ - HOY" 1)

Usually, the spac& is I, m<n, andn, is the number

of elements on which a key is defined. The termstha
function”, not just morphism, is used to emphagiee role of
this function: to classify the data into groups.eTgrouping

depends on the degree of similarity of two grodgsand X, ,
where X J(X")™ is a group of cardinatard(X) =n, .
The keys are then used to calculate a discrimigataiue, by
applying a discriminating functiorD , comparing all the
possible combinations dfi, keys, wheren, is the number of

groups (of clusters) into which the data will betp@ned. If the
combination has a potential to be a good one (usdere
criteria which will be detailed further), that s $ay its partition
into groups would contain similarities, then theadiminating
value is higher:

D:hOH" > D(h)OO @)

It is important to note here that the discrimingtfanction
does not compare two groups, but the keys of a tatibn of
groups which would be the best decomposition oftuz into
similar sets. The reason is subtle: if a kind alanity function
could be calculated, comparing two groups and méigr a
similarity indicator (a correlation), this would ane that there
wasa priori some knowledge about their similarities, in origer
define this function. The discriminating functias of another
kind: its definition is based on assumptions atibattopology

(in the space of the hash key) where similaritis loe found,
not about the similarities themselves. The key khdas in
classical hashing) extract the relevant informat@mprepare the
groups to be classified. The discriminating funetishould
select the set of keys that have the best potential

Before moving to the real application, a practieahmple
will illustrate the concept of similarity hashing. librarian is
asked to classify cooking books. The wrong methodla be
for this librarian to compare pair by pair all theoks, and
decide on their resemblance: all contain veryeddfit recipes,
and even if some elements may be similar (two wassbf an
identical recipe for example), two books are hasiltyilar. The
right method is to first decide on a hash functior instance,
select only the nationality of the author. Thendfseriminating
function would be to put on the same shelf bookh wientical
culinary origins. Now that the books which are ddate to
contain features of similarity have been selectid,librarian
can find real similarities: fusion cuisine is siarito Californian
and Japanese cuisine etc.

B. Hierarchical clustering

Before detailing the form of the hash and discratiimg
function, what criterion should be used to quarttiiy potential
of containing features of similarities (the natilityaof the
author from the example above) ought to be detexthin

The archetype of a self-similar data is a fradtalorder to
remain in the most general case, nothing abowaspect of the
self-similarities will be implied; rather the topgjical aspects
of where they could be found will be discussedra&tal has the
property to contain smaller parts (subparts) isehtio larger
ones. In this sense, a fractal is a multi-scalariawnt (whereas a
multifractal is a multi-scale variant). Therefoselecting from a
scale of a fractal will provide the elements ofsitsilarities.

In order to select from a scale, the fractal (whila set a
vector, with no organization in scale) must be adeposed into
a hierarchy, with each level representing a scale.

Supposing that there was a method to select thgpgraith
best potential to carry similarity features. Reougty grouping
these groups will generate a hierarchical clusgedhthe set
studied.

seale 3:

seale 2

seale I:

Fig. 1: hierarchical grouping of the Sierpinski kgts

In the figure 1, from the 9 smaller triangles coisipg a
Sierpinski gasket, 3 parent groups are formed, hvtdce
similar, then a parent group again similar. Thisaeposition
creates a classification of the points into a tcadledhash tree
The red triangle has the coordinage1,1) in the tree of figure
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2. The coordinate on the tree, at a sdaté a certain data point

of index i is notedc (I ,i) .

Scale 1

Scale 2

Scale 3

Fig. 2: tree representing the hierarchical clustedf the Sierpinski
gasket

C. Conditions on the clustering, Hash and discriminati
function

To identify the groups with best potential of camgy
similarity features, two properties of fractals ased: (1)Each
parent group is composed of neighboring groups;G2yups
are not overlapping, i.e. there are as far as polesirom one
another.

By applying these conditions on the grouping, aistdring
method, the potentiality of these clusters to confatures of
self-similarity is optimized.

