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Rational Points on Elliptic Curves y2 = x3 + a3 in
Fp, where p ≡ 5(mod 6) is Prime

Gokhan Soydan, Musa Demirci, Nazli Yildiz Ikikardes, Ismail Naci Cangul

Abstract—In this work, we consider the rational points on elliptic
curves over finite fields Fp where p ≡ 5 (mod 6). We obtain results
on the number of points on an elliptic curve y2 ≡ x3 + a3(mod p),
where p ≡ 5 (mod 6) is prime. We give some results concerning
the sum of the abscissae of these points. A similar case where p ≡
1 (mod 6) is considered in [5]. The main difference between two
cases is that when p ≡ 5 (mod 6), all elements of Fp are cubic
residues.
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I. INTRODUCTION

Let F be a field of characteristic not equal to 2 or 3. An
elliptic curve E defined over F is given by an equation

y2 = x3 + Ax + B ∈ F[x] (1)

where A,B ∈ F so that 4A3 + 27B2 �= 0 in F. The set of
all solutions (x, y) ∈ F × F to this equation together with
a point ◦, called the point at infinity, is denoted by E(F),
called the set of F-rational points on E. The value Δ(E) =
−16(4A3 + 27B2) is called the discriminant of elliptic curve
E. For a more detailed information about elliptic curves in
general, see [4].

For any two points P (x1, y1) and Q(x2, y2) on E, define

P + Q =

⎧⎨
⎩

◦ if x1 = x2 and y1 + y2 = 0,
Q if P = ◦

(x3, y3) otherwise

where

x3 = m2 − x1 − x2

y3 = m(x1 − x3) − y1

and

m =
{

(y2 − y1) / (x2 − x1) if P �= Q
(3x2

1 + A) / 2y1 if P = Q

where y1 �= 0, while when y1 = 0, the point is
of order 2. With this definition, E(F) forms an additive
abelian group having identity ◦.Here, by definition, −P =
(x,−y) for a point P = (x, y) on E.

It has always been interesting to look for the number of
points over a given field F. In [3], three algorithms to find
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the number of points on an elliptic curve over a finite field.
Among the well-known results, there are the followings:

Theorem 1.1: (Mordell,1922) Let E be an elliptic curve
given by an equation

E : y2 = x3 + Ax + B

with A,B ∈ Q. There is a finite set of points P1, P2, ..., Pr so
that every point P in E(Q) can be obtained as a sum

P = n1.P1 + n2.P2 + ... + nr.Pr

with n1, n2, ..., nr ∈ Z. In other words, E(Q) is a finitely
generated group.

Theorem 1.2: (Mazur,1977) The group E(Q) contains at
most 16 points of finite order.

If, in particular, we take A,B ∈ Z and look for the integer
solutions of (1), we have

Theorem 1.3: (Siegel,1928) An elliptic curve

E : y2 = x3 + Ax + B ∈ Z[x]

with A,B ∈ Z and Δ �= 0 has only finitely many points
P (x, y) with integer coordinates.

II. THE GROUP E(Fp) OF POINTS MODULO
p, p ≡ 5 (mod6)

It is interesting to solve polynomial congruences modulo
p. Clearly, it is much easier to find solutions in Fp for small
p, than to find them in Q. Because, in Fp, there is always a
finite number of solutions.

In this work, we consider the elliptic curve (1) in modulo
p, for A = 0 and B = a3, where a is an integer, and try to
obtain results concerning the number of points on E over Fp

and also their orders.
In [10], starting with a conjecture from 1952 of Dénes

which is a variant of Fermat-Wiles theorem, Merel illustrates
the way in which Frey elliptic curves have been used by
Taylor, Ribet, Wiles and the others in the proof of Fermat-
Wiles theorem. Serre, in [11], gave a lower bound for the
Galois representations on elliptic curves over the field Q of
rational points. In the case of a Frey curve, the conductor
N of the curve is given by the help of the constants in the
abc conjecture. In [9], Ono recalls a result of Euler, known
as Euler’s concordant forms problem, about the classification
of those pairs of distinct non-zero integers M and N for
which there are integer solutions (x, y, t, z) with xy �= 0 to
x2 + My2 = t2 and x2 + Ny2 = z2. When M = −N , this
becomes the congruent number problem, and when M = 2N ,
by replacing x by x − N in E(2N, N), a special form of
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the Frey elliptic curves is obtained as y2 = x3 − N2x.
Using Tunnell’s conditional solution to the congruent number
problem using elliptic curves and modular forms, Ono studied
the elliptic curve y2 = x3 + (M + N)x2 + MNx denoted
by EQ(M,N) over Q. He classified all the cases and hence
reduced Euler’s problem to a question of ranks. In [7], Parshin
obtaines an inequality to give an effective bound for the
height of rational points on a curve. In [8], the problem of
boundedness of torsion for elliptic curves over quadratic fields
is settled.

