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Abstract—The three most important components in the cognitive 

architecture for cognitive robotics is memory representation, memory 
recall, and action-selection performed by the executive. In this paper, 
action selection, performed by the executive, is defined as a memory 
quantification and optimization process. The methodology describes 
the real-time construction of episodic memory through semantic 
memory optimization. The optimization is performed by set-based 
particle swarm optimization, using an adaptive entropy memory 
quantification approach for fitness evaluation. The performance of 
the approach is experimentally evaluated by simulation, where a 
UAV is tasked with the collection and delivery of a medical package. 
The experiments show that the UAV dynamically uses the episodic 
memory to autonomously control its velocity, while successfully 
completing its mission.  
 

Keywords—Cognitive robotics, semantic memory, episodic 
memory, maximum entropy principle, particle swarm optimization.  

I. INTRODUCTION 

OGNITIVE robotics is described as the study of robots 
with cognitive functions, such as perception, attention, 

anticipation, planning, memory, learning, and reasoning, 
inspired by human cognition. Human cognition is not trivial 
and to study and understand it, various computational models 
and architectures have been devised. For example, statistical 
models for cognition [1], and cognitive architectures, such as 
Adaptive control of thought (ACT) [2], State operator and 
result (SOAR) [3] and Neural Engineering Objects (Nengo) 
[4]. These architectures show the complexity in the interaction 
between neuro-cognitive processes which, inevitably, apply to 
robo-cognitive processes as well. Arguably, the most 
important cognitive function is the working memory, which is 
a collection of neuro-cognitive processes: memory 
representation, memory recall, action selection and execution. 
Memory representation can be further described in terms of 
episodic (short-term) and semantic (long-term) memory. 

In many robo-cognitive architectures today, control models 
are learned through methods, such as artificial neural networks 
(ANNs), to simulate memory representation, memory recall 
and the executive functions of the brain. The models represent 
memory through synaptic weight assignment, which is 
adjusted during a learning process. When presented with an 
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input stimulus, the model “recall” learned facts by applying 
the synaptic weight and input stimulus to an activation 
function. Unfortunately, for many real-world cognitive robotic 
applications, the approach of a priori learning of behavioral 
models is not always effective. Robots deployed in remote, 
unknown and dynamic locations, cannot risk catastrophic 
failure. They do not have the time to learn new complex 
solutions from the start, every time the environment changes.  

The robo-cognitive architecture of a remotely deployed 
robot must provide an efficient and simple means of updating 
the semantic and episodic memory. Action selection and 
execution, based on these memories must automatically adapt 
according to the new memories. Moreover, when the memory 
items are complex structures with multiple characteristics 
(such as the logically conditioned state-transitions used in this 
study), optimal memory recall becomes extremely complex 
and computationally expensive.  

This study examines real-time episodic construction using a 
set-based particle swarm optimization (SPSO) algorithm, 
which evaluates the fitness of semantic memory items using 
an adaptive entropy-based memory quantification (AEMQ) 
algorithm. The algorithm uses real-time environmental stimuli 
and cues to statistically quantify and evaluate the semantic 
memory. The AEMQ algorithm employs the maximum 
entropy principle (MEP) [5] to provide a probability 
distribution over all the characteristics of the semantic 
memory item, for fitness evaluation. The result of the SPSO is 
an optimal set of memory items, i.e. the episodic memory 
from which the executive uses the probability distribution of 
each item to select the best memory item and execute a 
suitable action. 

The performance of the SPSO and AEMQ algorithms are 
experimentally evaluated with an unmanned aerial vehicle 
(UAV) benchmark mission: collecting and delivering a 
package, before returning to a charging station. 

II. WORKING MEMORY IN COGNITIVE ARCHITECTURE 

A. Common Cognitive Architectures 

Although there are still many unanswered questions 
regarding the functions of the human brain, there seems to be 
a common understanding about the basic architectures of 
human cognition.  

