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Reactive Neural Control for Phototaxis and
Obstacle Avoidance Behavior of Walking Machines
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Abstract—This paper describes reactive neural control used to
generate phototaxis and obstacle avoidance behavior of walking
machines. It utilizes discrete-time neurodynamics and consists of
two main neural modules: neural preprocessing and modular neural
control. The neural preprocessing network acts as a sensory fusion
unit. It filters sensory noise and shapes sensory data to drive the
corresponding reactive behavior. On the other hand, modular neural
control based on a central pattern generator is applied for locomotion
of walking machines. It coordinates leg movements and can generate
omnidirectional walking. As a result, through a sensorimotor loop this
reactive neural controller enables the machines to explore a dynamic
environment by avoiding obstacles, turn toward a light source, and
then stop near to it.

Keywords—Recurrent neural networks, Walking robots, Modular
neural control, Phototaxis, Obstacle avoidance behavior.

I. INTRODUCTION

RECOGNIZING that, to date, most research in the domain
of biologically inspired walking machines concentrated

on the construction of machines with animal-like properties
performing efficient locomotion [1], [2]. Others have focused
on the generation of locomotion based on engineering tech-
nologies [3] as well as biological principles [4], [5]. In general,
all these machines were solely designed for the purpose of
motion without responding to environmental stimuli. In this
research area, only a few of them have attended to implement
different (reactive) behaviors on physical walking machines
[3], [6]. This highlights that less attention has been paid to the
walking machines which can react to environmental stimuli.
In other words, contributions developing embodied control
techniques for various reactive behaviors of many degrees-
of-freedom systems are rare.

From this point of view, in this article, we present a physical
walking machine which can interact with a dynamic environ-
ment by performing obstacle avoidance and phototaxis. That is
the walking machine can explore its environment by avoiding
obstacles (negative tropism), turn toward a light source (posi-
tive tropism), and then stop near to it. These desired behaviors
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are inspired by the first autonomous two-drive-wheel robots
Elmer and Elsie of Grey Walter [7] which were also capable
of responding to a light stimulus and avoiding obstacles. To
this end, we are able to reproduce such reactive behaviors,
generally achieved for the wheeled robots, for a machine with
many degrees of freedom facing sensorimotor coordination
problems of a more complex system. However, the main
purpose of this article is not only to demonstrate the walking
machine performing different types of tropism but also to
investigate the analyzable neural mechanisms underlying this
approach in order to understand their inherent dynamical
properties. Furthermore, in this study, we will try to show that
reactive neural control can be a powerful technique to better
understand and solve sensorimotor coordination problems of
many degrees-of-freedom systems like sensor-driven walking
machines.

The following section describes the technical specifications
of the walking machine. Section 3 explains a reactive neural
controller for phototaxis and obstacle avoidance behavior. The
experiments and results are discussed in section 4. Conclusions
are given in the last section.

II. THE WALKING MACHINE AMOS-WD06

The AMOS-WD06 [8] is a hexapod robot. Each leg has
three joints (three DOF): the thoraco-coxal (TC-) joint en-
ables forward (+) and backward (−) movements, the coxa-
trochanteral (CTr-) joint enables elevation (+) and depression
(−) of the leg, and the femurtibia (FTi-) joint enables extension
(+) and flexion (−) of the tibia (see Fig. 1b). Each tibia
segment has a spring damped compliant element to absorb
impact force as well as to measure ground contact during
walking. All leg joints are driven by analog servo motors. The
machine is constructed with two body parts: a front part where
two forelegs are installed and a central body part where two
middle legs and two hind legs are attached. They are connected
by one active backbone joint driven by a digital servo motor.
This machine has six foot contact sensors, seven infrared (IR)
sensors, two light dependent resistor (LDR) sensors, and one
upside-down detector (UD) sensor (see Fig. 1a). The foot
contact sensors are for recording and analyzing the walking
patterns. The IR sensors are used to elicit negative tropism,
e.g., obstacle avoidance and escape response, while the LDR
sensors serve to activate positive tropism like phototaxis. The
UD sensor is applied to trigger a self-protective reflex behavior
when the machine is turned into an upside-down position (see
[9] for details).
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Fig. 1. (a) The physical six-legged walking machine AMOS-WD06. (b) The
physical leg with three DOF of the AMOS-WD06

III. REACTIVE NEURAL CONTROL

Reactive neural control (see Fig. 2) for phototaxis (positive
tropism) and obstacle avoidance (negative tropism) behavior
is formed by two main modules: the neural preprocessing unit
and the modular neural control unit. The neural preprocessing
unit serves also for sensory fusion. It filters sensory noise
and shapes sensory data to drive the corresponding reactive
behavior. The modular neural control unit is used for loco-
motion generation of the walking machine. It coordinates leg
movements and can generate omnidirectional walking. The
details of these two neural units are described in the following
sections.