If F is a field, then an elliptic curve over F has, after a
change of variables, a form

y2 = x3 + Ax + B

where A and B ∈ F with 4A3 + 27B2 �= 0 in F. Here D =
−16

(
4A3 + 27B2

)
is called the discriminant of the curve.

Elliptic curves are studied over finite and infinite fields. Here
we take F to be a finite prime field Fp with characteristic
p > 3. Then A,B ∈ Fp and the set of points (x, y) ∈ Fp×Fp,
together with a point o at infinity is called the set of Fp−
rational points of E on Fp and is denoted by E (Fp) . Np

denotes the number of rational points on this curve. It must
be finite.

In fact one expects to have at most 2p + 1 points (together
with o)(for every x, there exist a maximum of 2 y

′
s). But

not all elements of Fp have square roots. In fact only half of
the elements of Fp have a square root. Therefore the expected
number is about p + 1.

Here we shall deal with Bachet elliptic curves y2 = x3 +a3

modulo p. Some results on these curves have been given in
[5], and [6].

A historical problem leading to Bachet elliptic curves is that
how one can write an integer as a difference of a square and a
cube. In another words, for a given fixed integer c, search for
the solutions of the Diophantine equation y2 − x3 = c. This
equation is widely called as Bachet or Mordell equation. This
is because L. J. Mordell, in twentieth century, made a lot of
advances regarding this and some other similar equations. The
existance of duplication formula makes this curve interesting.
This formula was found in 1621 by Bachet. When (x, y)
is a solution to this equation where x, y ∈ Q, it is easy
to show that

(
x4−8cx

4y2 , −x6−20cx3+8c2

8y3

)
is also a solution for

the same equation. Furthermore, if (x, y) is a solution such
that xy �= 0 and c �= 1, − 432, then this leads to infinitely
many solutions, which could not proven by Bachet. Hence if an
integer can be stated as the difference of a cube and a square,
this could be done in infinitely many ways. For example if
we start by a solution (3, 5) to y2 − x3 = −2, by applying
duplication formula, we get a series of rational solutions
(3, 5),

(
129
102 , −383

103

)
,

(
2340922881

76602 , 113259286337292
76603

)
, ....

It can easily be seen that an elliptic curve

y2 = x3 + a3 (2)

can have at most 2p + 1 points in Zp; i.e. the point at infinity
along with 2p pairs (x, y) with x, y ∈ Fp, satisfying the
equation (2). This is because, for each x ∈ Fp, there are
at most two possible values of y ∈ Fp, satisfying (2).

But not all elements of Fp has a square root. In fact, only
half of the elements in F ∗

p = Fp\{0} have square roots.
Therefore the expected number of points on E(Fp) is about
p + 1.

It is known, as a more precise formula, that the number of
solutions to (2) is

p + 1 +
∑

χ(x3 + a3)

where χ(a) = (a
p ) denotes the Legendre symbol which is equal

to +1 if a is a quadratic residue modulo p ; −1 if not; and 0 if
p|a , ([4], pp132). The following theorem of Hasse quantifies
this result:

Theorem 2.1: (Hasse,1922) An elliptic curve (2) has

p + 1 + δ

solutions (x, y) modulo p, where |δ| < 2
√

p.
Equivalently, the number of solutions is bounded above by

the number (
√

p + 1)2.
¿From now on, we will only consider the case p is prime

congruent to 5 modulo 6. The other possible case where
p ≡ 1(mod 6) has been discussed in [5]. We begin by some
calculations regarding the number of points on (2). First we
have the following particular case. But we first need the
following lemma:

Lemma 2.1: Let p be a prime. If (p − 1, 3) = d = 1, then
the congruence x3 ≡ a(mod p) has a solution for each a ∈ Fp,
that is every a ∈ Fp is a cubic residue.

Proof: When (p − 1, 3) = 1, we have either p = 3 or
p ≡ 2(mod 3), as p is prime. If p = 3, then 03 ≡ 0(mod 3),
13 ≡ 1(mod 3) and 23 ≡ 2(mod 3) in F3 and therefore every
a ∈ F3 is a cubic residue. Secondly, if p ≡ 2(mod 3) is prime,
then p = 2 + 3k for k ∈ Z. Therefore the norm of p is

Np = p.p = (2 + 3k).(2 + 3k) = 9k2 + 12k + 4

and
Np − 1

3
= 3k2 + 4k + 1.

