Rational Points on Elliptic Curves $y^2 = x^3 + a^3$ in \mathbf{F}_p , where $p \equiv 5 \pmod{6}$ is Prime

Gokhan Soydan, Musa Demirci, Nazli Yildiz Ikikardes, Ismail Naci Cangul

Abstract—In this work, we consider the rational points on elliptic curves over finite fields \mathbf{F}_p where $p \equiv 5 \ (mod \ 6)$. We obtain results on the number of points on an elliptic curve $y^2 \equiv x^3 + a^3 \ (mod \ p)$, where $p \equiv 5 \ (mod \ 6)$ is prime. We give some results concerning the sum of the abscissae of these points. A similar case where $p \equiv 1 \ (mod \ 6)$ is considered in [5]. The main difference between two cases is that when $p \equiv 5 \ (mod \ 6)$, all elements of \mathbf{F}_p are cubic residues

Keywords—Elliptic curves over finite fields, rational points

I. INTRODUCTION

Let F be a field of characteristic not equal to 2 or 3. An elliptic curve E defined over F is given by an equation

$$y^2 = x^3 + Ax + B \in \mathbf{F}[x] \tag{1}$$

where $A,B\in \mathbf{F}$ so that $4A^3+27B^2\neq 0$ in \mathbf{F} . The set of all solutions $(x,y)\in \mathbf{F}\times \mathbf{F}$ to this equation together with a point \circ , called the point at infinity, is denoted by $E(\mathbf{F})$, called the set of \mathbf{F} -rational points on E. The value $\Delta(E)=-16(4A^3+27B^2)$ is called the discriminant of elliptic curve E. For a more detailed information about elliptic curves in general, see [4].

For any two points $P(x_1, y_1)$ and $Q(x_2, y_2)$ on E, define

$$P+Q=\left\{\begin{array}{ll} \circ & if \ x_1=x_2 \ and \ y_1+y_2=0,\\ Q & if \ P=\circ\\ (x_3,y_3) & otherwise \end{array}\right.$$

where

$$x_3 = m^2 - x_1 - x_2$$

$$y_3 = m(x_1 - x_3) - y_1$$

and

$$m = \begin{cases} (y_2 - y_1) / (x_2 - x_1) & \text{if } P \neq Q \\ (3x_1^2 + A) / 2y_1 & \text{if } P = Q \end{cases}$$

where $y_1 \neq 0$, while when $y_1 = 0$, the point is of order 2. With this definition, $E(\mathbf{F})$ forms an additive abelian group having identity \circ . Here, by definition, -P = (x, -y) for a point P = (x, y) on E.

It has always been interesting to look for the number of points over a given field F. In [3], three algorithms to find

Gokhan Soydan, Musa Demirci, Ismail Naci Cangul are with the Uludag University, Department of Mathematics, Faculty of Science, Bursa-TURKEY, emails: gsoydan@uludag.edu.tr, mdemirci@uludag.edu.tr, cangul@uludag.edu.tr. Nazli Yildiz İkikardes is with the Balikesir University, Department of Mathematics, Faculty of Science, Balkesir-TURKEY. email: nyildiz@balikesir.edu.tr. This work was supported by the research fund of Uludag University project no: F-2003/63.

the number of points on an elliptic curve over a finite field. Among the well-known results, there are the followings:

Theorem 1.1: (Mordell,1922) Let E be an elliptic curve given by an equation

$$E: y^2 = x^3 + Ax + B$$

with $A, B \in \mathbf{Q}$. There is a finite set of points $P_1, P_2, ..., P_r$ so that every point P in $E(\mathbf{Q})$ can be obtained as a sum

$$P = n_1.P_1 + n_2.P_2 + \dots + n_r.P_r$$

with $n_1, n_2, ..., n_r \in \mathbf{Z}$. In other words, $E(\mathbf{Q})$ is a finitely generated group.

Theorem 1.2: (Mazur,1977) The group $E(\mathbf{Q})$ contains at most 16 points of finite order.

If, in particular, we take $A, B \in \mathbf{Z}$ and look for the integer solutions of (1), we have

Theorem 1.3: (Siegel,1928) An elliptic curve

$$E: y^2 = x^3 + Ax + B \in \mathbf{Z}[x]$$

with $A, B \in \mathbb{Z}$ and $\Delta \neq 0$ has only finitely many points P(x, y) with integer coordinates.