Fig. 2. Diagram of reactive neural control. The controller acts as an
artificial perception-action system, i.e., the sensor signals go through the
neural preprocessing into the modular neural control which commands the
actuators. As a result, the robot’s behavior is generated by interacting with
its environment in a sensorimotor loop

All neurons of the network are modeled as discrete-time
non-spiking neurons. The activation and output of each neuron
are governed by (1), (2), respectively:

ai(t + 1) =
n∑

j=1

Wij oj(t) + Bi i = 1, . . . , n, (1)

oi = tanh(ai), (2)

where n denotes the number of units, ai their activity, Bi

represents a fixed internal bias term together with a stationary
input of neuron i, Wij the synaptic strength of the connection
from neuron j to neuron i, and oi the output of neuron i. Input
units, e.g., sensory neurons, are configured as linear buffers.

    A. Neural Preprocessing of Sensory Data

In order to generate the reactive phototaxis and obstacle
avoidance behavior representing as orientational responses, we
make use of two LDR (LDR1,2, positive stimuli) and only
four front IR (IR1,...,4, negative stimuli) sensor signals (see
Fig. 7). These sensory data provide environmental information
for our sensor-driven robot system. Nonetheless, the raw
sensory signals require preprocessors to eliminate the sensory
noise as well as to shape all sensory data for activating the
appropriate reactive behavior. To do so, neural preprocessing
is applied. It is constructed based on the minimal recurrent
controller (MRC) structure [10]. The original controller [10]
(colored box in Fig. 3) has been developed for controlling
only obstacle avoidance behavior of a miniature Khepera
robot, which is a two wheeled platform. Here, it is adjusted
and expanded for controlling the walking behavior of the
machine to avoid obstacles or escape from a deadlock situation
(negative tropism) as well as turn toward and approach a light
source (positive tropism).

The principle connection weights W1,...,4 of the network
were manually adjusted with respect to dynamical proper-
ties of recurrent neural networks as follows. First, the self-
connection weights W1,2 of the output neurons O1,2 were
manually tuned to derive a reasonable hysteresis interval
on the input space. That is the width of the hysteresis is
proportional to the strength of the self-connections (see [8], [9]
for details). In this case, the hysteresis effect determines the
turning angle for avoiding obstacles and approaching a light
source, i.e., the wider the hysteresis, the larger the turning
angle. Both self-connections are set to 2.0 to obtain a suitable
turning angle of the AMOS-WD06 (see Figs. 4a and c). Then,
the recurrent connections W3,4 between output neurons were
symmetrized and manually adjusted to -3.5. Such inhibitory
recurrent connections are formed as a so-called even loop
[11], which also shows hysteresis phenomenon (see Fig. 4b).
In general conditions, only one neuron at a time is able to
produce a positive output, while the other one has a negative
output, and vice versa. However, both neurons can show high
activation only if their inputs are very high, e.g., > 0.64 (see
Fig. 4b). This guarantees the optimal functionality for avoiding
obstacles or escaping from corner and deadlock situations.

The sensor values (LDR1,2 and IR1,...,4) are linearly
mapped into the closed interval [−1,+1]. For the LDR sen-
sors, values LDR1,2 = −1.0 refers to darkness and LDR1,2

