
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2627

Abstract—For the communication between human and computer

in an interactive computing environment, the gesture recognition is
studied vigorously. Therefore, a lot of studies have proposed efficient
methods about the recognition algorithm using 2D camera captured
images. However, there is a limitation to these methods, such as the
extracted features cannot fully represent the object in real world.
Although many studies used 3D features instead of 2D features for
more accurate gesture recognition, the problem, such as the processing
time to generate 3D objects, is still unsolved in related researches.
Therefore we propose a method to extract the 3D features combined
with the 3D object reconstruction. This method uses the modified
GPU-based visual hull generation algorithm which disables unneces-
sary processes, such as the texture calculation to generate three kinds
of 3D projection maps as the 3D feature: a nearest boundary, a farthest
boundary, and a thickness of the object projected on the base-plane. In
the section of experimental results, we present results of proposed
method on eight human postures: T shape, both hands up, right hand
up, left hand up, hands front, stand, sit and bend, and compare the
computational time of the proposed method with that of the previous
methods.

Keywords—Fast 3D Feature Extraction, Gesture Recognition,
Computer Vision.

I. INTRODUCTION
HE recognition algorithm is significant to the interactive
computing environment. Additionally, the processing time

and recognition accuracy are the main concerns of the recogni-
tion algorithm. Therefore, various researches related to these
concerns have been studied in the last few years.

Generally, computer vision-based recognition algorithms
use 2D images for extracting features. The 2D images can be
used efficiently when the camera position and viewing direc-
tion are fixed. The features, extracted from 2D input images,
are invariant to the scale, the translation, and the rotation in 2D
planes. However, in spite that the targets, which are captured
and recognized, are 3D objects, the features, which are ex-
tracted in 2D images, can have 2D information or limited 3D
information.

This work was supported by the ‘Seoul R and BD Program
(10581cooperateOrg93112)’.

K. Hong is with the Department of Media, Graduate school of Soongsil
University, Seoul, Korea (e-mail: hongmsz@ ssu.ac.kr).

C. Lee is with the Department of Media, Graduate school of Soongsil
University, Seoul, Korea (e-mail: dashans @ssu.ac.kr).

K. Jung is with the Department of Media, Graduate school of Soongsil
University, Seoul, Korea (corresponding author to provide phone:
82-2-812-7520; fax: 82-2-822-3622; e-mail: kcjung@ ssu.ac.kr).

K. Oh is with the Department of Media, Graduate school of Soongsil Uni-
versity, Seoul, Korea (e-mail: oks@ ssu.ac.kr).

To solve this problem, a lot of studies proposed methods us-
ing multi-view images[1,2,3]. These methods recognize objects
or postures using comparison results between camera input
images and multi-view camera captured images which are
captured by real or virtual cameras around the objects of rec-
ognition. However, these methods spend very long time to
generate features and to compare the features with input data,
since the accuracy of recognition is proportional to the number
of camera view images. And the major problem of these me-
thods is that the features extracted from multi-view images
cannot fully represent the 3D information. This is due to those
images still containing only the 2D information.

Therefore, recently a lot of studies are proposing many kinds
of methods using reconstructed 3D objects. The reconstructed
3D objects can represent positions of components which in-
clude 3D objects and can provide 3D information to extracted
features. Therefore, these ways can recognize more accurate
than the methods which use the 2D images. Table I shows the
kinds of computer vision-based feature extraction methods
using the reconstructed 3D objects.

TABLE I

THE VISION-BASED 3D FEATURE EXTRACTION METHODS USING
RECONSTRUCTED 3D OBJECTS

Type of
Extracted
Features

Algorithms
for Feature
 Extraction

Authors[paper]
Feature

Extraction
Time(sec)

C. Chu, I. Cohen [4] Less than
0.1 3D

Bin-distribution D. Kyoung et al. [5] Less than 1 Histogram
Spherical har-

monic T. Funkhouser et al. [6] Less than 1

Reeb graph M. Hilaga et al. [7] 1
3D thinning H. Sundar et al. [8] 10

N. D. Cornea et al. [9, 10] 103 Graph
Curve-skeleton A. Brennecke, T. Isenberg [11] 103

The methods using the structural feature of 3D objects are

more accurate for recognition, because these extract the fea-
tures using 3D information of each component that constructs
the subjects of recognition (Table I). However, the methods
producing skeletons from 3D objects [7-11] required long time,
since these are divided into two processes: the 3D object re-
construction and the feature extraction. To solve this problem
in the feature extraction part, the methods, which use a spheri-
cal harmonic [6] or a 3D bin-distribution algorithm [4,5] for
fast feature extraction and represent distances between the
center point and the boundary point by a histogram, is proposed.
However, even though these methods can represent the global

