
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

53

Abstract—This paper includes a review of three physics

simulation packages that can be used to provide researchers with a
virtual ground for modeling, implementing and simulating complex
models, as well as testing their control methods with less cost and
time of development. The inverted pendulum model was used as a
test bed for comparing ODE, DANCE and Webots, while Linear
State Feedback was used to control its behavior. The packages were
compared with respect to model creation, solving systems of
differential equation, data storage, setting system variables, control
the experiment and ease of use. The purpose of this paper is to give
an overview about our experience with these environments and to
demonstrate some of the benefits and drawbacks involved in practice
for each package.

Keywords—DANCE, Inverted Pendulum, ODE, Simulation
Packages, Webots.

I. INTRODUCTION
IMULATION is considered one of the important tools in
different areas of research and development especially in

the field of robotics because it can provide researchers with
synthetic environments where they can investigate, design,
visualize different types of objects, such as characters in a 3D
games environment, and test their control methods in less time
and at less cost.

Beside been cheaper and faster, Simulation is usually more
flexible and easier to use than a real robot. It provides users
with practical feedback when designing real world systems,
which helps them to determine the correctness and efficiency
of a system yet to be built. Nevertheless, simulation has its
own drawbacks; virtual worlds are fundamentally hard to
model, and simulating a robot also tends to be difficult
because sensors in the real world can often exhibit different or
unexpected characteristics [1].

Currently, they are many fields in which rigid body
simulations are required such as in engineering applications,
robotics and computer games. Due to this growing demand,
various simulation software packages have been developed for
the modeling and simulation of different kind of systems and
intensively for the simulation of robotics systems, some of

J.Zouhair is with the University of Abertay Dundee, School of Computing

& Engineering, Kydd Building, Bell Street, Dundee DD1 1HG UK (e-mail:
j.zouhair@ abertay.ac.uk).

D. Ellison, was with the University of Abertay Dundee, School of
Computing & Engineering, Kydd Building, Bell Street, Dundee DD1 1HG
UK. He is now with (e-mail: dsellison@tiscali.co.uk).

them are open source others are commercial. Consequently, it
becomes really hard for the users to decide on the suitable tool
for their applications.

For this reason three simulation software packages have
been evaluated, namely Open Dynamics Engine (ODE) [2],
Dynamic Animation and Control Environment (DANCE) [3]
and Webots [4]. ODE is the library that is used by DANCE
and Webots but it is hidden to the user. All these packages
allow us to create rigid bodies with physics properties such as
mass, linear and angular velocity, joints, and a collision
detection function that is integrated with these packages to
identify bodies that are in contact.

First, a brief description of the inverted pendulum, which is
used as a test bed, is discussed in section II, followed by the
structure and features of ODE as well as the implementations
of the inverted pendulum system in section III. We present
after in section IV the DANCE package along with simulation
results of the system, Webots structure and the
implementation of the inverted pendulum in this environment
are described in section V. We compare these simulation
packages in more details in section VI. Finally, we give a
conclusion in section VII.

II. INVERTED PENDULUM

A. Problem Definition
The inverted pendulum (IP) system consists of a cart on top

of which a pole is pivoted. The cart is constrained to move
only in the horizontal direction, while the pole can only rotate
to its right, or left, depending on the controller’s output. The
goal of control is to balance the pole by supplying an
appropriate force to the cart. The cart and pole friction
coefficients are neglected in this study based on the work by
[5], which indicates that they are too small to have interesting
effects or are cosmetic.

One important issue to emphasize is that the cart wheels
dynamics is ignored, in other words, their mass and moment
of inertia are considered null.

B. System Parameters
The following tables (Table1, Table2) describe the

variables of the system, including both the inputs and outputs
for a controller, and variables that govern the simulation of the
system.

 Real-Time Physics Simulation Packages:
An Evaluation Study

J.Zouhair, and D.Ellison

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

54

III. ODE

A. ODE Environments
ODE has been used in both research and commercial

applications such as computer games. It is platform
independent with a C/C++ API, written by Russell Smith [2] .
It is an open source physics engine for simulating the physics
of real-world objects. ODE is integrated in a number of
commercial games and virtual reality simulations because it
has the GNU Lesser General Public License (LGPL), which
makes its source freely to be used by those commercial
products.

They are many features supported by this library. ODE has
a rigid body which is a structure that consists of many shapes
connected together by different types of joints, like the ball
and socket joint, the hinge joint (which was used for
implementing our inverted pendulum model to allow a
rotation around one degree of freedom), and the slider joint. It
also supports integrated collision detection for real-time
simulation, with friction.