= +1.0 to the maximal measurable light intensity. The IR
values IR1,...,4 are −1.0 if no obstacle is detected and value
+1.0 represents that an obstacle is near. The mean value of
the two left IR sensor signals (IR3,4) is used as the first input
(Input1) to the network while the second input (Input2)
corresponds to the two right IR sensors (IR1,2). Parallelly,
the left and right LDR sensor signals are provided as the third
(Input3) and forth (Input4) inputs indirectly passing through
hidden neurons H1,2. Concerning the priority of the sensory
signals, here the IR sensor signals are desired to have higher
priority than the LDR sensor signals. That is if obstacles and
light are detected at the same time, the neural preprocessor has
to elicit IR sensor signals and inhibit LDR sensor signals. As a
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consequence, the obstacle avoidance behavior will be executed
instead of the phototaxis. The phototaxis is performed if and
only if the obstacles are not detected. To do so, we set the
connection weights W5,6 from Input1 and Input2 to the
output units to higher values than the ones W7,8 connecting
between the hidden and output neurons. Thus, they were set
to W5,6 = 7.0 and W7,8 = 4.5. To ensure the optimal
functionality for priority setting of the sensory signals, we
additionally project two inhibitory connections W9,10 from
Input1 and Input2 to H1 and H2, respectively, together
with a bias term B at each of the hidden neuron. These
parameters were again manually tuned and were, as a result,
set to W9,10 = −2.0 and B1,2 = −1.5. Furthermore, two
inhibitory synapses W11,12 were extra integrated and set with
the same strength of W7,8, i.e., −4.5. These inhibitory cross
connections cause that an activated output neuron (showing
high activation ≈ +1) driven by its ipsilateral LDR signal
can become deactivated (showing low activation ≈ −1) if the
contralateral LDR signal becomes activated (see Fig. 4d). An
important effect of this cross inhibition is to obtain effective
phototaxis; i.e., the machine is able to walk forward during
performing phototaxis and finally can approach to the source.
On the other hand, without these cross inhibition the machine
will only try to turn toward the source without performing
forwards motion. As a consequence, such a behavior might
have difficulties to approach the source.

Note that one can optimize the network parameters, for
instance by using an evolutionary algorithm [10], [12] but
for our purposes here, it is good enough. The complete
preprocessing network and its hysteresis effect are shown in
Figs. 3 and 4, respectively.

Fig. 3. The neural preprocessing network for the coordination of positive
(LDR sensor signals) and negative (IR sensor signals) stimuli. Its outputs
O1,2 are directly fed to input neurons I4,5 of the modular neural control
(see Fig. 5) to stimulate the phototaxis and obstacle avoidance behavior of
the AMOS-WD06. Note that H1,2 are the hidden neurons of the network

This structure and its parameters cause the network to
filter, prioritize, and coordinate the different sensory inputs.
It can even determine the turning angle as well as the turning
direction of the walking machine by utilizing the hysteresis

Fig. 4. (a), (b) Hysteresis domain of Input1 (Raw− IR3,4) for the output
neuron O2 of the network while the other output neuron O1 shows low ≈ −1
and high ≈ +1 activation, respectively. All other sensory inputs (Raw −
IR1,2, Raw − LDR1, and Raw − LDR2) are fixed to ≈ −1 for case
(a) but ≈ +1 for case (b). In case (a), the machine will walk forward F
(drawing on the left) as long as O1 and O2 give low activation but it will
turn right TR as soon as Raw − IR3,4 increases to values above −0.55
where only O2 shows high activation meaning that there is an obstacle on its
left (drawing on the right). However, it will return to walk forward F when
Raw − IR3,4 decreases to values below −0.68 meaning that no obstacle
is detected. In case (b), the machine will turn left TL (i.e., it avoids an
obstacle on its right although it detects a light source in front of it, compare
drawing on the left) as long as the value of Raw − IR3,4 is below 0.64
where O1 has high activation while O2 shows low activation. Increasing the
value of Raw−IR3,4 above 0.64 causes O2 to become active. The machine
then walks backward B, i.e., it detects obstacles on both sides (drawing on the
right). It will return to turn left TL again if the value of Raw−IR3,4 is below
0.54. (c) Hysteresis domain of Input3 (corresponding to Raw − LDR2)
for O1 with the other inputs fixed to ≈ −1. O1 shows high activation if
Raw−LDR2 increases to values above −0.25 and returns to low activation if
Raw−LDR2 decreases to values below −0.4 while O2 shows low activation
in all cases. As a result, the machine will turn left TL (drawing on the right)
when O1 shows high activation meaning that it turns toward a light source
otherwise it walks forward (drawing on the left). (d) Hysteresis domain of
Raw−LDR2 for O2 with the other inputs fixed as Raw−IR1,2,3,4 ≈ −1
and Raw − LDR1 ≈ +1. Here, O2 shows low activation only if the value
of Raw−LDR2 is higher than −0.13 while O1 gives low activation all the
time. However, O2 will provide high activation if Raw − LDR2 decreases
to values below −0.28. As a consequence, the machine will turns toward the
source (drawing on the left) and then it is able to walk forward if the source
is almost in front of it (drawing on the right) causing high activation of both
LDR signals (Raw − LDR1,2). Finally, it can approach to the source. In
reverse cases, if Raw−IR1,2 and Raw−LDR1 are varied while the other
inputs are fixed, they will derive the same hysteresis effect as Raw − IR3,4

and Raw − LDR2 do

effect. Applying the output signal of O1 and O2 (see Fig. 7)
to their target neurons I4 and I5 in the neural control module
(see Fig. 5), the walking machine can autonomously perform
phototaxis and obstacle avoidance behavior through a sensori-
motor loop with respect to environmental stimuli. In other
words, the walking machine will turn toward, approach, and
eventually stop near a light source by determining a threshold
of the mean value of the left and right LDR sensor signals
(MLDR). At the same time, it will also avoid obstacles if
they are detected.
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    B. Modular Neural Control