Real-time 3D Feature Extraction
without Explicit 3D Object Reconstruction

Kwangjin Hong, Chulhan Lee, Keechul Jung, and Kyoungsu Oh

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2628

shape, they cannot represent the local characters. Due to the 3D
object reconstruction part still exists, it is difficult to apply
these methods using 3D objects to the real-time recognition
environment.

Fig. 1 The overviews of 3D feature extraction processes: (a) process of

previous studies and (b) proposed method

In this paper, we propose the method of a real-time 3D fea-

ture extraction without the explicit 3D object reconstruction.
Fig. 1 shows the difference between the previous feature ex-
traction methods and the proposed one in their processes. This
method can generate three kinds of features which contain
different types of 3D information: nearest boundary, farthest
boundary, and thickness of the object projected on a base-plane.
The projection map can be obtained by rendering the target
object. For this purpose, the visual hulls can be used as a 3D
geometry proxy. It is an approximate geometry representation
resulting from the shape-from-silhouette 3D reconstruction
method[12].

The visual hull reconstruction and rendering can be accele-
rated by modern graphics hardware. Li et al.[13] present a
hardware-accelerated visual hull (HAVH) rendering technique.
Since we extract features from the results of the visual hull
rendering, our proposed method does not need explicit geome-
tric representation. Therefore we use the modified HAVH
algorithm which disables unnecessary processes, such as the
texture calculation, in the general HAVH algorithm. Moreover,
we can save the drawing time by disabling all lighting and
texture calculations for this rendering, due to these processes
are not necessary for feature extraction (Fig. 1(b)).

The structure of the paper is as follows. We describe the
visual hull in Section II. Next, we describe the details of our
methods in Section III: the silhouette extraction (Section III.A),
the visual hull rendering (Section III.B) and the projection map
generation (Section III.C). Experimental results are provided in
Section IV. And, we conclude in Section V.

II. VISUAL HULL
For extracting features of dynamic 3D objects, we can use

video streams or images as input from multiple cameras, and
reconstruct an approximate shape of the target object from
multiple images. By rendering the reconstructed object, we are
able to obtain projection maps, which can be used as important
features of the object. For the purpose of reconstructing and
visualizing the dynamic object, the visual hull can be used. It

has been widely used as 3D geometry proxy, which represents a
conservative approximation of true geometry [12].

We can reconstruct a visual hull of an object with calibrated
cameras and the object's silhouette in multiple images. The
silhouette of the object in an input image refers to the contour
separating the target object from the background. Using this
information, combined with camera calibration data, the sil-
houette is projected back into the 3D scene space from the
cameras' center of projection. This generates a cone-like vol-
ume (silhouette cone) containing the actual 3D object. With
multiple views, these cones can be intersected. This produces
the visual hull of the object (Fig. 2).

 (a) (b)
Fig. 2 Visual hull reconstruction: (a) 8 silhouette cones are generated
from silhouette images taken from different viewpoints, (b) Recon-

structed 3D surface

Many different implementations of visual hull reconstruction

are described in the literature [13-16]. Some compute an ex-
plicit geometric representation of the visual hull, either as voxel
volume [14] or polygonal mesh [15]. However, if the goal is
rendering visual hulls from novel viewpoints, the reconstruc-
tion does not need to be explicit. Li et al. [13] present a hard-
ware-accelerated visual hull (HAVH) rendering technique. It is
a method for rendering of visual hull without reconstructing the
actual object. The implicit 3D reconstruction is done in ren-
dering process by exploiting projective texture mapping and
alpha map trimming. It runs on modern graphics hardware and
achieves high frame rates.

We can obtain projection maps for feature extraction by
rendering the visual hull. The explicit geometry representation
is not needed for this process. Moreover, explicit geometry
reconstruction is very time-consuming. Instead of recon-
structing 3D visual hull geometry, we render the visual hull
directly from silhouettes of input images by using HAVH me-
thod and obtain the projection maps from the rendering results.

