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Reachable Set Bounding Estimation for Distributed
Delay Systems with Disturbances

Li Xu, Shouming Zhong

Abstract—The reachable set bounding estimation for distributed
delay systems with disturbances is a new problem. In this paper,we
consider this problem subject to not only time varying delay and
polytopic uncertainties but also distributed delay systems which is
not studied fully untill now. we can obtain improved non-ellipsoidal
reachable set estimation for neural networks with time-varying delay
by the maximal Lyapunov-Krasovskii fuctional which is constructed
as the pointwise maximum of a family of Lyapunov-Krasovskii
fuctionals corresponds to vertexes of uncertain polytope.On the other
hand,matrix inequalities containing only one scalar and Matlabs
LMI Toolbox is utilized to give a non-ellipsoidal description of the
reachable set.finally,numerical examples are given to illustrate the
existing results.

Keywords—Reachable set, Distributed delay,Lyapunov-Krasovskii
function, Polytopic uncertainties.

I. INTRODUCTION

REACHABLE set is a set that bounds all the states
starting from the origin by inputs with peak values

for a dynamic systems with distributed delays and bounded
disturbance inputs. Recently ,the problem of finding a smallest
bound of reachable set has received considerable attention.It is
well known that time delay may result in instability , sustained
oscillations,bifurcation or chaos of neural networks which
degrades system performance[1]-[4].So we consider about the
reachable set with time delays. It played a important role
in peak-to-peak minimization in control theory extensively
investigated for time-delay systems in recent years . For
instance , Improved ellipsoidal bound of reachable set for
time-delayde linear systems with disturbances was presented
by Kim[5].A delay-dependent result expressed in the form
of matrix inequalities containing only one non-convex scalar
was geted by modified Lyapunov-Krasovskii type function
. A non-ellipsoidal reachable set estimation for uncertain
neural networks with time-varying delay was derived by
Zuo[6]-[8].The maximal Lyapunov functional,combined with
the Razumikhin methodology and S-procedure is applied to
get better results.Reachable set estimation for distributed delay
systems with bounded disturbances which inputs are regarded
as unit-energy bounded or unit-peak bounded is proprosed
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by Zhang [9] .DelayCdependent conditions for estimating the
reachable set of the system with distributed delays is derived
in the terms of Lyapunov-Krasovskii functional approach and
the delay-partitioning technique and so on. We consided the
reachable set bound estimation of the time-delay systems with
distributed delays in this paper.This problem was investigated
by many researchers[10]-[12] . However,it has not been well
addressed in many works [13]-[15],which motivates our study.
Our main results are different from the works in follow several
aspects.First, we select Lyapunov matrices which vertices
are more than the vertices of uncertain polytope,which can
reduce conservatism and get a more accurate description of
the reachable set bound. Second , we consided the systems
with not only state-delayed but also distributed delays which
is distinguish from other existing works.Third,we introduce
linear matrix inequality techniques as well as convex-hull
properties to get a tighter reachable set estimation by spliting
integral and bring conservatism with lower computational
complexity to some extent.Finally,numerical examples as well
as simulation results are obtained to illustrate the advantages
of our treatments.

Notation: Thtoughout the whole paper.�n denotes the n
dimensional Euclidean space and �m×n is the set of all
�m×n real matrices . The superscript ′T ′ denotes matrix
transposition,and I and 0 denote the identity and zero matrix
with appropriate dimension.The notation P > 0(P ≥ 0)
means that P is symmetric and positive definite ( positive
semi-definite ) . Co{•}denotes a convex hull.The symmetric
terms in a symmetric matrix are denoted by *. Matrix ,if not
explicitly stated,are assumed to have compatible dimensions.