II. The Group $E(F_p)$ of Points Modulo $p,\ p\equiv 5\ (mod 6)$

It is interesting to solve polynomial congruences modulo p. Clearly, it is much easier to find solutions in \mathbf{F}_p for small \mathbf{p} , than to find them in \mathbf{Q} . Because, in \mathbf{F}_p , there is always a finite number of solutions.

In this work, we consider the elliptic curve (1) in modulo p, for A=0 and $B=a^3$, where a is an integer, and try to obtain results concerning the number of points on E over \mathbf{F}_p and also their orders.

In [10], starting with a conjecture from 1952 of Dénes which is a variant of Fermat-Wiles theorem, Merel illustrates the way in which Frey elliptic curves have been used by Taylor, Ribet, Wiles and the others in the proof of Fermat-Wiles theorem. Serre, in [11], gave a lower bound for the Galois representations on elliptic curves over the field Q of rational points. In the case of a Frey curve, the conductor N of the curve is given by the help of the constants in the abc conjecture. In [9], Ono recalls a result of Euler, known as Euler's concordant forms problem, about the classification of those pairs of distinct non-zero integers M and N for which there are integer solutions (x,y,t,z) with $xy \neq 0$ to $x^2 + My^2 = t^2$ and $x^2 + Ny^2 = z^2$. When M = -N, this becomes the congruent number problem, and when M = 2N, by replacing x by x - N in E(2N,N), a special form of

the Frey elliptic curves is obtained as $y^2 = x^3 - N^2x$. Using Tunnell's conditional solution to the congruent number problem using elliptic curves and modular forms, Ono studied the elliptic curve $y^2 = x^3 + (M+N)x^2 + MNx$ denoted by $E_Q(M,N)$ over Q. He classified all the cases and hence reduced Euler's problem to a question of ranks. In [7], Parshin obtaines an inequality to give an effective bound for the height of rational points on a curve. In [8], the problem of boundedness of torsion for elliptic curves over quadratic fields is settled.

If F is a field, then an elliptic curve over F has, after a change of variables, a form

$$y^2 = x^3 + Ax + B$$

where A and $B \in F$ with $4A^3 + 27B^2 \neq 0$ in F. Here D = $-16(4A^3+27B^2)$ is called the discriminant of the curve. Elliptic curves are studied over finite and infinite fields. Here we take F to be a finite prime field F_p with characteristic p > 3. Then $A, B \in F_p$ and the set of points $(x, y) \in F_p \times F_p$, together with a point o at infinity is called the set of F_p rational points of E on F_p and is denoted by $E(F_p)$. N_p denotes the number of rational points on this curve. It must be finite.

In fact one expects to have at most 2p + 1 points (together with o)(for every x, there exist a maximum of 2 y's). But not all elements of F_p have square roots. In fact only half of the elements of F_p have a square root. Therefore the expected number is about p+1.

Here we shall deal with Bachet elliptic curves $y^2 = x^3 + a^3$ modulo p. Some results on these curves have been given in [5], and [6].

A historical problem leading to Bachet elliptic curves is that how one can write an integer as a difference of a square and a cube. In another words, for a given fixed integer c, search for the solutions of the Diophantine equation $y^2 - x^3 = c$. This equation is widely called as Bachet or Mordell equation. This is because L. J. Mordell, in twentieth century, made a lot of advances regarding this and some other similar equations. The existance of duplication formula makes this curve interesting. This formula was found in 1621 by Bachet. When (x, y)is a solution to this equation where $x, y \in Q$, it is easy to show that $\left(\frac{x^4-8cx}{4y^2}, \frac{-x^6-20cx^3+8c^2}{8y^3}\right)$ is also a solution for the same equation. Furthermore, if (x, y) is a solution such that $xy \neq 0$ and $c \neq 1$, -432, then this leads to infinitely many solutions, which could not proven by Bachet. Hence if an integer can be stated as the difference of a cube and a square, this could be done in infinitely many ways. For example if we start by a solution (3,5) to $y^2 - x^3 = -2$, by applying duplication formula, we get a series of rational solutions $\begin{array}{c} (3,5), \ \left(\frac{129}{10^2}, \frac{-383}{10^3}\right), \ \left(\frac{2340922881}{7660^2}, \frac{113259286337292}{7660^3}\right), \ \\ \text{It can easily be seen that an elliptic curve} \end{array}$