Computational architectures, which mimic cognitive 
processes in the human brain, have been developed to examine 
and understand human cognition. These include the Adaptive 
control of thought–rational (ACT-R) architecture [7], the 
Semantic pointer architecture unified network (SPAUN) [4] 
and the SOAR architecture [3].  
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The central executive is responsible for the cognitive 
processes of memory classification, memory representation, 
recall, action selection and action execution. Collectively, 
these processes constitute the working memory. 

B. Working Memory Models 

A number of working memory models have been defined 
over the years. Baars and Nicole [6] presents a functional 
framework for human cognition, where working memory is 
composed of the central executive and working storage. The 
working storage is created from sensory memory (verbal and 
visuospatial) and long-term, (stored) memory. The working 
memory is used in the action selection and execution process. 
Long-term memory will be referred to as sematic memory 

Tulving [8] classifies memory as non-declarative, semantic 
and episodic. 

Arguably, the most widely used model is Baddeley’s model 
of working memory [9]. In Baddeley’s model, the central 
executive processes visuospatial, phonological and long-term 
semantic memory, and creates the episodic buffer. The 
episodic buffer performs the same role as the working storage 
memory in [6]. 

A different approach is presented in Cowan’s attentional 
focus theory [9] model. In Cowan’s model, instead of types of 
memory being classified separately and distributed according 
to the cognitive functionality, all memory is stored as long-
term memory. When memory receives attention, it becomes 
salient and closely stored memory is activated at the same 
time. Activated memory is of interest, as it is potentially 
relevant to the context and may become attentional. The 
central executive uses the memory with attentional focus for 

action selection and execution.  
For remotely-deployed exploratory robots, Cowan’s model 

provides a simpler architecture, with fewer possible points-of-
failure. This study proposes a robo-cognitive architecture, 
which combines some features from both Baddeley and 
Cowan’s models, particularly the episodic buffer. However, 
for computational practicality, memory representation is 
abstracted from the central executive.  

C. Real-Time Episodic Memory Construction 

In this study, a robo-cognitive architecture is proposed for 
the real-time construction of episodic memory. An UAV is 
used for illustration. 

In this study, long-term memory will be referred to as 
sematic memory and short-term memory will refer to sensory 
and episodic memory. 

Semantic memory is the long-term memory provided by a 
domain expert. The domain expert also provides cues (or 
missions) which defines the objectives of the robot. The 
central executive recalls, quantifies and optimizes semantic 
memory, in real-time, subject to the cues and stimuli. Since 
the process is dynamic and real-time, the optimal memory 
constructed by the central executive is episodic, and used for 
selecting and executing the optimal action. 

Memory optimization is done using a particle swarm 
optimization (PSO) approach. The standard PSO (StdPSO) 
[10] algorithm is mostly used for the optimization of real 
problems. For discrete set-based optimization problems, the 
StdPSO operators were modified and the SPSO algorithm was 
created [11], [12]. 

 

 

Fig. 1 Real-time episodic memory optimization 
 

Since semantic memory in this study is defined as a set of discrete memory items and the SBPSO is used for the memory 
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optimization process, the SPSO uses the AEMQ algorithm 
(discussed in detail in Section III) to evaluate the fitness of 
each semantic memory item. The optimal set of semantic 
memory items forms the episodic memory, from which the 
optimal episodic memory item is selected. Finally, the action 
corresponding to the selected episodic memory item is 
executed. 

III. METHODOLOGY 

The AEMQ algorithm is described in terms of a UAV, 
executing a mission. The AEMQ uses sensory stimuli, 
received from the UAV, along with a set of cues and semantic 
memory, provided by a domain expert, to quantify a semantic 
memory item. Assume that the semantic memory of UAV is 
defined as the set of all valid state-transitions, then it is the 
task of the executive to construct the optimal episodic memory 
from which it is to select and pass the optimal control 
command to the UAV flight controller. 