Modular neural control for locomotion of the walking
machine consists of three subordinate networks1 or modules
(colored boxes in Fig. 5): a neural oscillator network, two
velocity regulating networks (VRNs), and a phase switching
network (PSN). The neural oscillator network, serving as a
central pattern generator (CPG) [13], generates periodic output
signals. These signals are provided to all CTr-joints and FTi-
joints only indirectly passing through all hidden neurons of the
PSN. TC-joints are regulated via the VRNs. Thus, the basic
rhythmic leg movement is generated by the neural oscillator
network and the steering capability of the walking machine is
realized by the PSN and the VRNs. Fig. 5 shows the complete
network structure together with the synaptic weights of the
connections between the controller and the corresponding
motor neurons as well as the bias term of each motor neuron.
These synaptic weights and all bias terms were manually
adjusted to obtain an optimal gait; i.e., a typical tripod gait
where the diagonal legs are paired and move synchronously.

This modular neural control can generate different walking
patterns which are controlled by the four input neurons I2,...,5.
Furthermore, a self-protective reflex2 can be activated via the
input neuron I1 which will excite TR1 and TL1 joints and all
CTr- and FTi- joints and inhibit the remaining TC-joints. Ap-
propriate input parameter sets for the different walking patterns
and the reflex behavior are presented in Table I where the first
column describes the desired actions in accordance with five
input parameters shown in the other columns. Abbreviations
are: FDiR and BDiR = forward and backward diagonal
motion to the right, FDiL and BDiL = forward and backward
diagonal motion to the left, LaR and LaL = lateral motion to
the right and the left. Note that marching is an action where
all the legs are positioned and held in a vertical position and
support is switched between the two tripods.

TABLE I
INPUT PARAMETERS FOR THE DIFFERENT WALKING PATTERNS

AND THE REFLEX BEHAVIOR

Actions I1 I2 I3 I4 I5

Forward 0 1.0 1, 0 −1.0 −1.0
Backward 0 1.0 1, 0 1.0 1.0
Turn right 0 1.0 1, 0 −1.0 1.0
Turn left 0 1.0 1, 0 1.0 −1.0
Marching 0 1.0 1, 0 0.0 0.0
FDiR 0 0.0 0 −1.0 −1.0
BDiR 0 0.0 0 1.0 1.0
LaR 0 0.0 0 0.0 0.0
FDiL 0 0.0 1 −1.0 −1.0
BDiL 0 0.0 1 1.0 1.0
LaL 0 0.0 1 0.0 0.0
Reflex 1 0.0 ...1.0 1, 0 −1.0 ...1.0 −1.0 ...1.0

As shown in Table I, this neural controller can produce
at least 12 different actions with respect to the given inputs.

1Here, we discuss only main functions of the network. A more complete
description of each subordinate network is given in [8], [9].

2The action is triggered when the machine is turned into an upside-down
position. As a consequence, it stands still in this position as long as the
stimulus (UD signal) is presented (not shown here but see [9] for details).

Fig. 5. The modular neural control of the six-legged walking machine
AMOS-WD06 consists of three different neuron groups: input, hidden, and
output. Input neurons I are the neurons used to control walking direction
(I2,...,5) and to trigger the protection reflex (I1). Hidden neurons H are
divided into three modules (CPG, VRNs, and PSN (see [8], [9] for details)).
Output neurons (TR, TL, CR, CL, FR, FL) directly command the position
of servo motors. Abbreviations are: BJ = a backbone joint, TR(L) = TC-joints
of right (left) legs, CR(L) = CTr-joints of right (left) legs, FR(L) = FTi-
joints of right (left) legs. All connection strengths together with bias terms
are indicated by the small numbers except some parameters of the VRNs given
by A = 1.7246, B = -2.48285, C = -1.7246. The location of the motor neurons
on the AMOS-WD06 is shown in the lower picture. Note that describing the
controller driving the machine also with the backbone joint will go beyond the
scope of this article. Thus, the motor neuron controlling the backbone joint
BJ is not activated; i.e., the backbone joint functions as a rigid connection.
However, it can be modulated by the periodic signal via the PSN or VRNs
to perform an appropriate motion, e.g., helping the machine during climbing
over obstacles or performing other tasks