$$y^2 = x^3 + a^3 (2)$$

can have at most 2p+1 points in \mathbb{Z}_p ; i.e. the point at infinity along with 2p pairs (x,y) with $x,y \in \mathbf{F}_p$, satisfying the equation (2). This is because, for each $x \in \mathbf{F}_p$, there are at most two possible values of $y \in \mathbf{F}_p$, satisfying (2).

But not all elements of \mathbf{F}_p has a square root. In fact, only half of the elements in $\mathbf{F}_p^* = \mathbf{F}_p \setminus \{\overline{0}\}$ have square roots. Therefore the expected number of points on $E(\mathbf{F}_p)$ is about

It is known, as a more precise formula, that the number of solutions to (2) is

$$p+1+\sum \chi(x^3+a^3)$$

where $\chi(a) = (\frac{a}{n})$ denotes the Legendre symbol which is equal to +1 if a is a quadratic residue modulo p; -1 if not; and 0 if p|a, ([4], pp132). The following theorem of Hasse quantifies this result:

Theorem 2.1: (Hasse, 1922) An elliptic curve (2) has

$$p+1+\delta$$

solutions (x, y) modulo p, where $|\delta| < 2\sqrt{p}$.

Equivalently, the number of solutions is bounded above by the number $(\sqrt{p}+1)^2$.

From now on, we will only consider the case p is prime congruent to 5 modulo 6. The other possible case where $p \equiv 1 \pmod{6}$ has been discussed in [5]. We begin by some calculations regarding the number of points on (2). First we have the following particular case. But we first need the following lemma:

Lemma 2.1: Let p be a prime. If (p-1,3)=d=1, then the congruence $x^3 \equiv a \pmod{p}$ has a solution for each $a \in \mathbf{F}_p$, that is every $a \in \mathbf{F}_p$ is a cubic residue.

Proof: When (p-1,3)=1, we have either p=3 or $p \equiv 2 \pmod{3}$, as p is prime. If p = 3, then $0^3 \equiv 0 \pmod{3}$, $1^3 \equiv 1 \pmod{3}$ and $2^3 \equiv 2 \pmod{3}$ in \mathbf{F}_3 and therefore every $a \in \mathbf{F}_3$ is a cubic residue. Secondly, if $p \equiv 2 \pmod{3}$ is prime, then p=2+3k for $k\in {\bf Z}.$ Therefore the norm of p is

$$N_p = p.p = (2+3k).(2+3k) = 9k^2 + 12k + 4$$

$$\frac{N_p - 1}{3} = 3k^2 + 4k + 1.$$

Now for $a \in \mathbf{F}_n^*$, we have

$$a^{\frac{(N_p-1)}{3}} = a^{3k^2+4k+1}$$

By Fermat's little theorem

$$a^{p-1} \equiv 1 \pmod{p}$$

Then

$$a^{p-1} \equiv a^{3k+2-1} \equiv a^{3k+1} \equiv 1 \pmod{p}.$$

Therefore

$$a^{\frac{(N_p-1)}{3}} \equiv (a^{3k+1})^{k+1} \equiv 1^{k+1} \equiv 1 \pmod{p}.$$

Let's now choose an element a between 1 and p-1 and choose an integer k between 0 and p-2. Let g be a primitive root modulo p such that

$$g^k \equiv a \pmod{p}$$
.

Since (3, p - 1) = 1, there are integers x' and y' such that

$$3x' + (p-1).y' = 1.$$

Then by putting x = x'k and y = y'k, this equation becomes

$$3x + (p-1).y = k$$

Now, as $g^{p-1} \equiv 1 \pmod{p}$, we have

$$a \equiv g^k \equiv g^{3x+(p-1).y} \equiv (g^x)^3 (g^{p-1)^y} \equiv (g^x)^3 (mod p)$$

That means, a is a cubic residue modulo p. Further as $0^3 \equiv 0 \pmod{p}$, all elements of \mathbf{F}_p are cubic residues.

