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 
Abstract—This paper presents a real-time visualization technique 

and filtering of classified LiDAR point clouds. The visualization is 
capable of displaying filtered information organized in layers by the 
classification attribute saved within LiDAR datasets. We explain the 
used data structure and data management, which enables real-time 
presentation of layered LiDAR data. Real-time visualization is 
achieved with LOD optimization based on the distance from the 
observer without loss of quality. The filtering process is done in two 
steps and is entirely executed on the GPU and implemented using 
programmable shaders. 
 

Keywords—Filtering, graphics, level-of-details, LiDAR, real-
time visualization. 

I. INTRODUCTION 

NE of the popular remote sensing technologies used to 
capture information about the Earth’s surface is Light 

Detection and Ranging (LiDAR) [1]–[3]. LiDAR is an active 
remote sensing technology based on laser light. Laser pulses 
are emitted towards a target, and each interaction with an 
object reflects a portion of the initial pulse energy to the 
sensor. For every one of these reflections, the time between 
sending and receiving of the laser pulses is measured. Using 
the speed of light constant, the distance between the sensor 
and the point of reflection can be calculated. The LiDAR 
system can be attached to various vehicles such as cars, trains, 
or aircraft. In combination with the Differential Global 
Positioning System (DGPS), the locations of every discrete 
return can be georeferenced [4]. LiDAR provides a huge 
amount of 3-Dimensional (3D) point clouds without any 
topology. 

LIDAR point clouds hold valuable information not only 
within the spatial distribution of the points but also in their 
various attributes. However, LIDAR data are rarely used 
directly for visual interpretation, since for most users the 3D 
point cloud is difficult to understand compared to optical 
imagery. The specifics of LiDAR technology inspire new 
visualization techniques, allowing interactive 3D 
interpretation but typically only one attribute at a time. This 
results in a large number of points that crowd the scene and 
often obscure details or important 3D cues. 

This paper presents a real-time visualization technique, 
capable of presenting LiDAR data grouped in layers using 
GPU. This paper is organized as follows: a brief overview of 
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the visualization techniques is presented in the next section. 
Section III explains our data organization using the GPU 
filtering technique and the rendering process that is able to 
visualize data in real-time. The results are presented in Section 
IV, whilst Section V concludes the paper. 

II. RELATED WORK 

Most of the real-time visualization techniques use 
hierarchical space subdivision for efficient scene 
representation. The general idea of a hierarchical model was 
introduced by Clark back in 1976 [5]. Clark provided a 
meaningful way of varying the amount of detail within a scene 
in regard to the screened areas occupied by objects within a 
scene, and to the speed at which objects or the camera moves. 
Then Schachter [6] discussed the need for optimizing the 
number of graphic primitives representing a scene, and stated 
that it was common to display objects in less detail when they 
appeared to be further away. The first applications using such 
Level of Details (LOD) technique for optimizing graphic 
work-load were flight simulators. 

Several Discrete LOD (DLOD) techniques have been 
proposed over past decades [7]–[10]. It is typical for DLOD 
techniques to simplify a 3D object into a number of objects 
with different detail levels. Then the proper LOD of the object 
is selected according to the calculated distance from the 
viewpoint. Falby et al. [11] used the DLOD technique for 
managing massive terrain datasets using a terrain-paging 
algorithm to manage the swapping of visible terrain tiles. They 
used three different dataset resolutions and displayed the 
terrain within a resolution, depending on the distance. 

The concept of using points as rendering primitives for 
representing an object was introduced due to the pioneering 
work by Levoy and Whitted [12]. The same concept is used in 
a real-time visualization of LiDAR data, where two different 
LOD criteria were evaluated to find the best terrain 
representation in terms of visual perception [13]. 

Realistic rendering of massive LiDAR point clouds in real-
time is a hard challenge. A two-pass point-based rendering 
technique that uses elliptical weighed average filtering for 
solving problems relating to aliasing was introduced in [14]. 
Recently, a web-based LiDAR visualization has been 
proposed using point-based rendering [15]. They used an 
efficient data organization within a data structure and data 
compression that enabled quick handling of range and LOD 
queries. 

III. VISUALIZATION 

The fundamental goal of visualization is to convert data into 
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a graphical representation that enables the end-users to 
understand the data. The massive point clouds provided by 
LiDAR technology represents a significant technical challenge 
for visualizing, assessing, and interpreting these data. A 
typical LiDAR point cloud is saved within a widely used 
binary LIDAR data exchange format (LAS) [16]. Each point’s 
record in the LAS file is attributed by intensity, color, 
classification, etc. but without any topological information 
among individual points. Due to the nature of the data we deal 
with each point as a graphical primitive instead of linking 
them with triangles or quads. Although that implementation 
using such display primitives is fast and robust, the amount of 
data can still exceed the graphical card’s limitations. Indeed, 
recent graphical cards have been incapable of rendering such 
amounts of geometric primitives with high frame rates. 
Consequently, they cannot show a whole dataset within a real-
time interaction. Therefore, an efficient data management is 
needed. An efficient visualization should also provide the 
mechanism for either querying or filtering irrelevant data. 

