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Abstract—In this paper, a neural network technique is applied to 

real-time classifying media while a projectile is penetrating through 
them. A laboratory-scaled penetrating setup was built for the 
experiment. Features used as the network inputs were extracted from 
the acceleration of penetrator. 6000 set of features from a single 
penetration with known media and status were used to train the neural 
network. The trained system was tested on 30 different penetration 
experiments. The system produced an accuracy of 100% on the 
training data set. And, their precision could be 99% for the test data 
from 30 tests. 
 

Keywords—back-propagation, identification, neural network, 
penetration.  

I. INTRODUCTION 
ODERN defensive military fortification is mostly below 
ground or reinforced and often multi-layered. In order to 

enable weapons to detonate at a desired point inside buried or 
reinforced structures, knowing the depth of the weapon into the 
structure or counting layers that the weapon has passed is 
critical.   

The process of knowing the depth or counting layers while 
the weapon is penetrating media relates to an effective 
algorithm of classifying penetrating signals. Min et al. [1] 
proposed a real-time decision making process by selecting 
proper thresholds of penetrating signals and their features. In 
order to set aside a particular class from all other classes, a lot 
of thresholding rules were created. This also means a lot of 
experiments are needed, which will increase the cost. It is 
therefore our objective to study on another algorithm. 

Neural networks have long been applied to a variety of 
classification tasks [2]. One of their advantages is that they can 
adjust themselves to the data without any explicit specification 
of functional or distributional form for the underlying model 
[3]. So, using the neural network technique can be a better 
alternative in media identification during penetrating. 

In this paper, a neural network based classifier system is 
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applied in an attempt to real time identify media during 
penetrating. The strategy includes extracting features from the 
acceleration signals of the penetrator as the network inputs, 
using a set of experimental features to train the network, and 
using the well-trained network to test 30 set of experimental 
features. The results of testing are discussed at the end of the 
paper. 

II. FEATURES EXTRACTION 
The response of materials to impulsive loading involves a 

variety of disciplines including theoretical and applied 
mechanics, material behavior, and dynamics. The experimental 
setup (,which will be discussed in section 4-1) we built to verify 
the identifying system is a four-meter-tall mechanism with the 
penetrator free falling from the top or launched by a 
spring-driven accelerator. Therefore, the striking velocities of 
penetrator we were dealing with are less than 50 m/s. 
According to Zukas [4], it belongs to a problem of primarily 
elastic effect which may be related to the structural dynamics 
and the overall deformation of the structure. So we first used 
Boxcar averaging technique [5], [6] to make the acceleration of 
penetrator less volatile and more obvious. Before doing that, 
we also introduced a software filter by calculating the mean of 
some values from the sampled data to eliminate noise. The 
number of the values, which was defined as the window size 
(ws), was chosen by roughly judging its effectiveness on noise 
elimination. In order to assess the effectiveness of different 
window sizes, we implemented the Discrete Fourier 
Transformation [7]. The experiment was conducted with a 
penetrator free falling from the top of a 4-meter-tall 
experimental setup to the ground with no medium in between, 
in which the sampling rate was 100 kHz. Fig. 1 shows a result 
with worse effectiveness on noise elimination, in which the 
window size is 50. Fig. 2 shows a better effectiveness on noise 
elimination, in which the window size is 200. Although we 
have roughly got a relation between the window size and the 
effectiveness that the bigger window size can yield a better 
effectiveness, increasing the window size would lower the 
performance such as the processing time. Therefore, we picked 
200 as the window size throughout this work.   

The filtered acceleration can be written as  
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where ][kS  denotes every signal collected, and, i, j and k are 
integers. 

 
Fig. 1 Discrete Fourier Transform of the filtered acceleration with the 
window size of 50 
 

 
Fig. 2 Discrete Fourier Transform of the filtered acceleration with the 
window size of 200 
 

The four features used in this work are extracted based on the 
filtered acceleration and are described as follows. Feature 1 is 
defined to represent the effect of the acceleration of the 
projectile, in which the four-point-span moving average 
technique is used, as 

[ ] { [ ] } 4/1
3
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where [ ] [ ]001 WF = , [ ] { [ ] [ ] } 2/1011 WWF +=  and 

[ ] { [ ] [ ] [ ] } 3/21021 WWWF ++= . 
Feature 2 adopts the two-point-span moving average for 

higher resolution, which is written as 
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where [ ] [ ]002 WF = . 
In order to include the destructive effect of motion, we use 

the average changes of filtered acceleration as 
[ ] ]1[][ −−= iWiWiA                                              (4) 

The trend of the average changes of filtered acceleration by 
using the four-point-span moving average is defined as Feature 
3, as 
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where [ ] [ ]003 AF = , [ ] { [ ] [ ] } 2/1013 AAF +=  and 

[ ] { [ ] [ ] [ ] } 3/21023 AAAF ++= . Feature 4 is defined to 
consider the effect of second order change of filtered 
acceleration, as 
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where [ ] [ ]004 AF = , 

[ ] { [ ] [ ] [ ] } 2/)01(014 AAAF −+= , 

[ ] { [ ] [ ] [ ] [ ] [ ] } 3/)12()01(024 AAAAAF −+−+= , 
and 

[ ] { [ ] [ ] [ ] [ ] [ ] [ ] [ ] } 4/)23()12()01(034 AAAAAAAF −+−+−+=
. 