Now for a ∈ F∗
p, we have

a
(Np−1)

3 = a3k2+4k+1

By Fermat’s little theorem

ap−1 ≡ 1(mod p).

Then

ap−1 ≡ a3k+2−1 ≡ a3k+1 ≡ 1(mod p).

Therefore

a
(Np−1)

3 ≡ (a3k+1)k+1 ≡ 1k+1 ≡ 1(mod p).

Let’s now choose an element a between 1 and p−1 and choose
an integer k between 0 and p − 2. Let g be a primitive root
modulo p such that

gk ≡ a(mod p).

Since (3, p − 1) = 1, there are integers x′ and y′ such that

3x′ + (p − 1).y′ = 1.
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Then by putting x = x′k and y = y′k, this equation becomes

3x + (p − 1).y = k

Now, as gp−1 ≡ 1(mod p), we have

a ≡ gk ≡ g3x+(p−1).y ≡ (gx)3(gp−1)y ≡ (gx)3(mod p)

That means, a is a cubic residue modulo p. Further as 03 ≡
0(mod p), all elements of Fp are cubic residues.

Theorem 2.2: Let p ≡ 5(mod6) be prime. Then there are
exactly p + 1 rational points on the curve

y2 ≡ x3 + a3 (mod p).

Proof: By Lemma 5, all elements of Fp are cubic residues
modulo p, p ≡ 5(mod6).For every quadratic residue q in Fp,
there are two solutions y1 = t and y2 = p − t of y2 ≡
q(mod p). It is well known, see [1], that the number of such
q is equal to the order of Qp, the group of quadratic residues
modulo p, which is equivalent to p−1

2 . Then we must look
for x ∈ Fp such that x3 + a3 ≡ q (mod p). Hence x3 ≡
q−a3(mod p) and since q−a3 ∈ Fp, there is only one solution
of x3 ≡ q−a3(mod p) in Fp.That is, for each of p−1

2 quadratic
residues, there is exactly one solution of the congruence x3 ≡
q−a3(mod p) since (p−1, 3) = 1. That means that there is a
total of p−1

2 values of x. Going backwards, we find 2.p−1
2 =

p− 1 rational points, since there exist two different values of
y for each x. By adding the obvious point (−a, 0) and the
point at infinity, the result follows.

Corollary 2.3: Let p ≡ 5(mod6) be prime. Then there are
either no values or 2 values of y ∈ Fp for every x ∈ Fp−{a}
such that (x, y) lies on the curve y2 ≡ x3 +a3 (mod p).When
this number is 2, the sum of these values of y is equal to p.
Further for x = a, there is only one point (a, 0) on the curve.

Proof: Follows by Theorem 6.
Corollary 2.4: Among all rational points on the curve

y2 ≡ x3 + a3 (mod p),

the sum of ordinates of the points with the same abscissa is
either 0 or p.

Corollary 2.5: Let p ≡ 5(mod6) be prime. Then the
number of all possible different values of x obtained for
y = 0, 1, 2, ..., p − 1 in the equation

y2 ≡ x3 + a3 (mod p),

is p+1
2 .
Proof: Follows by Corollary 8 as 1 + p−1

2 = p+1
2 .

In Theorem 6, we have seen that the curve y2 ≡ x3 +
a3 (mod p) has exactly p + 1 rational points. We further can
say that no two of these points have the same ordinate:

Theorem 2.6: Let p ≡ 5(mod6) be prime. Then no two
points on the curve

y2 ≡ x3 + a3 (mod p)

have the same ordinate.
Proof: Let u ≡ y2 − a3(mod p). As each element of Fp

is a cubic residue, u is a cubic residue. Then the congruence
x3 ≡ u (mod p) has solutions, and the number of these
solutions can not be more than 3, as p is prime. By Theorem 6,

it is known that there are exactly p rational points (x, y) apart
from the point at infinity on y2 ≡ x3+a3 (mod p). Since there
are p values of modulo p, for each such value, x3 ≡ u (mod p)
can have only one solution.