For all cases, I1 and I3 are set as binary values (0 or 1)
which then activate or inhibit the movement of all joints and
control directions of diagonal or lateral walking, respectively.
On the other hand, I2 can vary between 0.0 and 1.0 which
suppresses the amplitude of the periodic signal of the FTi-
joints; i.e., the larger the value of I2 the lower the amplitude.
As a consequence, the walking machine will perform a very
small step in the lateral or diagonal direction or no step at all
if I2 is set to 1.0. Setting I2 to negative values might cause
unstable walking.

Furthermore, varying I4 and I5 between −1.0 and 1.0
(see Fig. 6) while other input parameters are fixed (I1 = 0,
I2 = 1.0, and I3 = 1 or 0), the amplitude of the periodic
signals of the left and right TC-joints will be regulated. As
a consequence, the machine can perform straight and curve
walking in forward and backward directions, marching, and
spot turning in different radians (orientational motions). Ac-
cording to these parameter settings, it is appropriate and simple
to generate the phototaxis and obstacle avoidance behavior
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because such behavior corresponds mainly to orientational
motions rather than diagonal or lateral motions. Thus, in
the robot walking experiments presented in the following
section, the input parameters I1,...,3 are fixed as described
above where the diagonal and lateral motions as well as the
reflex action are deactivated. On the other hand, I4,5 will
be stimulated by preprocessed sensory signals coming from
the neural preprocessor (see Fig. 3). As a result, the walking
machine will walk forward if no obstacle or light is detected
and it will turn right or left with respect to the sensory signals,
e.g., turn toward a light source (positive stimuli) but turn
away from obstacles (negative stimuli). It will also perform
marching as soon as it closely approaches a light source.

Fig. 6. Plot of the input space (I4, I5, see Fig. 5) which is classified into
four main areas. For input values in a dark square area (dabe), the walking
machine will perform spot turning to the left with different radians while a
white square area (efih) is for the right turn. In light gray triangle areas (gde
and geh), they will move forward in different curves to the left and the right
and dark gray triangle areas (ebc and ecf ) are for backward to the right and
the left, respectively. Additionally, if I4 and I5 are varied along the diagonal
line (gec), the machines will walk straight forward (ge) and backward (ec)
with different walking speeds. Details on robot walking experiments have
been presented in [9]

IV. EXPERIMENTS AND RESULTS

This section describes experiments carried out to assess
the ability of the reactive neural controller to generate pho-
totaxis and obstacle avoidance as well as exploration be-
haviors. The controller was implemented on a mobile pro-
cessor (a PDA) for testing the physical walking machine
in a real environment3. We encourage readers to watch
the video clips of the real robot walking experiments at
http://www.nld.ds.mpg.de/∼poramate/ICIS. Here, we report
the real time data of sensory and motor signals of the walking
machine during performing reactive behaviors in different
situations (see Fig. 7). Recall that generating the reactive
behaviors which correspond to orientation motions will effect
only the movement of the TC-joints (compare TR1 and TL1

in Fig. 7) while the periodic movement of the CTr-joints will
remain unchanged (compare CR1 in Fig. 7) and the FTi-joints
will be inhibited (compare FR1 in Fig. 7). Note that in the
experiments the machine walks with one gait type where the

3During experiments, we use battery packs for powering the robot system
which can run up to 35 minutes.

diagonal legs are paired and move together; e.g., R1, R3,
and L2 step in phase while the remaining legs step out of
phase. Such that the motor signals of R1, R3, and L2 have
similar patterns and perform 180 degrees out of phase with
other motor signals of L1, R2, and L3.