B. Application of SFC to the IP in ODE
Building the model of the system was straightforward. First

the bodies were created, and then connected with proper joints
as shown in Fig. 1.

The State Feedback controller (SFC) was incorporated in
equation (1); it takes the measurable state variables to
calculate a force to balance the pendulum. The inverted
pendulum was controlled using a controlling force that is
based on the work of [6].

F = f1 X + f2

.
X + f3 θ + f4

.
θ (1)

where f1, f2, f3 and f4 are coefficients that depend on the
masses of the cart and pole as well as the friction of the
system.

Fig. 1 The inverted pendulum in ODE

ODE has several functions for returning state variable
values and which function to use depends on the type of joint,
therefore; the values of state variables to calculate a force to
balance the pendulum above were obtained from ODE by
simply supplying details of the joints, for example to get the
current pole angle and its rate of change
dJointGetHingeAngle() and dJointGetHingeAngleRate() could
be used, and to get the cart position, its velocity
dBodyGetPosition() and dBodyGetLinearVel()may well be
used for such a task.

const dReal poleAngle = dJointGetHingeAngle(joint1);
const dReal poleAngleRate = dJointGetHingeAngleRate (joint1);
const dReal *cartPos = dBodyGetPosition(body[0]);
const dReal *cartVel = dBodyGetLinearVel(body[0]);

So the controlling force that was applied into the cart was the
following:
F = (f1 * cartPos[0] + f2 * cartVel[0] + f3 * poleAngle + f4 *
poleAngleRate);

The result was a robust solution to the inverted pendulum
problem; Fig. 2 shows the simulation plots for θ , X and F.
At first the pendulum was in 0.1 radian position. The SFC
balances the pendulum in the upright position at about 3 sec.
The cart returned to its initial position at about 6 sec and no
forces were applied to the system after 6 sec since it was
balanced.

TABLE I
SYSTEM VARIABLES

Symbol Name Unit

 the angle the pole makes
with the vertical

radians

pole angular velocity radians/s

 cart position m

the current velocity of the
cart

m/sec

 F force applied to cart N

TABLE II
SYSTEM CONSTANTS

Symbol Name Unit

 M Cart mass 1Kg
 m Pole mass 0.1 kg

 l Pole length 1 m

 g Gravity acceleration 9.8m/s2
 t Time step 0.02 sec

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

55

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1.5

2

Time (s)

Theta
Cart Pos
Force

Fig. 2 Time Responses of the IP with SFC in ODE

IV. DANCE

A. DANCE Environment
DANCE is an open framework for computer animation that

is based on an object oriented, plug-in architecture. It provides
a rapid prototyping environment for implementing animation
and control techniques with minimal design and
implementation overhead [7].

DANCE supports four base classes [8], which are Systems,
Simulators, Actuators and Geometries that are loadable as
plug-ins in accordance with its APIs. Actuators and simulators
are implemented as DANCE plug-ins to allow the user to
dynamically load objects of any type, controllers and
simulators at runtime. Controllers are implemented as plugin
subclasses of the Actuator class.

B. Application of SFC to the IP in DANCE
Creating the inverted pendulum model in DANCE was

achieved more easily than using ODE with the help of a
graphical user interface (GUI) as illustrated in Fig. 3, which
allowed us to manipulate the system, create objects, and add
collision detection and gravity and so forth. Once the
implementation of the inverted pendulum was completed,
DANCE allowed us to save our environment in a single
python file with a .py/ dpy extension and all accompanying
information gets saved automatically to a subdirectory that
defines the linkage and joint structure, the system description
file for cart and pole objects, the configuration file for cart and
pole object. The .dpy/.py file contains all python scripting
commands necessary to reconstruct the DANCE environment
to its current state.

Fig. 3 Graphical output of the IP system in DANCE

The structure of the State Feedback controller was the same

described in section III (B). Fig. 4 illustrates the result of the
simulation in DANCE environment, which are similar to the
results achieved in Fig. 2.

0 1 2 3 4 5 6

-0.5

0

0.5

1

1.5

2

Time (s)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

Time (s)

P
os

iti
on

 (m
)

Theta
Force

Fig. 4 Time Responses of the IP with SFC in DANCE

V. WEBOTS

A. Webots Environment
Webots is a commercial three-dimensional mobile robotic

simulation software developed by Cyberbotics [9] providing
the users with rapid technique of modeling complex virtual
worlds, programming and simulating mobile robots within
these environments. These robots can be equipped with a
number of sensor and actuator devices, such as distance
sensors, drive wheels, cameras, servos, etc, and can have
different locomotion schemes for instance wheeled robots,
legged robots, or flying robots. Added to this, Webots has
many interfaces to real mobile robots, so that once the
simulated robot behaves as expected, its control program can
be transferred to many commercially available real mobile
robots. Webots also relies on ODE to perform accurate
dynamic physics simulation.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

56

B. Application of SFC to the IP in Webots
Before modeling the cart and pole, a project directory was

required to be created with two subdirectories World and
Controllers, which were necessary to create a simulation in
Webots.

a. The world file defines the virtual environment such
as shape, position and orientation, and physical
properties of every object.

b. The controller file contains the program for
controlling the simulated cart and pole model and
defines its behavior.