In the continuation we describe an efficient data 
organization that arranges LiDAR data into layers, then a GPU 
filtering technique, and finally a rendering process is presented 
that allows real-time presentation of layered LiDAR data. 

A. Data Organization 

The basis for fast and effective visualization of 3D point 
clouds is hierarchical space partitioning, where data are 
divided into smaller segments. Although we are dealing with 
3D point cloud data, a quadtree data structure has been 
applied, since LiDAR data describing terrain is considered as 
2.5D data. The quadtree’s root domain is aligned with the 
principal axes and covers the bounding box of the whole point 
cloud that is then halved by four children into equal quadrants. 
By inserting point after point into the corresponding node of 
the tree, nodes are recursively split starting at the root until the 

leaves do not contain more than a predetermined maximal 
number of points. The geometry is stored and randomly 
sampled within the graphic memory using vertex buffer 
objects (VBO), which speeds up the rendering process. This 
also reduces the usage of the main memory to only upkeep 
point indices and VBO references. The point quadtree is 
created and prepared for rendering during a preprocessing 
phase. 

In order for better interpretation of LiDAR data, individual 
points are colored according to various attributes contained 
within point records of the LAS file. These color data are also 
stored in the VBO, besides the geometry, in order to speed-up 
the whole rendering process. Coloring individual points can 
significantly improve the user’s perception of LiDAR data by 
showing clear boundaries between objects. Nevertheless, such 
visual interpretation is still a hard challenge [13]. Therefore, 
we organize points within the graphic memory using an 
additional attribute to achieve better user interpretation of 
LiDAR points. Data are organized into layers according to the 
classification attribute within the LAS point record. 

The additional attribute is stored within the VBO to avoid 
extra time for copying data between the main and the graphic 
memory when the rendering process is running. In order to 
store this data into the graphic memory we exploit 
homogeneous coordinates, where a Cartesian point ሺݔ, ,ݕ  ሻ isݖ
represented by ሺݓݔ, ,ݓݕ ,ݕݖ  component of the ݓ ሻ. Theݓ
homogenous coordinates presents scaling and usually has the 
value 1. In this way, we can substitute the fourth coordinate 
 by an additional attribute of classification. Fig. 1 shows (ݓ)
the described data organization, where the main memory 
stores the quadtree with the indexes and VBOs, the geometry 
is on the graphic card and the actual points with all attributes 
are stored in the LAS file on the hard drive. 

 

 

Fig. 1 LiDAR data organization 
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B. GPU-Accelerated Point-Filtering 

Homogeneous coordinates are ubiquitous in computer 
graphics. Modern graphics processing unit (GPU) are built 
around a vector processor with 4-element registers and use 
single instruction, multiple data (SIMD) architecture to 
efficiently work with homogeneous coordinates [17]. OpenGL 
take advantage of this with programmable GPU rendering 
pipeline through shaders. Programmable shaders are simple 
programs that calculate rendering effects on the graphic 
hardware fast and with a high degree of flexibility. 

Our technique is entirely GPU-based and implemented 
using vertex and fragment shaders. The vertex and fragment 
shaders are linked to a shader program that is individually 
performed on each graphic primitive. The shader program 
using both shaders performs the filtering, where those points 
that meet the condition are rendered, and others are discarded 
from the rendering pipeline. 

First, the vertex shader is executed where the ݓ coordinate 
(in the continuation referred to as a classification attribute) is 
passed to the fragment shader and the 2D screen coordinates 
are calculated with ݓ ൌ 1. Filtering is then performed in the 
fragment shader with the classification attribute. A traditional 
filtering approach on the GPU is ineffective because of the 
SIMD architecture. SIMD native branching is slow and needs 
a special strategy for emulating this kind of flow. Therefore, a 
masking technique is used, where a bitmask is applied to hold 
information of 32 layers according to the ASPRS LAS 
specifications [18]. The layers’ bitmask is passed to the 
fragment shader from the rendering process (see next section). 
Every single bit in the layers bitmask corresponds to a single 
layer, where a set bit means a visible layer and vice versa. To 
compare or filter points, a point’s classification attribute needs 
to be transformed from the classification value to the 
classification bit. The transformation is done with shifting 
value 1 left for the classification value. In this way, the 
corresponding classification bit is set and can be compared to 
the layers bitmask with a fast bitwise AND operation. At least, 
if the result is bigger than 0, the point is rendered otherwise it 
is discarded from rendering. In this way, we are able to filter 
point by the classification attribute very quickly on the GPU. 