III. THE NEURAL NETWORK STRUCTURE 
A feed forward back-propagation neural network was used 

for medium identification. The structure of the neural network, 
as shown in Fig. 3, is organized into three layers: input, hidden, 
and output. The input layer contains 4 nodes representing the 4 
features mentioned in section II. One hidden layer of sigmoidal 
neuron with 5 nodes is fully connected to all input units and the 
nodes in the output layer. In this work, we constructed a 
two-layered setup for the experiments. In addition, statuses of 
penetrator during penetrating including resting, accelerating, in 
the void and grounding (hitting the sand in the bottom) were 
also considered. Therefore, the output layer has 6 output nodes 
representing 2 different media and 4 statuses which are denoted 
by digital codes from 0 to 5. 

 In order to train the neural network, we performed a 
penetration experiment to acquire the acceleration of the 
penetrator. 6000 set of features were extracted from the filtered 
acceleration data, which were used as the neural inputs. The 
outputs were then manually assigned to derive the weights and 
the thresholds of the neural network. Weights and thresholds of 
connections between the input and hidden units and between 
the hidden units and output units were modified by the error 
function. 
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where Ncycle denotes the learning cycle, jT  is the neural 
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network output of the jth neuron and jY is the desired output of 

the jth neuron. This process was repeated until the error 
function fell below a predefined tolerance level or the 
maximum number of iterations is achieved. The well-trained 
thresholds and weights in the network were then used to predict 
the statuses and media during the test period. 

 
Fig. 3 The Back-propagation neural network architecture for medium 
identification 

IV. EXPERIMENTAL DESIGN AND RESULTS 

A. Apparatus  
Fig. 4 shows a schematic diagram of the laboratory-scaled 

penetration apparatus. It contains an accelerator on the top in 
order to create various initial velocities. Two different media 
are mounted in the midway for testing. The materials of the 
media used in this work were the extruded expanded 
polystyrene (XEPS) and the molded expanded polystyrene 
(MEPS) foam boards. The specification of the penetration 
apparatus is shown in Table I. The penetrator (also shown in 
Fig. 5) is equipped with a SEIKA B1 accelerometer to measure 
the deceleration of the penetrator. The signals measured are 
then sampled by an analog-to-digital converter (ADLINK 
PCI-9118DG) at a rate of 100 kHz. Further works of feature 
extraction and identification are implemented by using C 
programming language in an IBM compatible personal 
computer. 

 
TABLE I 

THE SPECIFICATION OF PENETRATION APPARATUS 

Item Name Length 

(cm) 

1 Penetration apparatus 400  

2 Penetrator 10  

3 Distance from the initial position of the 

penetrator to XPES 

200 

4 Distance between XPES and MPES 80 

 
 

Fig. 4 The Schematic diagram of the laboratory-scaled penetration 
apparatus 

 

 
 

,Fig. 5 The penetrator 

B. Experiments 
Free-fall experiments were first preformed. Fig. 6 shows one 

set of acceleration data with the sampling time of 10 micro 
seconds during the whole process. Fig. 7 shows the identified 
result, in which six targets including resting, void, XEPS, 
MEPS, grounding, and accelerating are represented by digital 
numbers from 0 to 5 respectively. In order to investigate the 
influence of the initial velocity of penetrator on the 
identification, we preformed tests with the penetrator being 
accelerated at the initial position. The corresponding 
acceleration history is shown in Fig. 8. Fig. 9 shows the 
identified outputs of the proposed neural network. 
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Fig. 6 An acceleration history (free-fall) 

 
Fig. 7 An identified result (free-fall) 

 
Fig. 8 An acceleration history (accelerated) 

 
Fig. 9 An identified result (accelerated) 

 
As we can see in both results in Fig. 7 and Fig. 9, there exist 

some errors. The average identification rate of a single test can 
be calculated with 

%100
windowsofNumber 

 errors ofNumber - windowsofNumber 
×=IR .(8) 

A mean value of 99% from 30 penetrating experiments was 
achieved. However, the overall identification rate for 30 tests 
was only 16.6%, according to (9). 

%100
 testsofNumber 

 testfailed ofNumber - testsofNumber 
×=OIR ,  (9) 

in which the failed test denotes one single test containing any 
error. The reasons for the low OIR is quite complex, because 
variables like feature selection and the window size 
determination definitely contribute to some of them. Table II 
shows the influence of the window size to the error function. 
 

TABLE II 
VALUES OF ERROR FUNCTION VERSUS DIFFERENT WINDOW SIZES 

Window size Value of error function 

50 0.0487   

100 0.0199 

150 0.0171 

200 0.0094 

V. CONCLUSIONS 
In this work, we used the BP neural network for real-time 

identifying different media and statuses in a laboratory-scaled 
penetration process. It’s declared that 99% of average 
identification rate of a single test and 16% of overall 
identification rate from 30 tests was achieved. But, in order to 
get a better performance, to discard irrelevant features and 
optimize the window size are suggested to be the further study.  
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