II. PROBLEM STATEMENT AND PRELIMINARIES

⎧⎪⎨
⎪⎩

ẋ(t) = Ax(t) +Bx(t)(t− h(t))

+C

∫ t

t−d(t)

x(s)ds+Dω(t)
(1)

Where x(t) ∈ �n is the state vector , A ∈ �n×n, B ∈ �n×n .
C, D are known constant matrices with appropriate dimensions
belong to a given polytope;ω(t) ∈ �q is the disturbance
input,the discrete delay h(t) is a continuous-time differentiable
function and the disturbance is a bounded function .We denote
Ω = [A,B,C,D] and Ω =

∑N
i=1 θiΩi,θi ≥ 0,

∑N
i=1 θi = 1.

Here the N vertices of the polytope are described by Ωi =

(e-mail :xuli10533@163.com).

Consider the following state-delayed systems with distributed
delays and bounded disturbance inputs.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:9, 2014

1260

[Ai, Bi, Ci, Di],i ∈ [1, N ]. We assume that

0 ≤ h1 ≤ h(t) ≤ h2, |ḣ(t)| ≤ h,

0 ≤ d1 ≤ d(t) ≤ d2, |ḋ(t)| ≤ d, ωT (t)ω ≤ ωm

(2)

Where h1, h2, d1, d2, h1, h, d are constants.We denote the set
of reachable states with ω(t) that satisfies Eq.(2) by

Rx � x(t) ∈ Rn|x(t), ω(t)satisfiesEq.(1)and(2) (3)

We construct a functional with maximum of a family of
Lyapunov-Krasovskii functions corresponds to a vertex of the
polytope .We denote ε(P, 1) = {x ∈ Rn : xTPx ≤ 1}with
the matrix P > 0 and denote the 1-level set as L1 = {x ∈
Rn : V (x) ≤ 1} ,the pointwise maximum quadratic function
V1,max is denoted as V1,max = max{xTPjx}, here Pj > 0
,For any x0 ∈ Rn ,without loss of generality,we assume
that there exists an integer m(1 < m < M) such that
V1,max(x0) = {xT

0 Pjx0}, for j ∈ [1,m]and V1,max(x0) >
{xT

0 Pjx0}, for j > m . We can get that (1):for a vector ζ ∈ Rn

,the directional derivativre of V1,max at x0 along ζ is

�ζV1,max(x0) = lim
t→0+

V1,max(x0 + tζ)− V1,max(x0)

t

= max
ξ∈V1,max(x0)

{ξT ζ};
(4)

(2) ∂V1,max(x0) = Co{2Pjx0, j = 1, 2, · · · ,m},where
∂f(x0) is the subdiffentential of the function f(x0) at x0

Before proceeding further ,we will state lemmas which is used
in following text.
Lemma 1.For any matrix N > 0 ,the following inequality
holds:
(
∫ t

t−h
f(s)ds)TN(

∫ t

t−h
f(s)ds) ≤ h

∫ t

t−h
fT (s)Nf(s)ds

Lemma 2.Let scalar functions f1, f2, f2, · · · , fN : Rn → R,
be positive in an open subset F of Rn . Then the reciprocally
convex combination of fi over F has the property:

∑
i=1

1

λi
fi(t) ≥

∑
i=1

fi(t) +
∑
i �=j

gi,j(t)

Subject to

{gi,j : Rn → R, gi,j(t) = gj,i(t),

[
fi(t) gi,j(t)
gj,i(t) fj(t)

]
≥ 0}

Where the real numbers λi satisfy λi > 0, and∑
i

λi = 1.

Lemma 3[1].Assume V is a well-defined Lyapunov function
for system(1),For some positive number α ,V (x) ≤ 1 ,if

dV (x)

dx
+ αV (x)− α

ωm
ωT (t)ω(t) ≤ 0

III. MAIN RESULTS

Our objection is to get an non-ellipsoid set as small as

on the system with distributed delay and disturbances.
Theorem 1. Consider the time-delay system(1) with

there exist real symmetric matrices S,Q,R,E > 0,and
T1, T2, · · · , T6, T7, βjk > 0,for all j, k = {1, 2, · · · ,M},and
a scalar α > 0 satisfying the following matrix inequalities:

Ωi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 Ω12 Ω13 AT
i T4 AT

i T5 Ω16 Ω17

∗ Ω22 Ω23 −T4 −T5 Ω26 Ω27

∗ ∗ Ω33 Ω34 Ω35 Ω36 Ω37

∗ ∗ ∗ Ω44 Ω45 TT
4 Ci TT

4 Di

∗ ∗ ∗ ∗ Ω55 TT
5 Ci TT

5 Di

∗ ∗ ∗ ∗ ∗ Ω66 Ω67

∗ ∗ ∗ ∗ ∗ ∗ Ω77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

(5)[
F1 H1

∗ Q1

]
≥ 0 (6)

Ω11 = S +Q+R+ αPj + d2F1 − e−αd2

d2
Q1 + TT

1 Ai

+AT
i T1 +ΣM

k=1βjk(Pj − Pk)

Ω12 = Pj + d2H1 − TT
1 +AT

i T2

Ω13 =
e−αd2

d2
Q1 + TT

1 Bi +AT
i T3

Ω16 = −e−αd2

d2
H1 + TT

1 Ci +AT
i T6

Ω17 = TT
1 Di +AT

i T7

Ω22 = (h2 − h1)
2E + d2Q1 − TT

2 − T2

Ω23 = TT
2 Bi − T3

Ω26 = TT
2 Ci − T6

Ω27 = TT
2 Di − T7

Ω33 = −e−αd2

d2
Q1 − (1− h)e−αh2S + e−αh2(−2E +G

+GT ) + TT
3 Bi +BT

i T3

Ω34 = e−αh2(ET −G) +BT
i T4

Ω35 = e−αh2(ET +GT ) +BT
i T5

Ω36 =
e−αd2

d2
H1 + TT

3 Ci +BT
i T6

Ω37 = TT
3 Di −BT

i T7

Ω44 = −e−αh1Q+ e−αh2E

Ω45 = e−αh2GT

Ω55 = −e−αh2R− e−αh2E

Ω66 = −e−αd2

d2
F1 + TT

6 Ci

Ω67 = TT
6 Di + CT

i T7

Ω77 = TT
7 Di − α

ωm
I

possible to bonud the renchable set defined in (3) Based

distributed delay and disturbances based on (2),if
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The reachable set of system(1) is bounded by the intersection
of ellipsoids ε(Pj , 1) .
Proof : Denoting T = [T1, T2, T3, T4, T5, T6, T7] .

ξT (t) = [xT (t), ẋT (t), xT (t− h(t)), xT (t− h1(t)), x
T (t

− h2(t)),

∫ t

t−d(t)

xT (s)ds, ωT (t)]

So we can select the maximal Lyapunov-Krasovskii functional
candidate as follows:

V (x) = V1,max(x) + V2(x) + V3(x) + V4(x)

V1,j(x) = xT (t)Pjx(t), V1,max(x) = maxxT (t)Pjx(t)

V2(x) =

∫ t

t−h(t)

eα(s−t)xT (s)Sx(s)ds+

∫ t

t−h1)

eα(s−t)

xT (s)Qx(s)ds+

∫ t

t−h2

eα(s−t)xT (s)Rx(s)ds

V3(x) = (h2 − h1)

∫ −h1

−h2

∫ t

t+θ

eα(s−t)ẋT (s)Eẋ(s)ds

V4(x) =

∫ 0

−dt

∫ t

t+θ

eα(s−t)

[
x(s)
ẋ(s)

]T [
P1 H1

∗ Q1

]

×
[
x(s)
ẋ(s)

]
dsdθ

To imply the process of proof,we can denote the set :

Mmax(x) := {j ∈ {1, 2, · · · ,M} : V1,j(x) = V1,max(x)}.
γj = {x ∈ Rn : Vj(x) ≥ Vk(x), ∀k 
= j}
So we can get the inequality V1,j(x) < V1,max(x), ifj /∈
Mmax(x) as well asMmax(x) ∈ [1,m] for some integer m ≤
M .where m is the number of ellipsoids ε(Pj , 1)

′s intersected
at x .So we can get that:

V1,j(x) = V1,max(x), forj ≤ m
V1,j(x) < V1,max(x), forj > m

So we get that :
xT (Pj − Pk)x ≥ 0 , ∀j ∈ {1, 2, 3, · · · ,m} ,k ∈ [1,M ] . (7)
Because x is not differentiable everywhere ,we should consider
two conditions for x .
(1) If x is differentiable

x ∈ γj\
⋃
k �=j

γk

V1,max = max{xTPjx}
V1,max = {2xT (t)Pj ẋ(t)}
(2) If x is not differentiable

x ∈
ir⋂

j=i1

γj\
⋃

k �=i1,i2,··· ,ik
γk, r ≥ 2

�ẋ V1,max(x) ≤ max
ξ∈∂V1,max(x)

{ξT ẋ}

= max
ξ∈Co{2Pjx,j=1,··· ,m)

{ξT ẋ}
r∑

i=1

αr = 1, αr > 0, Pil > 0, l = (1, 2, 3, · · · , r)

V̇2(x) = xT (t)Sx(t)− (1− ḣ(t))e−αh(t)xT (t− h(t))S

× x(t− h(t)) + xT (t)Qx(t)− e−αh1xT (t− h1)Q

× x(t− h1) + xT (t)Rx(t)− e−αh2xT (t− h2)Rx(t− h2)

− αV2

≤ xT (t)(S +Q+R)x(t)− (1− h)e−αh2xT (t− h(t))

× Sx(t− h(t))− e−αh1xT (t− h1)Qx(t− h1)

− xT (t)Rx(t)− e−αh2xT (t− h2)Rx(t− h2)− αV2

V̇3(x) = (h2 − h1)

∫ −h1

−h2

ẋT (t)Eẋ(t)dθ − (h2 − h1)

×
∫ t−h1

t−h2

eα(s−t)ẋT (t)Eẋ(t)ds− αV3

≤ (h2 − h1)
2ẋT (t)Eẋ(t)− e−αh2(h2 − h1)

× (

∫ t−h(t)

t−h2

ẋT (s)Eẋ(s)ds+

∫ t−h1

t−h(t)

ẋT (s)Eẋ(s)ds)

− αV3

≤ (h2 − h1)
2ẋT (t)Eẋ(t)− e−αh2(

h2 − h1

h2 − h(t)

×
∫ t−h(t)

t−h2

ẋT (s)dsE

∫ t−h(t)

t−h2

ẋ(s)ds+
h2 − h1

ht − h(1)

×
∫ t−h(1)

t−ht

ẋT (s)dsE

∫ t−h(1)

t−ht

ẋ(s)ds)− αV3

≤ (h2 − h1)
2ẋT (t)Eẋ(t)− e−αh2

×
[
x(t− h(t))− x(t− h2)
x(t− h1)− x(t− h(t)

]T [
E G
∗ E

]

×
[
x(t− h(t))− x(t− h2)
x(t− h1)− x(t− h(t)

]
− αV3

≤ (h2 − h1)
2ẋT (t)Eẋ(t) + e−αh2

×
⎡
⎣ x(t− h1)

x(t− h2)
x(t− h(t))

⎤
⎦
T ⎡
⎣−E GT E −GT

∗ −E E +G
∗ ∗ −2E +G+GT

⎤
⎦

×
⎡
⎣ x(t− h1)

x(t− h2)
x(t− h(t))

⎤
⎦− αV3

V̇4(x) = d(t)

[
x(t)
ẋ(t)

]T [
P1 H1

∗ Q1

] [
x(t)
ẋ(t)

]

−
∫ t

t−d(t)

eα(s−t)

[
x(s)
ẋ(s)

]T [
P1 H1

∗ Q1

]

×
[
x(s)
ẋ(s)

]
ds− αV4

≤ d2

[
x(t)
ẋ(t)

]T [
P1 H1

∗ Q1

] [
x(t)
ẋ(t)

]
− e−αd(t)

d(t)

×
∫ t

t−d(t)