C. Rendering 

Reduction of the graphic workload is needed in order to 
achieve real-time visualization. During the rendering process, 
we recursively traverse the quadtree from the root and check 
whether each node’s domain intersects the current view 
frustum, and cull nodes from rendering that do not intersect. 
The described frustum culling is effective but has some 
drawbacks when the view covers the entire scene, where no 
workload is reduced. Therefore, points inside the viewing 
frustum have to be removed, too. For this purpose, a LOD 
technique is applied for simplifying the scene. LOD is realized 
by rendering a detailed geometry when the object is close to 
the viewer and coarser approximation when the object is 
distant or small. In this way, the graphic workload is 
significantly reduced and image quality is preserved. Our data 
organization with the geometry and colors stored on the 

graphic card ensures a simple and fast LOD implementation, 
where only the number of rendered points for each visible 
quadtree node needs to be calculated. 

The rendering process works over two-passes: during the 
first pass the required information is obtained, whilst during 
the second pass the number of points is calculated and 
rendered. The first pass is conducted simultaneously with 
frustum calling and computes information about the average 
distance ܦ of all visible quadtree nodes to the observer and the 
rendering ratio ܴ. The rendering ratio is determined as the 
relationship between the maximum number of points that can 
be rendered in real-time and the number of points that are 
inside all visible quadtree nodes. In the second pass, the 
percentage of rendered points ܦܱܮ௜ for each visible quadtree 
node ݅ is calculated as: 

 

௜ܦܱܮ ൌ
஽೔·ሺோିଵሻ

஽
൅ 1, (1) 

 
where ܦ௜ is the distance between the observer and the center 
of the visible quadtree node ݅. The result of the visualization 
can be seen in Fig. 2. 

 

 

Fig. 2 LiDAR dataset (LAS file 4) visualization: (a) without LOD 
and (b) with LOD optimization 

IV. RESULTS 

The presented methods have been implemented in C++ 
under Microsoft Foundation Class Library (MFC) and 
OpenGL 2.1 on Microsoft Windows 7 Professional. The 
measurements were obtained on a PC with 3.30GHz Intel 
Core i5, 8 GB of main memory, Western Digital Blue 1TB 
7200RPM hard drive, and NVIDIA Ge-Force GTX 560 with 1 
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GB graphic memory. 
Table I summarizes the performance in Frames per Second 

(FPS) and rendered points for eight different datasets, while 
the scene was rendered with and without LOD. The reduction 
of points (point ratio) and speed (FPS ratio) calculations were 
made in the forms of rendering relationships with and without 

LOD. The LOD optimization achieve real-time rendering in 
all cases and without loss of image quality. The image quality 
of the visualization can be seen in Fig. 2. The filtering process 
is as fast as the rendering process since it is integrated into the 
rendering process. The images with filtered data can be seen in 
Fig. 3. 

 

 

Fig. 3 LiDAR dataset (LAS file 4) filtering, points left colored according to classification attribute and right according to intensity attribute:  (a) 
no data filtered, (b) filtering on building points, (c) filtering on ground points, (d) filtering on vegetation and ground points, (e) filtering on 

vegetation and building points 
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TABLE I 
COMPARISON OF VISUALIZATION PERFORMANCE WITH AND WITHOUT LOD OPTIMIZATION 

Dataset 
Without LOD With LOD 

Points FPS Points FPS Points ratio FPS ratio 

LAS file 1 6190800 58 5051868 62 0.82 1.07 

LAS file 2 15328038 29 5611506 50 0.37 1.72 

LAS file 3 11884312 35 4828047 53 0.41 1.51 

LAS file 4 18194184 26 4956370 52 0.27 2.00 

LAS file 5 27355270 17 5323969 40 0.19 2.35 

LAS file 6 20208650 23 5188756 42 0.26 1.83 

LAS file 7 11667829 38 4992648 45 0.43 1.47 

LAS file 8 11446218 38 4966357 55 0.43 1.45 

 
V. CONCLUSION 

The proposed visualization techniques is capable to clearly 
presenting objects contained within LiDAR point clouds in 
real-time, while overcoming the issues of massive point clouds 
and lack of topology. Further, we are able to present data in 
layers and filter them during the rendering process. For this, 
the method fully exploits the capabilities of actual GPU 
through programmable shaders. 
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