
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:12, 2014

2108


Abstract—This paper presents a real-time visualization technique

and filtering of classified LiDAR point clouds. The visualization is
capable of displaying filtered information organized in layers by the
classification attribute saved within LiDAR datasets. We explain the
used data structure and data management, which enables real-time
presentation of layered LiDAR data. Real-time visualization is
achieved with LOD optimization based on the distance from the
observer without loss of quality. The filtering process is done in two
steps and is entirely executed on the GPU and implemented using
programmable shaders.

Keywords—Filtering, graphics, level-of-details, LiDAR, real-
time visualization.

I. INTRODUCTION

NE of the popular remote sensing technologies used to
capture information about the Earth’s surface is Light

Detection and Ranging (LiDAR) [1]–[3]. LiDAR is an active
remote sensing technology based on laser light. Laser pulses
are emitted towards a target, and each interaction with an
object reflects a portion of the initial pulse energy to the
sensor. For every one of these reflections, the time between
sending and receiving of the laser pulses is measured. Using
the speed of light constant, the distance between the sensor
and the point of reflection can be calculated. The LiDAR
system can be attached to various vehicles such as cars, trains,
or aircraft. In combination with the Differential Global
Positioning System (DGPS), the locations of every discrete
return can be georeferenced [4]. LiDAR provides a huge
amount of 3-Dimensional (3D) point clouds without any
topology.

LIDAR point clouds hold valuable information not only
within the spatial distribution of the points but also in their
various attributes. However, LIDAR data are rarely used
directly for visual interpretation, since for most users the 3D
point cloud is difficult to understand compared to optical
imagery. The specifics of LiDAR technology inspire new
visualization techniques, allowing interactive 3D
interpretation but typically only one attribute at a time. This
results in a large number of points that crowd the scene and
often obscure details or important 3D cues.

This paper presents a real-time visualization technique,
capable of presenting LiDAR data grouped in layers using
GPU. This paper is organized as follows: a brief overview of

Sašo Pečnik is with the Faculty of Electrical Engineering and Computer

Science, University of Maribor, Slovenia (phone: +386 2 220-7439; fax: +386
2 220-7272; e-mail: saso.pecnik@um.si).

Borut Žalik is with the Faculty of Electrical Engineering and Computer
Science, University of Maribor, Slovenia (e-mail: borut.zalik@um.si).

the visualization techniques is presented in the next section.
Section III explains our data organization using the GPU
filtering technique and the rendering process that is able to
visualize data in real-time. The results are presented in Section
IV, whilst Section V concludes the paper.

II. RELATED WORK

Most of the real-time visualization techniques use
hierarchical space subdivision for efficient scene
representation. The general idea of a hierarchical model was
introduced by Clark back in 1976 [5]. Clark provided a
meaningful way of varying the amount of detail within a scene
in regard to the screened areas occupied by objects within a
scene, and to the speed at which objects or the camera moves.
Then Schachter [6] discussed the need for optimizing the
number of graphic primitives representing a scene, and stated
that it was common to display objects in less detail when they
appeared to be further away. The first applications using such
Level of Details (LOD) technique for optimizing graphic
work-load were flight simulators.

Several Discrete LOD (DLOD) techniques have been
proposed over past decades [7]–[10]. It is typical for DLOD
techniques to simplify a 3D object into a number of objects
with different detail levels. Then the proper LOD of the object
is selected according to the calculated distance from the
viewpoint. Falby et al. [11] used the DLOD technique for
managing massive terrain datasets using a terrain-paging
algorithm to manage the swapping of visible terrain tiles. They
used three different dataset resolutions and displayed the
terrain within a resolution, depending on the distance.

The concept of using points as rendering primitives for
representing an object was introduced due to the pioneering
work by Levoy and Whitted [12]. The same concept is used in
a real-time visualization of LiDAR data, where two different
LOD criteria were evaluated to find the best terrain
representation in terms of visual perception [13].