III. FAST FEATURE EXTRACTION
For extracting features of a dynamic 3D object, we render a

visual hull of the target object from multiple input images. By
using HAVH rendering method, we can render the visual hull
without reconstructing the actual object in real time. From the
rendering results of the visual hull, we obtain projection maps
which contain 3D information of the target object, such as
nearest boundary, farthest boundary, and thickness of the object
(Fig. 3). They can be used as important features of the target
object.

(a)

(b)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2629

The projection maps are obtained by rendering the target
object. When an object is rendered by a 3D graphics card, the
depth of a generated pixel is stored in a depth buffer. The depth
buffer can be extracted and saved as a texture [17], called a
depth map. By rendering the front-most surfaces of the visual
hull, we can get a depth map which stores the distance from a
projection plane to the nearest boundary. It is called a nearest
boundary projection map (Fig. 3(a)). Likewise, we can get a
farthest boundary projection map by rendering the rear-most
surfaces of the visual hull (Fig. 3(b)). By subtracting the values
from the two maps, we can get a thickness map which stores the
distance between the front-most surfaces and rear-most sur-
faces (Fig. 3(c)).

Fig. 3 Projection maps: (a) nearest boundary projection map, (b) far-
thest boundary projection map, and (c) thickness map

Our method consists of two major parts as shown in Fig. 4.

When images are captured from cameras, an object's silhouette
can be extracted in the multiple images. Using this information,
combined with calibration data, we can render the visual hull of
the target object. We are able to obtain projection maps of the
object while rendering the visual hull.

Fig. 4 Work flow of our method.

A. Silhouette Extraction
When images are captured from multiple cameras, an ob-

ject's silhouette can be computed in multiple images. The target
object in each captured image(Ic) is segmented from the back-
ground (Ib). We store the information into silhouette images(S).
The alpha values of a silhouette image are set to 1 for the fo-
reground object and to 0 for the background as in (1).

 (1)

Silhouettes are then generated from each silhouette image.
The silhouette of the object in a silhouette image refers to the
collection of all edges separating the foreground object from
the background. Using this information, combined with cali-
brated cameras, we are able to generate silhouette cones by
projecting back each silhouette into 3D scene space.

B. Visual Hull Rendering
The visual hull surfaces can be determined on graphics

hardware by exploiting projective texturing in conjunction with
alpha blending while rendering silhouette cones. As shown by
Fig. 5(a), for rendering a silhouette cone of the nth camera, all
silhouette images(S1, S2, …, Sn-1) except the one associated
with the cone currently being drawn are projected onto the
silhouette cone of Cn using the projection matrices from their
corresponding calibrated cameras. These silhouette images are
used as a mask eliminating the portions of each cone that do not
lie on the surface of the visual hull. In the texture units, alpha
values projected from multiple textures are modulated. As a
result, only those pixels projected with the alpha value 1 from
all the other silhouette images produce the output alpha value
1(Fig. 5(b)). Thus, visual hull faces are drawn. All polygons of
silhouette cones are still rendered entirely, but using the alpha
testing, only the correct parts of them actually generate pixels in
the image.

Fig. 5 Silhouette cone rendering: (a) while rendering each silhouette
cone, it is protectively textured by the silhouette images from all other
views. (b) alpha map trimming, alpha values from multiple textures are

modulated. Thus, visual hull faces are drawn

C. Projection Map Generation
We can compute the distance from a projection plane to

front-most surfaces of a target object as well as the distance to
rear-most surfaces. We are then able to compute the thickness
of the object, which is the distance between front-most surfaces
and rear-most surfaces. Consider the example in Fig. 6. Given a
vector perpendicular to the projection plane, we can find
hitpoints: P1 on the front-most surface and P2 on the rear-most
surface. The distance between P1 and P2 can be computed. It
equals to ||P2-P1||.

We can generate the projection map by rendering the target
object. First, we set a virtual camera to be able to view the 3D
object. The object from a viewpoint is then projected onto the
camera's view plane (or projection plane). An orthographic

(a) (b)

(a) (b) (c)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2630

projection can be used in order to avoid perspective projection
distortion. Rasterization, which is the process of converting
geometric primitives into pixels, determines the viewing di-
rection and its hitpoint. In rendering the object’s front-most
surface, the hitpoint P1 on the front-most surface along the
viewing direction is easily extracted for each pixel and saved
in a buffer. Likewise, the hitpoint P2 on the rear-most surface
can be obtained by re-rendering the object from the same
viewpoint and saved in another buffer. With the information
from the two buffers, we can compute the distance.