Theorem 2.7: Let p ≡ 5(mod6) be prime. There are exactly

1 +
∑

x∈Fp

ρ(x)

values of x such that there are two values of y, having a sum
equal to p, where the rational point (x, y) is on the curve
y2 ≡ x3 + a3 (mod p). This number is therefore equivalent to
p+1
2 . Here

ρ(x) =

⎧⎨
⎩

2 if χ(x3 + a3) = 1
0 if χ(x3 + a3) = −1
1 if χ(x3 + a3) = 0

Proof: For x = 0, 1, 2, ..., p− 1 calculate the values x3 +
a3(mod p). If x3 + a3 ∈ Qp, i.e. if χ(x3 + a3) = 1, then
there are exactly two values of y ∈ Up, such that y2 ≡ x3 +
a3 (mod p). By Theorem 6, there are exactly p+1 points on the
curve with integer coefficients. Apart from the point at infinity
and the point (−a, 0), the others have ordinates different than
0. Since they are paired so that the ordinates of each pair add
up to p, the number of all possible values of x is p+1

2 .
Note that the number given in this theorem is three less than

the number given for p ≡ 1(mod 6) in [5]. This is because the
cubic root w = −1+

√
3i

2 is not in Fp in this case.
We can easily formulate the sum of abscissae of all points

on the curve y2 ≡ x3 + a3 (mod p).
Theorem 2.8: Let p ≡ 5(mod6) be prime. The sum of

abscissae of the points on the curve y2 = x3 + a3 (mod p)
having integer coefficients is equal to∑

x∈Fp

(1 + χp(x3 + a3)).x

Proof: It is clear from the definition of the function χp.
Theorem 2.9: Let p ≡ 5(mod6) be prime. Then there is a

unique Fp-point on the curve

y2 ≡ x3 + a3 (mod p)

with y ≡ 0(mod p), which is (−a, 0).
Proof: Let y ≡ 0(mod p). Then x3 ≡ a3 (mod p), and

hence

(x − a)(x2 + ax + a2) ≡ 0(mod p)

iff

x ≡ a(mod p) or x2 + ax + a2 ≡ 0(mod p).

Now, x ≡ a(mod p) is obvious solution. To have another
solution, one must be able to solve

(x + b)2 ≡ −3b2(mod p).

To do this, −3 must be a quadratic residue modulo p. i.e.
(−3

p ) = +1 must be satisfied. But it is well-known that (−3
p ) =

−1 for p ≡ 2(mod 3) is prime, see, e.g. ([2],pp 93 − 94).
Conclusion 2.1: One can generalize the result concerning

the number of Fp-points on an elliptic curve using the Weil
conjecture as explained below:
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Theorem 2.10: (Weil Conjecture) The Zeta-function is a
rational function of T having the form

Z(T ; E/Fq) =
1 − aT + qT 2

(1 − T )(1 − qT )

where only the integer a depends on the particular elliptic
curve E. The value a is related to N = N1 as follows:

N = q + 1 − a.

In addittion, the discriminant of the quadratic polynomial
in the numerator is negative, and so the quadratic has two
conjugate roots 1

α and 1
β with absolute value 1√

q . Writing
the numerator in the form (1 − αT )(1 − βT ) and taking the
derivatives of logarithm both sides, one can obtain the number
of Fqr - points on E, denoted by Nr, as follows:

Nr = qr + 1 − αr − βr, r = 1, 2, ...

Example 2.1: Let us find the F25-points on the eliptic curve
y2 = x3+8. There are N1 = 6 F5-points on the elliptic curve:

(1, 2), (1, 3), (2, 1), (2, 4), (3, 0)

and ◦. Now as r = 2 we want to find

N2 = 25 + 1 − α2 − β2.

To find the ”reciprocal roots” α and β, we first consider the
formula

N1 = q + 1 − a.

Hence

6 = 5 + 1 − a

gives a = 0.Then we consider the quadratic equation

1 + 5T 2 = 0,

which has two roots ±i√
5

. Then α =
√

5i and β = −√
5i and

finally

Nr =
{

5r + 1 if r is odd
5r + 1 − 2.(−5)

r
2 if r is even

.

Hence we found

N2 = 52 + 1 − 2(−5)
2
2 = 36.

Similarly N3 = 53+1 = 126 and N4 = 576 can be calculated.
Example 2.2: Let us find the F25-points on the eliptic curve

y2 = x3−x. There are N1 = 8 F5-points on the elliptic curve:

(0, 0), (1, 0), (2, 1), (2, 4), (3, 2), (3, 3), (4, 0)

and ◦. Now as r = 2 we want to find

N2 = 25 + 1 − αr − βr.

To find the ”reciprocal roots” α and β, we first consider the
formula

N1 = q + 1 − a.

Hence

8 = 5 + 1 − a

gives a = −2.Then we consider the quadratic equation

1 + 2T + 5T 2 = 0,

which has two roots −1±2i
5 . Then α = −1+2i and β = −1−2i

and finally

N2 = 26 − (−1 + 2i)2 − (−1 − 2i)2 = 32.

Similarly N3 = 104 can be calculated.
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