Realistic rendering of massive LiDAR point clouds in real-
time is a hard challenge. A two-pass point-based rendering
technique that uses elliptical weighed average filtering for
solving problems relating to aliasing was introduced in [14].
Recently, a web-based LiDAR visualization has been
proposed using point-based rendering [15]. They used an
efficient data organization within a data structure and data
compression that enabled quick handling of range and LOD
queries.

III. VISUALIZATION

The fundamental goal of visualization is to convert data into

Real-Time Visualization Using GPU-Accelerated
Filtering of LiDAR Data

Sašo Pečnik, Borut Žalik

O

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:12, 2014

2109

a graphical representation that enables the end-users to
understand the data. The massive point clouds provided by
LiDAR technology represents a significant technical challenge
for visualizing, assessing, and interpreting these data. A
typical LiDAR point cloud is saved within a widely used
binary LIDAR data exchange format (LAS) [16]. Each point’s
record in the LAS file is attributed by intensity, color,
classification, etc. but without any topological information
among individual points. Due to the nature of the data we deal
with each point as a graphical primitive instead of linking
them with triangles or quads. Although that implementation
using such display primitives is fast and robust, the amount of
data can still exceed the graphical card’s limitations. Indeed,
recent graphical cards have been incapable of rendering such
amounts of geometric primitives with high frame rates.
Consequently, they cannot show a whole dataset within a real-
time interaction. Therefore, an efficient data management is
needed. An efficient visualization should also provide the
mechanism for either querying or filtering irrelevant data.

In the continuation we describe an efficient data
organization that arranges LiDAR data into layers, then a GPU
filtering technique, and finally a rendering process is presented
that allows real-time presentation of layered LiDAR data.

A. Data Organization

The basis for fast and effective visualization of 3D point
clouds is hierarchical space partitioning, where data are
divided into smaller segments. Although we are dealing with
3D point cloud data, a quadtree data structure has been
applied, since LiDAR data describing terrain is considered as
2.5D data. The quadtree’s root domain is aligned with the
principal axes and covers the bounding box of the whole point
cloud that is then halved by four children into equal quadrants.
By inserting point after point into the corresponding node of
the tree, nodes are recursively split starting at the root until the

leaves do not contain more than a predetermined maximal
number of points. The geometry is stored and randomly
sampled within the graphic memory using vertex buffer
objects (VBO), which speeds up the rendering process. This
also reduces the usage of the main memory to only upkeep
point indices and VBO references. The point quadtree is
created and prepared for rendering during a preprocessing
phase.

In order for better interpretation of LiDAR data, individual
points are colored according to various attributes contained
within point records of the LAS file. These color data are also
stored in the VBO, besides the geometry, in order to speed-up
the whole rendering process. Coloring individual points can
significantly improve the user’s perception of LiDAR data by
showing clear boundaries between objects. Nevertheless, such
visual interpretation is still a hard challenge [13]. Therefore,
we organize points within the graphic memory using an
additional attribute to achieve better user interpretation of
LiDAR points. Data are organized into layers according to the
classification attribute within the LAS point record.

The additional attribute is stored within the VBO to avoid
extra time for copying data between the main and the graphic
memory when the rendering process is running. In order to
store this data into the graphic memory we exploit
homogeneous coordinates, where a Cartesian point ሺݔ, ,ݕ ሻ isݖ
represented by ሺݓݔ, ,ݓݕ ,ݕݖ component of the ݓ ሻ. Theݓ
homogenous coordinates presents scaling and usually has the
value 1. In this way, we can substitute the fourth coordinate
 by an additional attribute of classification. Fig. 1 shows (ݓ)
the described data organization, where the main memory
stores the quadtree with the indexes and VBOs, the geometry
is on the graphic card and the actual points with all attributes
are stored in the LAS file on the hard drive.