Note that, since the episodic memory generated is temporal 
and will become obsolete when either the sensory stimuli or 
cues change, the approach is more similar to Cowan’s 
attentional focus theory model. 

A. Sensory Stimuli 

Input stimuli is defined as: 
 

 𝛷௥ ൌ ൛𝜑ଵ
௥, 𝜑ଶ

௥, … , 𝜑௡೻ೝ
௥ ൟ                          (1) 

 
where 𝜑௜

௥, 𝑖 ൌ 1, . . , 𝑛ఃೝ is the evidence parameter representing 
the evidence received from the environment. 

B. Cues 

The cues are defined are defined as: 
 

 𝛷௠ ൌ ൛𝜑ଵ
௠, 𝜑ଶ

௠, … , 𝜑௡೻೘
௠ ൟ                        (2) 

 
where 𝜑௝

௠ ∈ ሾ𝑙𝑏௠ೕ, 𝑢𝑏௠ೕሿ, 𝑗 ൌ 1, . . , 𝑛ః೘ defines a cue, 
constrained to specified lower and upper boundaries.  

C. Semantic Memory 

The semantic memory (SM) is defined as the set of state-
transitions which governs the behavior of the UAV:  

 
 𝐒𝐌 ൌ  ൛𝜏ଵ, 𝜏ଶ, … , 𝜏௡ಽ೅ಾ

ൟ                             (3) 
 

where 𝜏௞ ∈ 𝐒𝐌, k ൌ ሺ1, … , |𝐒𝐌|ሻ is a memory item, representing 
a state-transition in the SM. The state-transition is a tuple, 
 

 𝜏௞ ൌ  ൫𝓋, 𝜂, 𝒮ఈ, 𝒮ఉ, 𝒜, ℱ൯                         (4) 
 

where 𝓋 ൌ ሼ0,1ሽ indicates whether the transition is valid, 
𝜂 ∈ ℤା is an objective identifier assigned to the transition, 𝒮𝛼 
and 𝒮𝛽 are the start and end states of the state-transition, 

respectively, 𝒜 ൌ ൛𝒶ଵ, … , 𝒶௡𝒜
ൟ is a set of actions and ℱ ൌ

൛𝑝ଵ, 𝑝ଶ, … , 𝑝௡ℱ
ൟ is the trigger formula for the transition and 

consisting of a set of simple logic propositions. 
Each proposition 𝑝௟ ∈ ℱ, 𝑙 ൌ  ሺ1, … , 𝑛ℱሻ is defined by a 

domain expert and is a tuple, 
 

 𝑝௟ ൌ  ൫𝜑௜
௥ , 𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝜑௝

௠  ൯                 (5) 
 
where the sensory stimuli and cues are related by a 
logical_operator, from the set  ሼ ൐, ൏, ൌ ሽ, to form simple 
propositions of the form: 
 

 ൫𝜑௜
௥ ൐ 𝜑௝

௠൯, ൫𝜑௜
௥ ൏ 𝜑௝

௠൯ and ൫𝜑௜
௥ ൌ  𝜑௝

௠൯            (6) 
 

Any non-numeric argument is discretized to a numeric 
value, prior to quantification of ℱ. 

The indicator 𝓋, the objective identifier 𝜂, the actions 𝒜 
and all the propositions 𝑝௟ are defined and maintained by the 
domain expert. 

D. Memory Quantification Preparation 

In order to perform the quantification of a state-transition 
τ୩, a problem-specific model is constructed before it is 
presented to the MEP equation for quantification. Given a 
state-transition τ୩ ∈ 𝐒𝐌 the model is formally defined as a 
tuple, 

 
 ℳఛೖ

ൌ ሺ𝐕, 𝐗, 𝐅, 𝚲ሻ                             (7) 
 