[
x(s)
ẋ(s)

]T
ds

[
P1 H1

∗ Q1

]

×
∫ t

t−d(t)

[
x(s)
ẋ(s)

]
ds− αV4

≤ d2

[
x(t)
ẋ(t)

]T [
P1 H1

∗ Q1

] [
x(t)
ẋ(t)

]
− e−αd2

d2
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×
[ ∫ t

t−d(t)
x(s)ds

x(t)− x(t− h(t))

]T [
P1 H1

∗ Q1

]

×
[ ∫ t

t−d(t)
x(s)ds

x(t)− x(t− h(t))

]
− αV4

we can get the following equation holds by the system(1):

2ξT (t)TT [−ẋ(t) +Ax(t) +Bx(t− h(t)) + C

∫ t

t−d(t)

x(s)ds

+Dω(t)] = 0

2(xT (t)TT
1 + ẋT (t)TT

2 + xT (t− h(t))TT
3 + xT (t− h1)T

T
4

+ xT (t− h2)T
T
5 +

∫ t

t−d(t)

xT (s)dsTT
6 + ω(t)T (t)TT

7 )

× [−ẋ(t) +Ax(t) +Bx(t− h(t)) + C

∫ t

t−d(t)

x(s)ds

+Dω(t)] = 0

(1)If x is differentiable

x ∈ γj\
⋃
k �=j

γk

We can get following inequality by using the convex property
of the polytope and S procedure .

Π � dV (x)

dx
+ αV (x)− α

ωm
ωT (t)ω(t)

≤ ξT (t)Ω1ξ(t) = ξT (t)ΣN
i=1θiΩi1ξ(t)− ΣM

i=1βjkx
T (t)

(Pj − Pk)x(t) ≤ 0

Where

Ω1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω̃11 Ω̃12 Ω̃13 ATT4 ATT5 Ω̃16 Ω̃17

∗ Ω22 Ω̃23 −T4 −T5 Ω̃26 Ω̃27

∗ ∗ Ω̃33 Ω̃34 Ω̃35 Ω̃36 Ω̃37

∗ ∗ ∗ Ω44 Ω45 TT
4 C TT

4 D
∗ ∗ ∗ ∗ Ω55 TT

5 C TT
5 D

∗ ∗ ∗ ∗ ∗ Ω̃66 Ω̃67

∗ ∗ ∗ ∗ ∗ ∗ Ω̃77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

Ω̃11 = S +Q+R+ αPj + d2F1 − e−αd2

d2
Q1 + TT

1 A

+ATT1 +ΣM
k=1βjk(Pj − Pk)

Ω̃12 = Pj + d2H1 − TT
1 +ATT2

Ω̃13 =
e−αd2

d2
Q1 + TT

1 B +ATT3

Ω̃16 = −e−αd2

d2
H1 + TT

1 C +ATT6

Ω̃17 = TT
1 D +ATT7

Ω̃23 = TT
2 B − T3

Ω̃26 = TT
2 C − T6

Ω̃27 = TT
2 D − T7

Ω̃33 = −e−αd2

d2
Q1 − (1− h)e−αh2S + e−αh2(−2E +G

+GT ) + TT
3 B +BTT3

Ω̃34 = e−αh2(ET −G) +BTT4

Ω̃35 = e−αh2(ET +GT ) +BTT5

Ω̃36 =
e−αd2

d2
H1 + TT

3 C +BTT6

Ω̃37 = TT
3 D −BTT7

Ω̃66 = −e−αd2

d2
F1 + TT

6 C

Ω̃67 = TT
6 D + CTT7

Ω̃77 = TT
7 D − α

ωm
I

We can get the results:

Π− ΣM
i=1βjkx

T (t)(Pj − Pk)x(t) ≤ 0

⇒ Π ≤ ΣM
i=1βjkx

T (t)(Pj − Pk)x(t)

This implies that Vmax ≤ V (x) ≤ 1 by Lemma 3.
(2)If x is not differentiable,

x ∈
ir⋂

j=i1

γj\
⋃

k �=i1,i2,··· ,ik
γk, r ≥ 2

We can get following inequality by u sing the definition of the
subdifferential and S procedure .