Fig. 6 Distance from a projective plane to front-most of an object,

distance to rearmost surfaces, and its thickness

For the implementation, we can generate projection maps

using depth information from the viewpoint by rendering the
target object. When an object is rendered by a 3D graphics card,
the depth of a generated pixel is stored in a depth buffer. It is
done in hardware. The depth buffer can be extracted and saved
as a texture, called a depth map. It is usual to avoid updating the
color buffers and disable all lighting and texture calculations
for this rendering in order to save drawing time. We render the
target object from a viewpoint with the depth test reversed (i.e.,
GL_GREATER instead of GL_LESS) in order to draw the
rear-most faces of the object. From this rendering, the depth
buffer is extracted and store in a texture, which is a farthest
boundary map (Fig. 7(a)). To obtain a nearest boundary map,
we render the object again from the same viewpoint with the
normal depth test only passing fragments closer to the view-
point (i.e. GL_LESS) (Fig. 7(b)). We can compute the distance
by subtracting the values from the two depth buffers in order to
generate a thickness map. It can be done by multiple textures
blending function (i.e., GL_SUBTRACT)(Fig. 7(c)).

Fig. 7 Projection map generation using depth map. (a),(b), and (c) are
1D version of projection maps of an object shown in left: (a) farthest

boundary projection map stores the depth from view plane to rear-most
surface, (b) nearest boundary projection map stores the depth values of
front-most surface, (c) thickness map is generated by subtracting (b)

from (a)

IV. EXPERIMENTAL RESULTS
This section demonstrates our results of the fast feature ex-

traction. All images have been generated on a 2.13GHz CPU
with 2Gbyte memory and an nVidia GeForce 8800GTX
graphic card, using Direct3D with HLSL. We used 8 cameras to
acquire input images. The cameras were positioned around an
object in an accurately calibrated system. The resolution both
acquired images and rendered result images was set to
640 480. Under this setting, we have measured the speed of
our method. We obtained 8 silhouette cones from silhouette
images. It took around 8ms per image on the CPU. However,
we did not check the calculation time of this process (generat-
ing silhouette cones), due to this is a common factor for all
algorithm. Generating a single projection map by rendering
front-most (or rear-most) surfaces of the visual hulls, which is
the process of a nearest (or furthest) boundary projection map,
took around 1.5ms. The generation times for a thickness map
including the generation of two projection maps and distance
computation by rendering the visual hull twice were about 3ms
(Table II).

TABLE II

THE COMPARISON OF THE PROPOSED METHOD WITH THE 3D FEATURE
EXTRACTION METHODS WHICH USE EXPLICIT 3D MODELS

Using Methods Visual Hull
Generation

Feature
Extraction Total

Thinning-based Skeletonization 370ms 107 ms 107 ms
3D bin-distribution 370 ms 10 ms 380 ms
Proposed method 3 ms 3 ms

Experimental results show that the proposed method pro-

vides high accuracy of recognition and fast feature extraction.
Table II shows the comparison of the proposed method with the
3D feature extraction methods which use explicit 3D models.
For this experiment, we use the 3D models that are recon-
structed in the voxel space of 300x300x300 size, and that are
generated by GPU. Because we generate the projection map
using GPU programming without explicit 3D object recon-
struction, the proposed method is faster than other methods and
can manage 13 or 14 image sets per second. Therefore this
method is affected to real-time recognition system.

Fig. 8 shows the silhouette images which are extracted only
foreground objects in a camera captured image (Fig. 8(a)) and
projection maps which are generated using the reconstructed
3D objects. In this paper, we use 8 kinds of human posture
images. And, the projection maps are generated using a
top-view camera with an orthographic projection. Because the
human postures are limited to the z=0 plane and the top-view
image is invariant to the translation, scale and rotation, we use
the top-view image. As shown by Fig. 8(b), there are many
similar silhouette images in different posture and different
camera views. However, the projection maps can represent the
difference of each posture, since they have the 3D information
of each posture (Fig. 8(c-e)).