The set of variables are represented by 𝐕 ൌ ቄሼ𝑣ℚሽ ∪

, ൛𝑣ଵ
ℙ, 𝑣ଶ

ℙ, … 𝑣௡ℙ
ℙ ൟ ∪ ൛𝑣ଵ

𝔸, 𝑣ଶ
𝔸, … 𝑣௡𝔸

𝔸 ൟቅ where 𝑣ℚ is the query 

variable, 𝑣௣
ℙ , 𝑝 ൌ 1, … , 𝑛ℙ is a predictor variable, representing 

a proposition in the trigger formula and 𝑣௟
𝔸, 𝑙 ൌ 1, … , 𝑛𝔸 is an 

association variable. Note that, since the propositions are 
independent, they will not have any effect on the query 
variable, unless relevant associations are defined between the 
query variable and appropriate predictor variables. The 
associations are problem-specific and are defined by the user. 

Let 𝑚 ఛೖ
ൌ หሼ𝑣ℚሽ ∪ ൛𝑣ଵ

ℙ, 𝑣ଶ
ℙ, … 𝑣௡ℙ

ℙ ൟห, and 𝑛ఛೖ
ൌ 2௠ ഓೖ , then a 

𝑚ఛೖ
ൈ 𝑛ఛೖ

 constraint matrix, 𝐗 is the state space of the trigger 
formula and defines all the joint statements of ሼ𝑣ℚሽ ∪
൛𝑣ଵ

ℙ, 𝑣ଶ
ℙ, … 𝑣௡ℙ

ℙ ൟ. A binary constraint function, 𝐹൫𝑋 ൌ 𝑥௜௝൯, 𝑖 ∈ 𝑛ఛೖ
 

and 𝑗 ∈ 𝑚ఛೖ
 assigns a boolean constraint to each variable in the 

state space. Let 𝑛௏ ൌ ሺ1 ൅ 𝑛ℙ ൅ 𝑛𝔸ሻ, then vector 𝐅 ൌ
 ൫〈𝐹ଵ〉, 〈𝐹ଶ〉, … , 〈𝐹௡ಷ

〉൯, 𝑛ி ൌ 𝑛௏ are constraint averages for each 
of the variables in 𝐕 . The vector 𝚲 ൌ ൫𝜆ଵ, 𝜆ଶ, … 𝜆௡೰

൯, 𝑛௸ ൌ 𝑛௏, 
represents the Lagrange multipliers, calculated for each 
variable in 𝐕, using (17). 

E. Representing Real-Time Stimulus and Cue Relationship 

The degree of belief in a memory item being recalled is 
influenced by current stimuli and current cue. Therefore, the 
quantification of the memory item must consider in both. Each 
constraint average 〈𝐹௡ಷ

〉 ∈ 𝐅 in (7) represents the degree of 
belief in a proposition, given the real-time stimuli (evidence) 
received from the environment. In this study, the constraint 
average is calculated by interpreting a proposition as a degree 
of believe, (probability), derived from a distance calculation. 
Fig. 2 illustrates two example state-transitions with their 
corresponding transition rules (propositions). A constraint 
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average for the proposition is calculated by measuring the 
progress of the current sensory stimulus 𝜑௜

௥, relative to the 
operational bounds of the mission task. The result is a 
probability assigned to the proposition. 

The constraint averages, 𝐅 are calculated as follows: Firstly, 
given the proposition 𝑝௟, calculate the total operation distance 
𝑑௝

௠, using the upper and lower bounds of the mission 
argument: 

 
 𝑑௝

௠ ൌ  𝑢𝑏௝
௠ െ 𝑙𝑏௝

௠                                  (8) 
 
Calculate the current distance 𝑑௜

௥ of the sensory stimulus, 
𝜑௝

௥ with respect to the upper and lower bounds of the cue, 𝜑௜
௠, 

according to the logical operation of the proposition: 
 