The hash function of this Recursive Similarity Haghis to

compute the center of masseg, OX" of all groups

XO(X")":

h(X)=x, = (1/n,)Y x @

x O X

The discriminative function is the calculation d¢ietRoot
Mean Square (RMS) of the distances between cefaera

configuration of grouping; all the data points greuped byn,

tuplets, for all possible combinations of tupletsiae N, each:

D(h) = RMS

h(%).h(%;)OH" i #]

(d(xy,.%,,) @)

The termh ={h(§i) = Xgi} OH™ is one of the

iD{l..,ng}

possible combinations ofl; keys.

RMS

h(%),h(X;)OH " %]

(d(x,,. %)) =

2

n(% ).h(xj)0H "9 i

Ny

d(Xgi,ng)Z

®)

It is the RMS of the distances between the cemtnsasses
for all possible combinations of groups.

D. Center of Masses Optimization

To accomplish the type of clustering described e t
previous section, a technique calle@enter of Mass

Optimization(CMO) is used. It consists in selectifiy groups
v I nyne .
X —{Xi O(xX") }m{l_”ng} for which the centers of masses

h(X)OH"™ of all the groupX [1(X")" of n_ elements
are the furthest from one another:
K =argmax. (D(h(x))), (6)
The termarc max is the argument of the maximum, i.e., the
groups for which the discriminative function is rmaal. The

condition “is maximal” in the definition oK means that the
N, groups respecting this condition are selected (s

KO(X")").

In real applications, it is very unlikely that tiwombinations
obtain an identical value from the discriminatingdtion (due
to noise in the observation at least). Therefdme choice of the
argument of the maximum is always unique in prattiases.

The choice offl, and N, will be discussed in the next section.

E. Recursive clustering

The process of selecting groups via CMO clusteisnidnen
recursively applied on the children groups foundyeénerate the
next generation of groups. Step by step, an orgé#aiz in
hierarchy is constructed.

The relation between parent groups (representedhby
center of masses of the cluster) and children eamadeled by
a weighted (directed from parent to child) gra&gh= (E,V),
where the edge& are the positions of the center of masses (or
vectors themselves in the cases on singletonsyetteesV
represent the relation parent-child. The weight cfiom
w:V - w(V) returns in simple cases the distance between

the parent and children nodes:
w(V(E,, E,)) =d(E, E,) 7
In more general cases, the weight function carrmedicost

function in complex networks, the cost can be the bantchwi
between the nodes (servers) etc. It is in fact aetation
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indicator between the parent and child node.

The graph built has the shape of a Cayley Tredirggarom
a point (the ancestor node), children nodes speeadss the
space, at each generation as far as possible fneramother.

Fig. 3: Cayley tree representing the hierarchyhef$ierpinski
Gasket (the nodes are yellow dots, the verticesnglines)

2517-9950
No:4, 2010

construct the vectob(lﬂmj, J is the set composed of the

indexes of the K previous transformations iteratively

composed to form the vector,j . The sequence built is thus

indexed by their context in the recursion. The inde
represents the memory of the system. In the casé af[], the
IFS keeps memory of all the context, and conseduést is
composed of an infinity of mappings. The upper apghe is
used to differentiate the mappings of the Contesp&ndant
IFS, to the ones of the usual IFS.

The fractalian is the union of all vectors built aftdr
iterations, and théeavesis the union of these from a certain

generationl = n, . The fractalian converges towards the fractal
when N, tends to infinity, under certain conditions of

convergence (the mappings must have dacreasing

In the figure 3, alln elements can be equally distributedProgression see [22] for more details). A Cayley tree is

between groups at each scale (or generation), @adfining
N, elements. In this particular case, due to theltapoof the

Sierpinski gasket, the number of elementsnis 3", where
N, is the number of generations (in figure I}, =5); the

choicen, = 3 distributes all elements. In other cases, the d

must be truncated in order to be formatted int@agy of n,.

The case of not equally distributed groups will betdiscussed
here in further details.

F. Context-Dependant IFS

The decomposition in a hierarchy of fractals, aebicby
Recursive Similarity Hashing, is the reverse preaduilding
fractals in a hierarchy. A Context-Dependant ltedaFunction
System[22] is an operator building, from a startpgnt, a
fractal organized in a hierarchy, or equivalendly, associated
Cayley tree. This novel method differs from traatital Iterated
Function Systems used to build fractals[10] by rigkiin
consideration the context of the construction trhatal set.