Fig. 7. Sensory and motor signals during performing the reactive behaviors.
(a) Obstacle avoidance behavior. (b) Phototaxis. (c) Obstacle avoidance
behavior and phototaxis (see text for details). Abbreviations are: IR1,...,4 =
raw IR sensor signals; LDR1,2 = raw LDR sensor signals; MLDR = the
mean value of the left and right LDR sensor signals; O1,2 = outputs of the
neural preprocessor (see Fig. 3); F = forward; TL = turn left; TR = turn
right; B = backward; S = stop; TR1, CR1, FR1 = motor signals of the
TC-joint, CTr-joint, and FTi-joint of the right front leg, respectively; TL1 =
the motor signal of the TC-joint of the left front leg

Fig.7a shows the situation where the walking machine
performed only obstacle avoidance behavior. It can be seen
that TR1 is turned into the opposite direction (light gray
area), if the left IR sensors (IR3,4) detects the obstacle;
correspondingly TL1 is turned into the opposite direction
(dark gray area) when the right IR sensor signal (IR1,2) is
active. As a consequence, the walking machine was able to
turn away from an obstacle and finally avoid it. In other
words, it turned right TR if there was the obstacle on its
left and vice versa otherwise it walked forward F. In special
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situations, e.g., here walking toward a wall, IR sensor signals
on both sides were simultaneously active. Thus, TR1 and
TL1 were reversed into another directions which causes the
machine to walk backward B. During walking backward the
right IR sensor signal became inactive while the left one was
still active. As a result, the active signal drove the machine
to turn right TR until; eventually, it was able to avoid the
obstacle and then continued walking forward F.

Fig.7b presents the situation where the walking machine
detected a light source and no obstacles appeared around it.
It can be seen that TL1 is turned into the opposite direction
(dark gray area), if the left LDR sensor (LDR2) detects the
source. On the other hand, if the right LDR sensor signal
(LDR1) is active, TR1 will be reversed (not shown). During
turning toward the source, both LDR sensor signals got high
activation the result of which enabled the machine to walk
forward F. After that the walking machine approached the
source and eventually stopped S nears it by marching if the
amplitude of the mean value of the left and right LDR sensor
signals MLDR becomes larger than a threshold value (here,
0.94). This results in the motor signals of all TC-joints being
automatically set to 0.0.

Fig. 7c demonstrates the situation where an obstacle was
detected during performing phototaxis. At the beginning, the
walking machine walked forward F where O1,2 were inactive
(≈ −1) and then turned toward the source as soon as one of
the LDR signal shows high activation (here, LDR1 meaning
that the source was on its right). It turned right by inverting
the signals of all right TC-joints (compare TR1, light gray
area). While turning toward the source, the machine detected
the obstacle on its right where IR1,2 became active. As a
consequence, it turned left TL to avoid the obstacle (see the
inversion of the motor signal of TL1, dark gray area) although
it still detected the source. After avoiding the obstacle it then
again turned toward the source and finally stopped S in front
of it.

As demonstrated, the reactive neural controller is suitable
to successfully enable the machine to perform phototaxis and
solve the obstacle avoidance task. Additionally, the controller
can even protect the machines from getting stuck in corners
or deadlock situations. This is demonstrated in a video clip at
http://www.nld.ds.mpg.de/∼poramate/ICIS. Thus, due to this
functionality, the walking machines can autonomously perform
exploration.

V. CONCLUSION

The six-legged walking machine AMOS-WD06 is presented
as a reasonably complex robot platform for studying senso-
rimotor coordination problems of many degrees-of-freedom
systems, for conducting experiments with neural controllers,
and even for testing artificial perception-action systems.

In this study the controller of the walking machine was
designed purely as a neural network. It consists of two neural
modules: neural preprocessing and modular neural control.
The neural preprocessing unit obtained by a small recurrent
neural network functions as a sensor fusion unit. Utilizing
hysteresis phenomena of such a network, it can filter sensory

noise and combine different sensory signals to stimulate the
desired positive and negative tropisms of the walking machine.
The modular neural control, on the other hand, performs
as a locomotion generator. It was constructed by integrating
three different functional neural modules: the neural oscillator
network, the velocity regulating networks, and the phase
switching network. The neural oscillator network acts as a
CPG for basic rhythmic leg movements while controlling
different walking patterns is done by the velocity regulating
and the phase switching networks. This modular neural control
can produce at least 11 different walking patterns and a self-
protective reflex by using five input neurons. Coupling the
neural preprocessing with the modular neural control leads to
a so-called reactive neural control. It has been implemented
on the embedded system (mobile processor) of the walking
machine. As a result, the walking machine can autonomously
perform different types of tropisms, like phototaxis and ob-
stacle avoidance behavior using the sensorimotor loop. The
proposed neural technique has been shown to be adequate for
generating locomotion and various reactive behaviors of the
walking machine. It can even easily be adapted to control
different kinds of walking machines without changing the
internal network structure and its parameters [9]. Furthermore,
modifying the neural preprocessing or adding another prepro-
cessing units another kind of a reactive behavior, e.g., sound
tropism, [14] can be also obtained.
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