Building the inverted pendulum model was attained by
simply adding the required elements from Webots’GUI as
shown in Fig. 5:

Fig. 5 Graphical output of the IP system in Webots

Once the cart and pole model were created, the controller

program was coded to exhibit the desired behavior, which is
to keep the pole balanced on the cart. Similarly, as it was
discussed in section III (B), calculating a controlling force to
balance the pendulum was required. Therefore, the values of
state variables to calculate the controlling force were needed
and obtained from Webots as follow:

The wb_servo_enable_position() was used first to activates
position measurements for the servo and
wb_servo_get_position()functions was used to get the value of
the pole angle as well as the pole angle rate (deduced from
position values returned by this function),
wb_gps_get_values() was used to get the cart position, and the
linear velocity by differentiating the vector returned by this
function.

The results of the simulation show that the cart maintains a
good balance throughout the simulation period and this is
noticeable in Fig. 6 as there is only a little variation between
the forces applied to the cart in order to balance the pendulum.
These results are in line with the results obtained using
DANCE (see Fig.4) and ODE (see Fig.2).

0 1 2 3 4 5 6
-0.2

0

0.2

Time (s)

Th
et

a
(ra

d)

0 1 2 3 4 5 6
0

0.5

1

Time (s)

C
ar

t P
os

 (m
)

0 1 2 3 4 5 6
-1
0
1
2
3

Time (s)

Fo
rc

e
(N

)

Fig. 6 Time Responses of the IP with SFC in Webots

VI. COMPARISON

A. Model Creation
For creating the inverted pendulum model using ODE, we

had to code it completely by hand, as well as adding a
simulation. This was an effortless task, but if we had to
develop a larger model such as a humanoid it will be very
time consuming. On the other hand, using DANCE and
Webots to perform the same task was much simpler and easier
with the help of the GUI; the user can simply add simulation
and objects with joints and bodies one by one with the GUI
and directly see the result on the screen. That makes the
conception of the model smoother and faster.

B. Solving Systems of Differential Equations
ODE provides the dynamics and a collision analysis library

and it was used in our project as a physics library, it also has
its own differential equations solver. DANCE and Webots
rely on ODE to perform accurate dynamic physics simulation
but it is completely hidden to the users.

 Several state variable values such as current pole angle and
its rate of change, used for our inverted pendulum were
effortlessly obtained from those packages by simply supplying
details of the joints. As a result, it was straightforward to solve
the controlling force applied to our cart.

C. Data Storage
DANCE stores some of the data of the model and its

environment in the run directory. Once the session is saved,
we can re-run the script or re-load the session at later stage
directly from DANCE environment without having to rebuild
the solution, which is not possible in ODE because any editing
to the model or its behavior needs to be hard coded directly in
the C++ program. As a result we have to build the entire
solution every time we want to view any modification to it.
On the other hand, Webots stores all the files related to our
project in separate files, i.e. world files, controller files, data
files, plugins, etc. This allows the models created to be easily
modified and reused.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

57

D. Setting System Variables
The GUI interface of DANCE helps us to interactively

manipulate various parameters of the system, i.e. set its
position, set its velocities on the joints, etc.., while Webots’
GUI has a Scene Tree Window which is a hierarchical
representation (see Fig. 5) of the current world that helps us to
define or modify certain properties and system variables and
directly see the result in the simulation window, i.e. translate
or rotate any object in the scene, changing their physics
parameters such as mass, joints type, friction, density, etc.
In ODE, all the variables need to be set in the main program
before running the model, which can be time consuming if we
want simply to rotate the pole angle for example.

E. Experiment Control
In order to control our inverted pendulum, both DANCE

and Webots have a built in simulator GUI control available in
their environments which provide us with a good control for
simulating our model such us lowering or increasing the
simulation, measure how often the screen is refreshed.
However, this simulator control is not available in ODE.

F. Ease of Use
Although the ODE library is easy to use as mentioned in

this paper, it takes a while to learn to use it well plus the
example programs that come with it were not clear. On the
other hand, DANCE uses a number of third party libraries,
such as Python, ImageMagick and OpenGL, which makes it
not user friendly. Added to this, a new OO scripting language
(Python) needs to be learnt.