Π � dV (x)

dx
+ αV (x)− α

ωm
ωT (t)ω(t)

≤ 2xTPj ẋ+ αxT (t)Pjx(t) + V̇2(t) + V̇3(t) + V̇4(t)

− α

ωm
ωT (t)ω(t)

≤ ΣM
i=1βjkx

T (t)(Pj − Pk)x(t) ≤ 0

Therefore , we can get Vmax ≤ V (x) ≤ 1 by Lemma 3.This
completes the proof of Theorem 1.
Remark 1.In this paper,we consided the reachable
set bounding estimation for delay systems with
disturbances.However, we consided just the systems before:
ẋ(t) = Ax(t) + Bx(t − h(t)) + Dω(t)or the systems :
ẋ(t) = Ax(t) + C

∫ t

t−d(t)
x(s)ds + Dω(t).What is more,

−(h2 − h1)
∫ t−h1

t−h2
eα(s−t)ẋT (s)Eẋ(s)ds is enlarged by

−(h2 − h1)
∫ t−h(t)

t−h2
eα(s−t)ẋT (s)Eẋ(s)ds,where an other

term −(h2−h1)
∫ t−h1

t−h(t)
eα(s−t)ẋT (s)Eẋ(s)ds is ignored[16]-

[18]. The useful term is explored in this paper. So we can
reduce the conservativeness for our results.
Remark 2.in [3],we can pay attaition that the Lemma 1
of[3],Zuo ignored the term
− d(t)

h−d(t) (x
T (t−d(t))−xT (t−h))R(x(t−d(t))−x(t−h)) and

the term −h−d(t)
h (xT (t)−xT (t−d(t)))R(xT (t)−xT (t−d(t)))

.In this paper,we concided the two terms above and can get
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TABLE I
T 2 m

d 0.0 0.2 0.4 0.6 0.9
[4] 1.89 2.00 2.19 2.60 3.51

M=2 0.2301 0.2579 0.2998 0.3712 0.7319
M=3 0.2279 0.2547 0.2911 0.3603 0.6217

TABLE II
TABLE 1:WITH h2=0.7 AND ωm=1.

Methods [14] ours
d(t) is differentiable 1.095 0.3763

d(t) is non-differentiable 1.095 0.8725

the matrix
[
E G
∗ E

]
better than the matrix

[
E 0
0 E

]
. by using

inequality . So it can be theoretically proven that it has less
conservativeness and can be used more further.
Remark 3.we select free-weighting matrices T =
[T1, T2, T3, T4, T5, T6, T7]and can decoup between the

We can make a treating which is simple optimization problem
formulation to look for the accurate bound for the reachable
set of system(1).maximize σ subjects to σI ≤ Pj . It can be
described as the following optimization problem:
Min :

σ̃(σ̃ =
1

σ
)

s.t.

⎧⎨
⎩ (1)

[
σ̃I I
I Pj

]
≥ 0

(2)Inequality(4)holds.

(7)

IV. NUMERICAL EXAMPLES

In this section, we provide the simulation of examples
to illustrate the effectiveness of our method.We can select
following paprameters:

A1 =

[−2 0
0 −0.7

]
, D1 =

[−0.5 0
0 1

]
, B1 =

[−1 0
−1 −0.9

]
,

A2 =

[−2 0
0 −1.1

]
, D2 =

[−0.5 0
0 1

]
, B2 =

[−1 0
−1 −1.1

]
,

C1 =

[−1 −1
0 0.9

]
, C2 =

[−1 0
−1 −1

]
,

The resulting δ̄′sare listed in Table I for different values of

,we can get a tighter bounds than the approach derived in [4].
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ABLE 1:WITH h =0.7 AND ω =1.

system matrices and the Lyapnov matrices by using (11)

d,by solving the optimization problem(7).Form the Table II