𝑑௜
௥ ൌ

⎩
⎪
⎨

⎪
⎧𝜑௜

௥ െ 𝑙𝑏௝
௠  ;  𝑖𝑓 𝑝௟ ൌ ൫𝜑௜

௥ ൐ 𝜑௝
௠൯ 

𝑢𝑏௝
௠ െ 𝜑௜

௥ ;  𝑖𝑓 𝑝௟ ൌ ൫𝜑௜
௥ ൏ 𝜑௝

௠൯

1                  ;  𝑖𝑓 𝑝௟ ൌ ൫𝜑௜
௥ ് 𝜑௝

௠൯

1                  ;  𝑖𝑓 𝑝௟ ൌ ൫𝜑௜
௥ ൌ 𝜑௝

௠൯

                (9) 

 
Use (8) and (9) to calculate a real valued distance, in the 

range ሾ0,1ሿ, for the proposition: 
 

 𝑃𝑟 ሺ𝑝௟ሻ ൌ  
ௗ೔

ೝ

ௗೕ
೘                                     (10) 

 
where 𝑃𝑟 ሺ𝑝௟ሻ represent the relative remaining distance of 𝜑௜

௥, 
within the boundaries 𝑙𝑏௝

௠ and 𝑢𝑏௝
௠ as a probability. Once the 

distances for each proposition have been calculated, the 
distances for each of the joint statements can be calculated. To 
illustrate, let 𝑣ℚ ൌ 𝑝଴, 𝑣ଵ

ℙ ൌ 𝑝ଵ and 𝑣ଶ
ℙ ൌ 𝑝ଶ, then the state space 

consists of 2ଷ ൌ 8 joint statements. The joint distances, for the 
predictor variables are calculated as follows: 

 

 

Fig. 2 Interpreting stimuli of two state transitions as probabilities 
 

 𝑑௣భ௣మ
ൌ 𝑑௣భ

൅ 𝑑௣మ
                               (11) 

 
 𝑑௣భ௣మ

ൌ 𝑑௣భ
൅ ൫1 െ 𝑑௣మ

൯                        (12) 
 

 𝑑௣మ௣మ
ൌ ൫1 െ 𝑑௣భ

൯ ൅ 𝑑௣మ
                          (13) 

 
 𝑑௣భ௣మ

ൌ ൫1 െ 𝑑௣భ
൯ ൅ ൫1 െ 𝑑௣మ

൯                      (14) 
 
The overall distance 𝑑௙, represented by the probability 

distribution over all the propositions of the trigger formula, is 
calculated by: 
 

 𝑑௙ ൌ ൫𝑑௣భ௣మ
൅ 𝑑௣భ௣మ

൅ 𝑑௣మ௣మ
൅ 𝑑௣భ௣మ

൯               (15) 
 

With all the joint distances of the joint statements available, 
the respective constraint averages can now be calculated. 
Firstly, the constraint average 〈Fଵ〉 of the query variable 𝑝଴ is 
set to 1.0. The constraint averages for the predictor and 
association variables are then set as follows: 

 
𝐅 ൌ

൬𝑑௣బ
,

൫ௗ೛భ೛మାௗ೛భ೛మ൯

ௗ೑
,

൫ௗ೛భ೛మାௗ೛భ೛మ൯

ௗ೑
,

൫ௗ೛భ೛మାௗ೛భ೛మ൯

ௗ೑
,

൫ௗ೛భ೛మାௗ೛భ೛మ൯

ௗ೑
,

ௗ೛భ೛మ

ௗ೑
൰  

 (16) 
 

Next, the Lagrange multipliers are determined. The duality 
between the Lagrange multipliers and the user-defined 
constraint averages, allows the Legendre transform to be used 
to derive the Lagrange multipliers: 

Outside bounds Operational range Outside bounds

s4 s5t32

Hovering Flying

, m

j

m

j

m
j lb ub  

 

 j
r
i

mub 

m m m
j j jd ub lb 

m
jlb

 j
r
i

mlb 

m
jub

r
i

 1l
r m
i jp   

 j
r
i

mlb   j
r
i

mub 

   1Pr / m
jl

m
j

r
ip ub d 

 2
r m
i jlp   

   2Pr / m
jl

m
j

r
i lbp d  

(Stimulus UAV position is less than cue position)