(a) (b) (c)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2631

Fig. 8 Extracted features from the captured images of 8 human postures: (a) camera captured images, (b) silhouette images, (c) nearest boundary
projection map, (d) farthest boundary projection map and (e) thickness map

(a) (b) (c) (d) (e)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2632

V. CONCLUSION
In this paper, we proposed a 3D feature extraction method

without the explicit 3D object reconstruction. The proposed
method generates 3 kinds of projection maps, which project all
data on the z=0 plane using the input images of the multi-view
camera system, instead of 3D object. This method is fast for
presenting the 3D information of the object in input images,
due to we use the modified HAVH algorithm that the unnec-
essary processes are disabled such as the light and texture
calculation. Therefore the proposed method can apply to
real-time recognition system. However, some problems re-
main in this method: error in visual hull rendering, limitation
of the number of camera, data transferring time in memories
and distance calculating between overlapping components.

In our method, we use the silhouette-based visual hull ren-
dering algorithm. But this algorithm cannot generate the ac-
curate 3D object, because the silhouette images are binary
images and does not have the input object's texture informa-
tion. And our method cannot use more than 16 camera images.
However, this is a hardware limitation and we can solve this
problem using parallel visual hull rendering method. Finally,
the proposed method cannot detect the z-position of arms or
legs, because we calculate only the distance between the
nearest and the farthest parts from a camera. Now we are
studying about reducing transfer time and more accuracy to
provide good performance.

REFERENCES
[1] J. Loffler, “Content-based retrieval of 3d models in distributed web

databases by visual shape information,” in Proc. 4th International Conf.
Information Visualization, 2000, pp. 82.

[2] C.M. Cyr, B.B. Kimia, “A similarity-based aspect-graph approach to 3d
object recognition,” International J. Computer Vision, vol. 57, 2004, pp.
5-22

[3] P. Min, J. Chen, T. Funkhouser, “A 2d sketch interface for a 3d model
search engine,” in Proc. the International Conf. Computer Graphics and
Interactive Techniques, 2002, pp. 138.

[4] C. Chu, I. Cohen, “Posture and gesture recognition using 3d body shapes
decomposition,” in Proc. the IEEE Computer Society Conf. CVPR, vol. 3,
2005, pp. 69.

[5] D. Kyoung, Y. Lee, W. Baek, E. Han, J. Yang, K. Jung, “Efficient 3d
voxel reconstruction using pre-computing method for gesture recogni-
tion,” in Proc. Korea-Japan Joint Workshop, 2006, pp. 67-73.

[6] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin,
D. Jacobs, “A search engine for 3d models,” ACM Trans. Graphics, vol.
22, 2003, pp. 83-105.

[7] M. Hilaga, Y. Shinagawa, T. Kohmura, T. Kunii, “Topology matching
for fully automatic similarity estimation of 3d shapes.” in Proc. the 28th
annual Conf. Computer graphics and interactive techniques, 2001, pp.
203-212.

[8] H. Sundar, D. Silver, N. Gagvani, S. Dickinson, “Skeleton based shape
matching and retrieval,” in Proc. International Conf. Shape Modeling
International, 2003, pp. 130-139.

[9] N.D. Cornea, D. Silver, P. Min, “Curve-skeleton properties, applications
and algorithms,” IEEE Trans. Visualization and Computer Graphics, vol.
13, 2007, pp. 530-548.

[10] N.D. Cornea, D. Silver, X. Yuan, R. Balasubramanian, “Computing
hierarchical curve-skeletons of 3d objects,” in Proc. the Visual Com-
puter, vol. 21, 2005, pp. 945-955.

[11] A. Brennecke, T. Isenberg, “3d shape matching using skeleton graphs,”
in Proc. Simulation and Visualization, vol. 13, 2004, pp. 299-310

[12] A. Laurentini, “The visual hull concept for silhouette-based image
understanding,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 16, 1994, pp. 150-162.

[13] M. Li, M. Magnor, H. Seidel, “Hardware-accelerated visual hull recon-
struction and rendering,” in Proc. Graphics Interface, 2003, pp. 65-71.

[14] R. Szeliski, “Rapid octree construction from image sequences,” in Proc.
CVGIP: Image Underst., vol. 58, 1993, pp. 23-32.

[15] W. Matusik, C. Buehler, L. McMillan, “Polyhedral visual hulls for
real-time rendering,” in Proc. the 12th Eurographics Workshop. Ren-
dering Technique, 2001, pp. 115-126.

[16] C. Lee, J. Cho, K. Oh, “Hardware-accelerated jaggy-free visual hulls
with silhouette maps,” in Proc. the ACM Sym. Virtual Reality Software
and Technology, 2006, pp. 87-90.

[17] C. Everitt, A. Rege, C. Cebenoyan, “Hardware shadow mapping,”
Technical report, NVIDIA.