Theorem 2.2: Let $p \equiv 5 \pmod{6}$ be prime. Then there are exactly p+1 rational points on the curve

$$y^2 \equiv x^3 + a^3 \, (mod \, p).$$

Proof: By Lemma 5, all elements of \mathbf{F}_p are cubic residues modulo $p, p \equiv 5 (mod 6)$. For every quadratic residue q in \mathbf{F}_p , there are two solutions $y_1 = t$ and $y_2 = p - t$ of $y^2 \equiv q (mod \, p)$. It is well known, see [1], that the number of such q is equal to the order of Q_p , the group of quadratic residues modulo p, which is equivalent to $\frac{p-1}{2}$. Then we must look for $x \in \mathbf{F}_p$ such that $x^3 + a^3 \equiv q (mod \, p)$. Hence $x^3 \equiv q - a^3 (mod \, p)$ and since $q - a^3 \in \mathbf{F}_p$, there is only one solution of $x^3 \equiv q - a^3 (mod \, p)$ in \mathbf{F}_p . That is, for each of $\frac{p-1}{2}$ quadratic residues, there is exactly one solution of the congruence $x^3 \equiv q - a^3 (mod \, p)$ since (p-1,3) = 1. That means that there is a total of $\frac{p-1}{2}$ values of x. Going backwards, we find $2 \cdot \frac{p-1}{2} = p - 1$ rational points, since there exist two different values of y for each x. By adding the obvious point (-a,0) and the point at infinity, the result follows.

Corollary 2.3: Let $p \equiv 5 \pmod{6}$ be prime. Then there are either no values or 2 values of $y \in F_p$ for every $x \in \mathbf{F}_p - \{a\}$ such that (x,y) lies on the curve $y^2 \equiv x^3 + a^3 \pmod{p}$. When this number is 2, the sum of these values of y is equal to p. Further for x = a, there is only one point (a,0) on the curve.

Proof: Follows by Theorem 6.

Corollary 2.4: Among all rational points on the curve

$$y^2 \equiv x^3 + a^3 \, (mod \, p),$$

the sum of ordinates of the points with the same abscissa is either 0 or p.

Corollary 2.5: Let $p \equiv 5 \pmod{6}$ be prime. Then the number of all possible different values of x obtained for y = 0, 1, 2, ..., p - 1 in the equation

$$y^2 \equiv x^3 + a^3 \, (mod \, p),$$

is $\frac{p+1}{2}$.

Proof: Follows by Corollary 8 as $1 + \frac{p-1}{2} = \frac{p+1}{2}$. In Theorem 6, we have seen that the curve $y^2 \equiv x^3 + a^3 \pmod{p}$ has exactly p+1 rational points. We further can say that no two of these points have the same ordinate:

Theorem 2.6: Let $p \equiv 5 (mod 6)$ be prime. Then no two points on the curve

$$y^2 \equiv x^3 + a^3 \, (mod \, p)$$

have the same ordinate.

Proof: Let $u \equiv y^2 - a^3 \pmod{p}$. As each element of \mathbf{F}_p is a cubic residue, u is a cubic residue. Then the congruence $x^3 \equiv u \pmod{p}$ has solutions, and the number of these solutions can not be more than 3, as p is prime. By Theorem 6,

it is known that there are exactly p rational points (x,y) apart from the point at infinity on $y^2 \equiv x^3 + a^3 \pmod{p}$. Since there are p values of modulo p, for each such value, $x^3 \equiv u \pmod{p}$ can have only one solution.