(Stimulus UAV energy level is above cue limit)

m
jubwhere, and objective is

 2132 ,t pF p 
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ℒ௧௥௔௡௦ ൌ 𝚲 ൌ 𝑚𝑖𝑛ఒೖ
ቀ𝑙𝑛 𝑍ሺ𝜆ଵ, 𝜆ଶ, … 𝜆௞ሻ െ ∑ 𝜆௝〈𝐹௝〉

୫ಜౡ
௝ୀଵ ቁ (17) 

 
The multipliers are derived by varying the values of 𝜆௞ 

while keeping the constraint average, 〈𝐹௝〉 fixed, until ℒ௧௥௔௡௦ 
reaches a minimum. 

F. Memory Quantification 

Jaynes’s seminal paper on the MEP [13] utilizes the 
principles of information theory, based on Shannon’s work on 
communication theory [14]. Jaynes’s MEP is particularly 
useful for inference, where information is incomplete. 

Given the model ℳఛೖ
, the probability distribution, 𝐐 ൌ

ቀ𝑞ଵ, 𝑞ଶ, … 𝑞௡𝐐
ቁ, 𝑛𝐐 ൌ 𝑛ఛೖ

over the variables (propositions) of the 

trigger formula can now be calculated. Given the 𝑚ఛೖ
ൈ 𝑛ఛೖ

 
constraint matrix and let 𝑖 ∈ 𝑛ఛೖ

 and 𝑗 ∈ 𝑚ఛೖ
, the MEP is 

formally defined as: 
 

 ൫𝑞௜|ℳఛೖ
൯ ൌ

ଵ

௓ሺఒభ,ఒమ,…ఒೖሻ
𝑒ି ∑ ఒೕிೕሺ௑ୀ௫೔ሻ

೘ഓೖ
ೕసభ              (18) 

 

where, 𝑍ሺ𝜆ଵ, 𝜆ଶ, … 𝜆௞ሻ ൌ ∑ 𝑒∑ ఒೕிೕሺ௑ୀ௫೔ሻ
೘ഓೖ
ೕసభఛೖ

௜ୀଵ  . 𝑍 is the partition 
function which ensures the probabilities are assigned between 
0 and 1. The Lagrange multipliers are represented by 𝜆௝, 
𝑗 ൌ 1, … , 𝑘 and 𝐹௝ሺ𝑋 ൌ 𝑥௜ሻ assigns a real-world, domain-specific 
constraint, to the state 𝑖 of variable 𝑗. 

The memory can now be evaluated, using the probability 
distribution 𝐐. For example, a memory item with two 
characteristics (rules) rules, 𝜏ଵ and 𝜏ଶ, will result in a 
probability distribution of 𝐐 ൌ ሺ𝑞ଵ, 𝑞ଶ, 𝑞ଷ, 𝑞ସሻ, where, 𝑞ଵ ൌ
𝑝𝑟ሺ𝜏ଵ, 𝜏ଶሻ, 𝑞ଶ ൌ 𝑝𝑟ሺ𝜏ଵ, 𝜏ଶഥ ሻ, 𝑞ଷ ൌ 𝑝𝑟ሺ𝜏ଵഥ , 𝜏ଶሻ, 𝑞ସ ൌ 𝑝𝑟ሺ𝜏ଵഥ , 𝜏ଶഥ ሻ.  

In this study, the quantification 𝛱ఛೖ
 of the memory item 

𝜏௞ ∈ 𝐒𝐌 is defined as: 
 

  𝛱ఛೖ
ൌ 𝓋 ൈ 𝓅 ൈ 𝑞ଵ                               (19) 

 
where, 𝓋 ൌ 1 indicates a valid state-transition and 𝓋 ൌ 0 
indicate an invalid state-transition. A reward 𝓅 is applied as: 

𝓅 ൌ ቊ
0     ;  𝑖𝑓 ൫𝜏𝑘𝛼

് 𝒮𝛼𝑐𝑢𝑟𝑟𝑒𝑛𝑡
൯

1      ;  𝑖𝑓 ൫𝜏𝑘𝛼
ൌ 𝒮𝛼𝑐𝑢𝑟𝑟𝑒𝑛𝑡

൯
 

 
where, 𝜏௞ഀ

 is the start state of the state-transition currently 
being evaluated and 𝒮ఈ೎ೠೝೝ೐೙೟

 is the current state, previously 
selected by the executive.  