Fig. 1 LiDAR data organization

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:12, 2014

2110

B. GPU-Accelerated Point-Filtering

Homogeneous coordinates are ubiquitous in computer
graphics. Modern graphics processing unit (GPU) are built
around a vector processor with 4-element registers and use
single instruction, multiple data (SIMD) architecture to
efficiently work with homogeneous coordinates [17]. OpenGL
take advantage of this with programmable GPU rendering
pipeline through shaders. Programmable shaders are simple
programs that calculate rendering effects on the graphic
hardware fast and with a high degree of flexibility.

Our technique is entirely GPU-based and implemented
using vertex and fragment shaders. The vertex and fragment
shaders are linked to a shader program that is individually
performed on each graphic primitive. The shader program
using both shaders performs the filtering, where those points
that meet the condition are rendered, and others are discarded
from the rendering pipeline.

First, the vertex shader is executed where the ݓ coordinate
(in the continuation referred to as a classification attribute) is
passed to the fragment shader and the 2D screen coordinates
are calculated with ݓ ൌ 1. Filtering is then performed in the
fragment shader with the classification attribute. A traditional
filtering approach on the GPU is ineffective because of the
SIMD architecture. SIMD native branching is slow and needs
a special strategy for emulating this kind of flow. Therefore, a
masking technique is used, where a bitmask is applied to hold
information of 32 layers according to the ASPRS LAS
specifications [18]. The layers’ bitmask is passed to the
fragment shader from the rendering process (see next section).
Every single bit in the layers bitmask corresponds to a single
layer, where a set bit means a visible layer and vice versa. To
compare or filter points, a point’s classification attribute needs
to be transformed from the classification value to the
classification bit. The transformation is done with shifting
value 1 left for the classification value. In this way, the
corresponding classification bit is set and can be compared to
the layers bitmask with a fast bitwise AND operation. At least,
if the result is bigger than 0, the point is rendered otherwise it
is discarded from rendering. In this way, we are able to filter
point by the classification attribute very quickly on the GPU.

C. Rendering

Reduction of the graphic workload is needed in order to
achieve real-time visualization. During the rendering process,
we recursively traverse the quadtree from the root and check
whether each node’s domain intersects the current view
frustum, and cull nodes from rendering that do not intersect.
The described frustum culling is effective but has some
drawbacks when the view covers the entire scene, where no
workload is reduced. Therefore, points inside the viewing
frustum have to be removed, too. For this purpose, a LOD
technique is applied for simplifying the scene. LOD is realized
by rendering a detailed geometry when the object is close to
the viewer and coarser approximation when the object is
distant or small. In this way, the graphic workload is
significantly reduced and image quality is preserved. Our data
organization with the geometry and colors stored on the

graphic card ensures a simple and fast LOD implementation,
where only the number of rendered points for each visible
quadtree node needs to be calculated.

The rendering process works over two-passes: during the
first pass the required information is obtained, whilst during
the second pass the number of points is calculated and
rendered. The first pass is conducted simultaneously with
frustum calling and computes information about the average
distance ܦ of all visible quadtree nodes to the observer and the
rendering ratio ܴ. The rendering ratio is determined as the
relationship between the maximum number of points that can
be rendered in real-time and the number of points that are
inside all visible quadtree nodes. In the second pass, the
percentage of rendered points ܦܱܮ௜ for each visible quadtree
node ݅ is calculated as:

௜ܦܱܮ ൌ
஽೔·ሺோିଵሻ

஽
൅ 1, (1)

where ܦ௜ is the distance between the observer and the center
of the visible quadtree node ݅. The result of the visualization
can be seen in Fig. 2.