Formerly, the definition of a Context-Dependant I#5 is
the following:

W= ®)

{f li J }i:{l...,N},jDMK:{J....,N}k,kDKDD '

with N being the number of initial mappinds;'i’j. This

operator is applied to a starting poiRy [ X" to build a
sequence of growing cardinal defined by the refatio

X =x1+ 1 (x),100 ©)

The indexi represents the index of the mapping used

1 +1

a{a

associated to the Context-Dependant IFS: the veeor the
edges, and the vertices link vectors which aretedlay their
context. Vectors of generations and | +1 are in a
Parent-Child relation if they share the same cdnfex

The interesting properties of such constructiores @ural:
1) the associated Cayley tree, or fractalian, paaserve the
organization in a hierarchy of the fractal undanditons which
make the fractalian “invertible”; and thus the tdians can be
inverted in order to compute rigorously the Conierpendant
IFS associated; (2) the error with which theactalian built
describes a fractal structure is detailed precisely

A Context-Dependant IFS building a Sierpinski gaske
(shown in figure 4) is the following (with a comgl@otation

representing the spadd 2 ):

' (n) = (L/2)".e™?
f,(n) = @2y e
f(n) = @/2) e

(10)

- * L] -

after 8 iterations

after 2 tterations after 3 iteratians

after 8 iteratians

Fig. 4: fractalian of the Sierpinski gasket builtwthe
Context-Dependent IFS of relation (13)

The conditions used for the clustering of the Rsiver
Similarity Hashing are in fact derived from the ddions which
make fractalians “invertible”. The latter condit®are: (i) the
children vectors are closer and closer to theiepagas their
generation increases; (ii) children from commoneparare
t%Ioser to each other than to children from anoglaeent. These
conditions are exactly equivalent to the conditihsand (2)

described previously.

387



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:4, No:4, 2010

The conditions on the clustering of the Recursiimil&rity
Hashing aim to extract a Context-Dependant IFS fifuertarget
data set. In this sense, Context-Dependant IFSSamdarity
Hashing are complementary; the former being thesttoation

process, and the latter the formalization. If thegét data

respects (1) and (2) rigorously an
Context-Dependant IFS can be extracted with easendre
difficult cases, the best compromise between these
conditions will provide the best hierarchy from wihi
similarities can be recognized, in order to deaéli¢he most
representative Context-Dependant IFS.

G. Pyramidal tensor

Once the organization in a hierarchy is extractehich is
itself an interesting indicator of similarity), grer similarities
can be identified. From this point, the forms of #imilarities
have to be restricted according to the problerordier to find a
simplifying representation of the target data, basa the
analysis of its self-similarities, the next stepasanalyze which
transformations (mappings) relate a parent nodectald node,
in two situations: for all pairs of parent to chitthppings from
an identical scale (or generation for
Context-Dependant IFS), tloe-scalesimilarities; for all pairs
of parent to child across all generations, thens-scale
similarities.

Fractals (mono-fractals) should exhibit-scaleinvariance

and trans-scalecontractions, while multi-fractals should be
more generallytrans-scale uniformly variant. By analyzing

both types of similarities, the Recursive Simikatitashing is
truly a multiscale analysis.

co-seale

frans-seale

Fig. 5: co-scale and trans-scale similarities eftirerachized
Sierpinski Gasket fracalian

The formalization of the Context-Dependant IFS &&sion
mappings f ', ;
parent to the position of its child. From the rielat(12), the

the assodiate

: oo cliy |
which are the shifts from the position of a %o (€(,1)) =x(i) =P(x"7),1 ={L...n}

generation, yramidaltensorP of size N, is defined as:

P(X|j(|)) =f! O (le)):l ={1...n} (12)

associated |t js tensor containing all the shifts (which aectors) at all

the generationd ={1,...,n,} . The termpyramidalis used,

because there are fewer shifts at a generdtiod than at the
next onel . Indeed, al =1, there areN shifts, atl =2,

N? shifts (cf. the fractalian built after 2 iterat®on the figure

4 hasN? = 4% =16 shifts), etc. A graphical interpretation of
this tensor is given in figure 6.