Note that the quantification is user-defined and problem 
specific. It is left to the reader to define problem-specific 
quantifications using the probability distribution, 𝐐.  

G. Executive Action-Selection and Execution 

The SPSO uses the memory quantification (19) to evaluate 
the fitness of the memory item (i.e. state-transition in this 
study). Ultimately, the optimal set of memory items represent 
the episodic memory which is used by the executive to select 
the optimal action to take next. 

 
 𝐄𝐌 ൌ  ൛𝜏ଵ

∗, 𝜏ଶ
∗, … , 𝜏௡𝐒𝐌

∗ ൟ                      (20) 
 

where, 𝜏௞
∗ ∈ 𝐄𝐌, k ൌ ሺ1, … , |𝐄𝐌|ሻ is an optimal memory item 

which represents a state-transition in the SM.  
From the episodic memory 𝐄𝐌, the executive can now 

select the optimal memory item (state-transition) and pass the 
associated action 𝒶୬ ∈ 𝒜, defined in (4), for execution. 

Note that it is possible that |𝐄𝐌| ൐ 1. This is because the 
memory quantification is performed statistically and may be 
equal for some memory items. Again, it is left to the reader to 
define (19) as appropriate for the problem at hand. In this 
study, only valid state-transitions evaluate to non-zero.  

IV. EXPERIMENT 

A. Experiment Design 

The methodology is experimentally evaluated by 
simulation, where a UAV autonomously executes a “medical 
delivery” mission. The mission is defined as a list of cues 
(tasks) and is described as follows: 

 

 

Fig. 3 UAV Mission design 
 
From the Home (I) location, arm the motors, ascend to a 

specified operational height and fly to the Collection point 
(II). Descend and collect the cargo, then ascend to the 

specified operational height and fly to the Delivery point (III). 
Descend at the delivery point and deliver the cargo. Ascend to 
a new operational height and fly to the Charging point (IV) for 
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recharging. Descend on the charging point and disarm the 
motors. The mission is illustrated graphically in Fig. 3. Table I 
lists the UAV states. 