Fig. 2 LiDAR dataset (LAS file 4) visualization: (a) without LOD
and (b) with LOD optimization

IV. RESULTS

The presented methods have been implemented in C++
under Microsoft Foundation Class Library (MFC) and
OpenGL 2.1 on Microsoft Windows 7 Professional. The
measurements were obtained on a PC with 3.30GHz Intel
Core i5, 8 GB of main memory, Western Digital Blue 1TB
7200RPM hard drive, and NVIDIA Ge-Force GTX 560 with 1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:12, 2014

2111

GB graphic memory.
Table I summarizes the performance in Frames per Second

(FPS) and rendered points for eight different datasets, while
the scene was rendered with and without LOD. The reduction
of points (point ratio) and speed (FPS ratio) calculations were
made in the forms of rendering relationships with and without

LOD. The LOD optimization achieve real-time rendering in
all cases and without loss of image quality. The image quality
of the visualization can be seen in Fig. 2. The filtering process
is as fast as the rendering process since it is integrated into the
rendering process. The images with filtered data can be seen in
Fig. 3.

Fig. 3 LiDAR dataset (LAS file 4) filtering, points left colored according to classification attribute and right according to intensity attribute: (a)
no data filtered, (b) filtering on building points, (c) filtering on ground points, (d) filtering on vegetation and ground points, (e) filtering on

vegetation and building points

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:12, 2014

2112

TABLE I
COMPARISON OF VISUALIZATION PERFORMANCE WITH AND WITHOUT LOD OPTIMIZATION

Dataset
Without LOD With LOD

Points FPS Points FPS Points ratio FPS ratio

LAS file 1 6190800 58 5051868 62 0.82 1.07

LAS file 2 15328038 29 5611506 50 0.37 1.72

LAS file 3 11884312 35 4828047 53 0.41 1.51

LAS file 4 18194184 26 4956370 52 0.27 2.00

LAS file 5 27355270 17 5323969 40 0.19 2.35

LAS file 6 20208650 23 5188756 42 0.26 1.83

LAS file 7 11667829 38 4992648 45 0.43 1.47

LAS file 8 11446218 38 4966357 55 0.43 1.45

V. CONCLUSION

The proposed visualization techniques is capable to clearly
presenting objects contained within LiDAR point clouds in
real-time, while overcoming the issues of massive point clouds
and lack of topology. Further, we are able to present data in
layers and filter them during the rendering process. For this,
the method fully exploits the capabilities of actual GPU
through programmable shaders.

ACKNOWLEDGMENT

This work was supported by the Slovenian Research
Agency under Grants J2-5479, and P2-0041. This paper was
produced within the framework of the operation entitled
‘‘Centre of Open innovation and Research UM’’. The
operation is co-funded by the European Regional
Development Fund and conducted within the framework of
the Operational Programme for Strengthening Regional
Development Potentials for the period 2007–2013,
development priority 1: ‘‘Competitiveness of companies and
research excellence’’, priority axis 1.1: ‘‘Encouraging
competitive potential of enterprises and research excellence’’.

REFERENCES
[1] R. A. White, B. C. Dietterick, T. Mastin, and R. Strohman, “Forest

Roads Mapped Using LiDAR in Steep Forested Terrain,” Remote
Sensing, vol. 2. pp. 1120–1141, 2010.

[2] D. Mongus and B. Žalik, “Parameter-free ground filtering of LiDAR
data for automatic DTM generation,” ISPRS J. Photogramm. Remote
Sens., vol. 67, pp. 1–12, Jan. 2012.

[3] N. R. Vaughn, L. M. Moskal, and E. C. Turnblom, “Tree Species
Detection Accuracies Using Discrete Point Lidar and Airborne
Waveform Lidar,” Remote Sensing, vol. 4. pp. 377–403, 2012.

[4] A. Wehr and U. Lohr, “Airborne laser scanning—an introduction and
overview,” ISPRS J. Photogramm. Remote Sens., vol. 54, no. 2–3, pp.
68–82, Jul. 1999.

[5] J. H. Clark, “Hierarchical geometric models for visible surface
algorithms,” Commun. ACM, vol. 19, no. 10, pp. 547–554, 1976.