Shift at generation 0

Shifts at generation 1

Shifts at generation 2

Fig. 6: pyramidal tensor of the shifts impactedventors of
generations 0, 1, and 2 (witN = 4)

This formalization exhibit clearly the multiscalelaviour of
the Context-Dependant IFS: a vechy 1) from the leaves

of a fractalian are built by the composition of Héfts from the
previous generations, the ones which share the same
contexg (),1 = {4...n, -1} » that is to say all the shift encountered

by starting from the top of the pyramid through 8fefts of
same context (see the red arrow of figure 6).

From the organization in a hierarchy found by Reiwear
Similarity Hashing, a similar pyramidal tensor cdwe
constructed, by decomposing the positions of thgetadata
points in all the shifts of the centers of masdeb® groups, at
each scale, in which the points are included. Fdyme

(13)

position of a vector of generatian can be expressed as the 1he indexi is the index of the data point, X, (C(l,i))

sum of all the shifts impacted by the previous gatiens:

n-1

i) — ! i)

Xy I_gfi(l),j(l)(xl ) (11)
-0 -——"

shift

In order to study, from the organization in a hiehy found
by the recursive clustering, the shifts impacted eaich

represents the center of masses of the group aidicade
c(l,i) inthe tree created by hierarchical clusteringhefdata

(see section 2.2).

By comparing formula (16) and (17), the equivalence
between a Recursive Similarity Hashing and a
Context-Dependant IFS appears clearly. The hiei@ath
clustering of the data creates a pyramidal tenswon fvhich the
shifts of the Context-Dependant IFS can be defined.
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H. Reduction of the pyramidal tensor
The final step in finding asimple representation (the

Context-Dependant IFS) from the data is to simgliy number
of parameters of the pyramidal tensor. Initiallpnh a data set

Ul
of sizen = nen‘ , there should beE: neI different shifts in the
=

pyramidal tensor (which is more than the initiatadaf the

systems studied). The process of finding a mode 8mplify

the tensor, by statistical assumptions, so thatthee as few
parameters as possible.

not suited for such a clustering.
There are two ways to proceed, by amgglomerativeor

divisive approach. The agglomerative starts from the data

points, and groups them step by step to their searghbors,
so that the groups formed are as far as possibie dne another
(according to condition (2)). This naive approalefficient if
the data is well formatted (if for example it haseh generated
by an Context-Dependant IFS respecting conditiran( (ii));
however, and this is a common problem, early méstakthe
clustering creates problem in higher clusters.al®a points
appear which induce a large deviance on the comd{2) at

In order to do sa;o-scalefrequency analysis (which can nowhigher generation (see figure 8).

be defined rigorously as the frequency analysithefshifts of
an identical generatioh), andtrans-scalefrequency analysis
(on the shifts sharing an identical context) ischaried.

Contrary to other multi-scale analysis, it is pbksio refine
the precision of this frequency analysis for eazdies

Before moving to the implementation itself, anstiation of
what areco-scale and trans-scalesimilarities could be the
following: if one should study the behaviors of fes through
generations, one should focus on two aspects: dlee af a
member of the family for all families of a givenrggation (for
example, the role of the father in archaic laticisty, tha
paten; and the changing of the role of this memberubfothe
generations (from theaterto the Japanese good-father).

Fig. 8: Cayley tree result of the hierarchicaktiuing: if the initial
clustering is false (left); otherwise (right)

The divisive approach is less subject to erron@ndarly steps

Searching for @o-scalesimilarity is equivalent to looking at of the recursion.

the local behaviors, which should be identical what the

context; trans-scalesimilarities are the variations (if any) of B.
The problem to be solved by the Center of Masses

these similarities with the context, or scale. Taiter should be
continuous in real data, since there are no rugiateeen the
behaviors from two close scales; while there cdddetween
two very different scales. The over whole schemethsf
Recursive Similarity Hashing is presented in figdre

N, Hierarchical
N\ Clustering
< =
[ GOt anlysis
\Geiin/
S

S Cayley tree

Fig. 7: Recursive Similarity Hashing process flow

[1l.  IMPLEMENTATION AND APPLICATIONS

Implementation of CMO

Optimization described in section 2.4 is in a wawilar to the
k-means clustering[26]; however, instead of seabectihe
combination of groups for which the distance to teater of
masses is minimal, groups which are as far aslpessom the
others are chosen. This is in ad equation witrctelition (2)
of section 2.3 described previously. Moreover, tinenber of
elements per group is fixed (whereas it is the remaib groups
in k-means), and the clustering should be donersamly on
the groups obtained.