 
TABLE I 

UAV STATES 

S1 – Motors Off S2 – Motors On S3 - Ascending 

S4 - Hovering S5 - Flying S6 - Descending 

S7 - Rotating S8 – Acquiring Cargo S9 – Releasing Cargo 

 
TABLE II 

UAV STATE-TRANSITIONS 

 s1 s2 s3 s4 s5 s6 s7 s8 s9 

s1 tଵ 𝒕𝟐 tଷ tସ t t଺ t଻ t଼ tଽ 

s2 𝒕𝟏𝟎 tଵଵ 𝒕𝟏𝟐 t tଵସ tଵହ t tଵ଻ tଵ଼ 

s3 tଵଽ tଶ଴ 𝒕𝟐𝟏 𝒕𝟐𝟐 tଶଷ tଶସ 𝒕𝟐𝟓 tଶ଺ tଶ଻ 

s4 tଶ଼ tଶଽ 𝒕𝟑𝟎 𝒕𝟑𝟏 𝒕𝟑𝟐 𝒕𝟑𝟑 𝒕𝟑𝟒 𝒕𝟑𝟓 𝒕𝟑𝟔 

s5 tଷ଻ tଷ଼ tଷଽ 𝒕𝟒𝟎 𝒕𝟒𝟏 tସଶ 𝒕𝟒𝟑 tସସ tସହ 

s6 𝒕𝟒𝟔 tସ଻ tସ଼ 𝒕𝟒𝟗 tହ଴ 𝒕𝟓𝟏 tହଶ tହଷ tହସ 

s7 tହହ tହ଺ 𝒕𝟓𝟕 𝒕𝟓𝟖 𝒕𝟓𝟗 t଺଴ 𝒕𝟔𝟏 t଺ଶ t଺ଷ 

s8 t଺ସ t଺ହ t଺଺ t଺଻ t଺଼ t଺ଽ t଻଴ t଻ଵ t଻ଶ 

s9 t଻ଷ t଻ସ t଻ହ t଻଺ t଻଻ t଻଼ t଻ଽ t଼଴ t଼ଵ 

 
Table II shows the SM, representing all the state-transitions 

of the UAV and is defined by the domain expert. Complex 
(logic-based) state-transitions are shown in shaded/italic/bold. 

B. Experiment Setup 

The mission was simulated using the AirSim/Unity 
simulator, with flight-control routines developed in C++. The 
robo-cognitive architecture was implemented using .NET/C# 

code and integrated with the simulator via the Redis in-
memory data cache. 

C. Results 

Figs. 4-6 show the behavior of the UAV in the simulation. 
Fig. 4 shows the successful collection of the medical package. 
As the UAV approaches its waypoint, it must adjust its 
velocity in order to avoid overshooting. Fig. 5 shows the 
autonomous velocity adjustment, as the UAV approaches the 
delivery point. 

As the UAV approaches its target, the fitness reduces from 
0.35 to 0.28 and the velocity of the UAV (indicated in the 
window left) is automatically adjusted accordingly from 
8.00 𝑚/𝑠 to 2.24 𝑚/𝑠. Fig. 6 shows the successful delivery of 
the medical package as per the “delivery” cue in the mission. 

A video of the full mission can be viewed at [15]. 

V.  DISCUSSION 

A. Autonomous Velocity Control 

Fig. 7 shows the various velocity adjustments, related to the 
fitness (calculated using (19)), for the whole mission. The 
graph shows velocity/fitness reductions at the points of 
“collection”, “deliver” and “charging”. 

B. Resulting State-Flow 

Fig. 8 shows the state flow generated for the mission, where 
each state transition corresponds to an optimal action selected 
and executed. 

 
 

 

Fig. 4 Successful collection of the medical package 
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Fig. 5 Autonomous velocity adjustment en-route 
 

 

Fig. 6 Successful delivery of medical package 
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Fig. 7 Fitness/Velocity adjustments 
 

 

Fig. 8 Resulting action selections 
 
Each cue (task) is repeatedly executed (see “Fly” state in 

Fig. 8), until the task objective was reached. Due to some 
lagging between the AirSim simulator and Unity games 
engine, it was observed that, at high velocity, the UAV would 
overshoot its target destination in the Unity games engine, but 
the target position in AirSim would be correct, causing the 
UAV to miss its objective. However, with the autonomous and 
dynamic velocity control, the UAV would autonomously 

correct its positioning, by repeating the task, while constantly 
reducing its velocity according to the fitness of the task. At 
low velocity, the positioning of the UAV was more accurate 
and it could achieve its objectives. With the autonomous 
velocity control, the UAV was able to successfully collect and 
deliver the medical package in the simulated mission. 
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VI. CONCLUSION 

In real-world scenarios, semi-autonomous systems, such as 
exploratory robots, operate in environments which may 
constantly change. Therefore, it must be simple and 
computationally inexpensive to alter a robot’s SM and/or cues 
in real-time. This is especially important for remotely 
deployed robotic systems, such as extra-terrestrial exploration 
robots, where communication time and bandwidth are at a 
premium. 

Future study could include the application of metamemory 
[9], to further optimize memory recall, through real-time 
clustering of the episodic memory items. This could extend 
the approach in this study to include the generation of episodic 
memory for multiple, concurrent tasks. 
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