As for Webots, its GUI makes it very simple environment
because many of its facilities are integrated in the Webots’
user interface, such as a source code editor and motion editor.
Moreover, it allows us to interact with our simulated IP during
its run time using its GUI, which contains step by step mode,
rotating objects in the scene or changing view point positions.

G. User Guide
The documentation for ODE is more of a reference manual

because it has a good description of its features but it does not
include any tutorials or examples to assist the average users.

Despite the fact that DANCE has a number of example
scripts that demonstrate its functionality and are easily
accessed through its GUI, yet still a lot of time was spent in
understanding its internals and taking advantages of its
capabilities. Conversely, Webots provides a comprehensive
documentation and tutorials to get us up and running quickly
in both the modeling and writing up of the controller. It has
also a separate reference manual that contains all the
information on the world description language used in
Webots, and how to program robot controllers.

VII. CONCLUSION
In this study, three physics simulation tools ODE, DANCE

and Webots were evaluated using SFC and the Inverted
Pendulum as a test bed. Based on our comparative study, we

concluded that Webots has many advantages over other
simulation packages discussed in this paper and could be
summarized as follow:

• Good separation between the model and the
controller, which does not exist in other packages.

• Once installed, webots allows us to instantly create
an environment, while in both ODE and DANCE the
setting up of project environment takes time just to
get started and to build the main project solution.

• Webots provides us with the facilities to import
external models from a 3D modeling software such
as Maya but other packages luck this feature.

• Ease of system implementation was best in Webots,
whereas DANCE offered better environment for
modeling our system compared to ODE.

• The portability of the control system, we can develop
our control system and validate it on the simulator,
and then test our control system in a real mobile
robot such as Khepera and the Lego Mindstorms[10].
However; this feature is not available in the other two
packages.

• Webots facilitates creation of AVI or MPEG
simulation movies and take PNG screen shots. Dance
allows us also to render its objects to a file in one of
the standard image formats such as png and gif files,
but it does not automatically produce animations
from these images. A third-party program (such as
Quicktime) is needed to assemble the animations into
a working video.

Although Webots is a commercial software compared to other
packages, we concluded from these results that it provides the
best suitable environment for testing ideas in intelligent
robotics algorithms.

REFERENCES
[1] T. Jones, “Open source robotics toolkits,” 05-Sep-2006. [Online].

Available: https://www.ibm.com/developerworks/linux/library/l-
robotools/. [Accessed: 05-Aug-2010].

[2] R. Smith, “Open Dynamics Engine - home,” 2007. [Online].
Available: http://ode.org/. [Accessed: 19-Jan-2009].

[3] A. Shapiro, “Dynamic Animation and Control and Environment,”
2009. [Online]. Available: http://www.arishapiro.com/dance/.
[Accessed: 19-Apr-2009].

[4] O. Michel, “Cyberbotics,” Webots 6 fast prototyping and simulation of
mobile robots, 2009. [Online]. Available:
http://www.cyberbotics.com/. [Accessed: 19-Jun-2009].

[5] S. Geva and J. Sitte, “A cartpole experiment benchmark for trainable
controllers,” Control Systems Magazine, IEEE, vol. 13, no. 5, pp. 40-
51, 1993.

[6] J. White, “System Dynamics Introduction to the Design and
Simulation of Controlled Systems Introduction,” 1997. [Online].
Available: http://gershwin.ens.fr/vdaniel/Doc-Locale/Cours-
Mirrored/Methodes-Maths/white/sdyn/s7/s7intro/s7intro.html.
[Accessed: 10-Jul-2009].

[7] A. Shapiro, P. Faloutsos, and V. Ng-Thow-Hing, “Dynamic animation
and control environment,” in Proceedings of Graphics Interface 2005,
p. 70, 2005.

[8] P. Faloutsos, M. V. D. Panne, and D. Terzopoulos, “Composable
Controllers for Physics-Based Character Animation,” Proceedings of
ACM SIGGRAPH 2001, pp. 251-260, 2001.

[9] O. Michel, “Cyberbotics Ltd. Webots TM: Professional Mobile Robot
Simulation,” International Journal of Advanced Robotic Systems, vol.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

58

1, no. 1, pp. 39–42, 2004.
[10] MINDSTORMS, “LEGO.com MINDSTORMS NXT Home,” 1999.

[Online]. Available:
http://mindstorms.lego.com/eng/Egypt_dest/Default.aspx. [Accessed:
10-Jul-2009].