[6] B. J. Schachter, “Computer Image Generation for Flight Simulation,”
Comput. Graph. Appl. IEEE, vol. 1, no. 4, pp. 29–68, 1981.

[7] M. Garland and P. Heckbert, “Simplification using Quadric Error
Metrics,” in Proceedings of SIGGRAPH, 1997, pp. 209–216.

[8] R. Klein, G. Liebich, and W. Strasser, “Mesh reduction with error
control,” in Proceedings of Visualization ’96., 1996, pp. 311–318.

[9] C. Erikson, D. Manocha, and W. V Baxter III, “HLODs for faster
display of large static and dynamic environments,” in Proceedings of the
2001 symposium on Interactive 3D graphics, 2001, pp. 111–120.

[10] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F.
Brooks, and W. Wright, “Simplification envelopes,” in Proceedings of
the 23rd annual conference on Computer graphics and interactive
techniques, 1996, pp. 119–128.

[11] J. S. Falby, M. J. Zyda, D. R. Pratt, and R. L. Mackey, “NPSNET:
Hierarchical data structures for real-time three-dimensional visual
simulation,” Comput. Graph., vol. 17, no. 1, pp. 65–69, Jan. 1993.

[12] M. Levoy and T. Whitted, “The Use of Points as a Display Primitive,” in
Technical Report TR 85-022, University of North Carolina at Chapel
Hill, 1985.

[13] S. Pečnik, D. Mongus, and B. Žalik, “Evaluation of Optimized
Visualization of LiDAR Point Clouds, Based on Visual Perception,” in
Human-Computer Interaction and Knowledge Discovery in Complex,
Unstructured, Big Data SE - 35, vol. 7947, A. Holzinger and G. Pasi,
Eds. Springer Berlin Heidelberg, 2013, pp. 366–385.

[14] B. Kovač and B. Žalik, “Visualization of LIDAR datasets using point-
based rendering technique,” Comput. Geosci., vol. 36, no. 11, pp. 1443–
1450, Nov. 2010.

[15] M. Kuder and B. Žalik, “Web-Based LiDAR Visualization with Point-
Based Rendering,” in 2011 Seventh International Conference on Signal
Image Technology & Internet-Based Systems, 2011, pp. 38–45.

[16] A. Samberg, “An Implemetation of the ASPRS LAS Standard,” Proc.
ISPRS Work. “Laser Scanning 2007 SilviLaser 2007,” vol. 36, no. 3, pp.
363–372, 2007.

[17] A. R. Brodtkorb, T. R. Hagen, and M. L. Sætra, “Graphics processing
unit (GPU) programming strategies and trends in GPU computing,” J.
Parallel Distrib. Comput., vol. 73, no. 1, pp. 4–13, 2013.

[18] American Society for Photogrammetry and Remote Sensing (ASPRS),
“LAS specification version 1.3,” The American Society for
Photogrammetry & Remote Sensing, 2009. (Online). Available:
www.asprs.org. (Accessed: 28-Jul-2014).

Sašo Pečnik received his BSc in Computer Science from University of
Maribor, Maribor, Slovenia in 2009. He is currently employed as a researcher
at the Faculty of electrical Engineering and Computer Science of University
of Maribor and is working towards a PhD degree. His research interests
include processing and visualization of LiDAR data, computer geometry,
computer graphics, CAD, GIS, cloud computing and applications in Civil
Engineering.

Borut Žalik is a full professor of computer science at the Faculty of Electrical
Engineering and Computer Science, University of Maribor, Slovenia. He
received his BSc in electrical Engineering in 1985, MSc and PhD in computer
science, both from the University of Maribor in 1989 and 1993, respectively.
For 2 years, he had a position of a visiting senior research fellow at De
Montfort University, UK. Žalik lead a laboratory for geometric modelling and
multimedia algorithms. His research interests include computational
geometry, geometric modelling, CAD, GIS and multimedia applications.