The combinatronics problem behind
computationally very expensive. Similarly to K-mearthe
heuristic implementation of CMO is designed to tstaith a
random combination of vectors, and iteratively eotrthe

Our implementation of a prototype for the Recursiv@roups chosen; which reduces the complexity obtgerithm.

Similarity Hashing was done in C++. The difficultf its

practical development is that at all steps in thecess the
structures should be trees; and therefore, the adetth skim
across them should be recursive.

A. Agglomerative or divisive hierarchical clustering

The choice of the clustering technique is crusigice it is the
first step that will determine the next ones. Pigtempts to
cluster fractals, based on the fractal dimensionldfine the
cluster[23], the definition of balances boxes[24}oXes
containing an equal cardinal of elements) werecoosidering
the conditions (1) and (2) described previouslyctoe
machines, or simply the grid of a fractal compras5], are

The complexity of the algorithm is not the purpadethis
paper, and therefore CMO can be simply understood a
selection all possible combinations of vectors ¢onf all
possible groups, and then all possible combinatidggoups to
calculate the discriminative function.

C. Implementation the reduction of pyramidal tensor

To reduce the number of parameters of the pyrantéchesior
P, it is assumed that the drifts (which are vectairs) simple

affine transformations. Therefore, the contractatio Cr and

angle @ between two drifts can be defined. By constructing
frequency spectrum of the contraction ratios angles for

the CMO is
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each generatiorc¢-scalé and for the all the drifts sharing the
same contexttfans-scalg, the self-similarities at multi-scales

can be analyzed.

IV. RESULTS AND DISCUSSION

To illustrate the efficiency of Recursive SimilgriHashing
on real fractals, results on a tree fractal withr@nches are
detailed here. Through the paper, results on tleepBiski
Gasket were also given. The experiment is basedhen
Recursive Similarity Hashing of 9 points of thechia, built so
that all the points of a common generation are dr&ihis
implicitly means that the fractal has not been tbwith the
Chaos game, but with by the growth approach[22]}the two
cases, the data is minimal: the minimum number aftg is
drawn so that the IFS can be determined from ttf8epo{nts to
find the 3 mappings of the Sierpinski gasket ame twith 3
branches). In both cases, a least two generatfiiotise sense of
the Context-Dependant IFS) are needed to understamd
trans-scale similarities. By doing so: (a) groummtaining
features of similarities can be found, recursiveldy, that a
hierarchical organization of the fractal can beaaoted by the
CMO analysis (see figure 9 for the result of the @lsnalysis,
figure 10 for the associated Cayley tree of theanization in a
hierarchy), (b) the pyramidal tensor computed, dc¥imple
Context-Dependant IFS that builds the fractal (Ggare 11)
can be extracted.

Fig. 9: CMO analysis on 9 points of a tree withr8rzhes fractal
(choice of the clusters (cf. figure 9) on the rightlusters determined
by CMO on the left)

Angle

Clontraction
\ Fatio

e

Fig. 10: Associated Cayley tree constructed withréssult of the
hierarchical clustering (right) and frequency spettin angle and
contraction ratio of the mappings between clugieft

Fig. 11: Reconstructed tree with 3-branches fradter 2 iterations
(right) and 4 iterations (left)

The Recursive Similarity Hashing has found a
Context-Dependant IFS, different from the one useduliild the
fractal, which can reconstruct the original frastéth in theory
no error. This examples illustrate how can RecerSimilarity
Hashing can “invert” many usual fractals, and firad
Context-Dependant IFS to rebuild them.

V. CONCLUSION

Recursive Similarity Hashing and the Context-Deend
Iterated Function Systems are complementary tamlstudy
self-similarities at multi-scale. By decomposingabject into
its scales, these methods have the promising piepdn be
able to find self-similarities from fractal-datanda more
generally from any data exhibiting self-similargtidt has been
shown that, contrary to other methods to solve itherse
problem of building fractals, this novel approadhd§ a
rigorous inversion, which puts into a simpler riglaship the
spaces where fractals and Context-Dependant IFS lie

Possible real world applications are numerous (fgvawth
phenomena, to information coding). Moreover, tieilsirity of
Context-Dependant IFS with dynamical systems @péctto be
explored more in details in further research.
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