Theorem 2.7: Let $p \equiv 5 \pmod{6}$ be prime. There are exactly

$$1 + \sum\nolimits_{x \in \mathbf{F}_p} \rho(x)$$

values of x such that there are two values of y, having a sum equal to p, where the rational point (x,y) is on the curve $y^2 \equiv x^3 + a^3 \pmod{p}$. This number is therefore equivalent to $\frac{p+1}{2}$. Here

$$\rho(x) = \begin{cases} 2 & if \ \chi(x^3 + a^3) = 1\\ 0 & if \ \chi(x^3 + a^3) = -1\\ 1 & if \ \chi(x^3 + a^3) = 0 \end{cases}$$

Proof: For x=0,1,2,...,p-1 calculate the values $x^3+a^3(mod\,p)$. If $x^3+a^3\in Q_p$, i.e. if $\chi(x^3+a^3)=1$, then there are exactly two values of $y\in U_p$, such that $y^2\equiv x^3+a^3\ (mod\,p)$. By Theorem 6, there are exactly p+1 points on the curve with integer coefficients. Apart from the point at infinity and the point (-a,0), the others have ordinates different than 0. Since they are paired so that the ordinates of each pair add up to p, the number of all possible values of x is $\frac{p+1}{2}$.

Note that the number given in this theorem is three less than the number given for $p \equiv 1 \pmod{6}$ in [5]. This is because the cubic root $w = \frac{-1 + \sqrt{3}i}{2}$ is not in \mathbf{F}_p in this case.

We can easily formulate the sum of abscissae of all points on the curve $y^2 \equiv x^3 + a^3 \pmod{p}$.

Theorem 2.8: Let $p \equiv 5 \pmod{6}$ be prime. The sum of abscissae of the points on the curve $y^2 = x^3 + a^3 \pmod{p}$ having integer coefficients is equal to

$$\sum_{x \in \mathbf{F}_{p}} (1 + \chi_{p}(x^{3} + a^{3})).x$$

Proof: It is clear from the definition of the function χ_p . Theorem 2.9: Let $p \equiv 5 \pmod{6}$ be prime. Then there is a unique \mathbf{F}_p -point on the curve

$$y^2 \equiv x^3 + a^3 \, (mod \, p)$$

with $y \equiv 0 \pmod{p}$, which is (-a, 0).

Proof: Let $y \equiv 0 \pmod{p}$. Then $x^3 \equiv a^3 \pmod{p}$, and hence

$$(x-a)(x^2 + ax + a^2) \equiv 0 \pmod{p}$$

iff

$$x \equiv a \pmod{p}$$
 or $x^2 + ax + a^2 \equiv 0 \pmod{p}$.

Now, $x \equiv a (mod p)$ is obvious solution. To have another solution, one must be able to solve

$$(x+b)^2 \equiv -3b^2 \pmod{p}.$$

To do this, -3 must be a quadratic residue modulo p. i.e. $(\frac{-3}{p})=+1$ must be satisfied. But it is well-known that $(\frac{-3}{p})=-1$ for $p\equiv 2 \pmod{3}$ is prime, see, e.g. ([2],pp 93-94).

Conclusion 2.1: One can generalize the result concerning the number of \mathbf{F}_p -points on an elliptic curve using the Weil conjecture as explained below:

Theorem 2.10: (Weil Conjecture) The Zeta-function is a rational function of T having the form

$$Z(T; E/\mathbf{F}_q) = \frac{1 - aT + qT^2}{(1 - T)(1 - qT)}$$

where only the integer a depends on the particular elliptic curve E. The value a is related to $N=N_1$ as follows:

$$N = q + 1 - a$$
.

In addittion, the discriminant of the quadratic polynomial in the numerator is negative, and so the quadratic has two conjugate roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ with absolute value $\frac{1}{\sqrt{q}}$. Writing the numerator in the form $(1-\alpha T)(1-\beta T)$ and taking the derivatives of logarithm both sides, one can obtain the number of F_{q^r} - points on E, denoted by N_r , as follows:

$$N_r = q^r + 1 - \alpha^r - \beta^r, r = 1, 2, \dots$$

Example 2.1: Let us find the \mathbf{F}_{25} -points on the eliptic curve $y^2 = x^3 + 8$. There are $N_1 = 6$ \mathbf{F}_5 -points on the elliptic curve:

and \circ . Now as r=2 we want to find

$$N_2 = 25 + 1 - \alpha^2 - \beta^2.$$

To find the "reciprocal roots" α and β , we first consider the formula

$$N_1 = q + 1 - a.$$

Hence

$$6 = 5 + 1 - a$$

gives a = 0. Then we consider the quadratic equation

$$1 + 5T^2 = 0,$$

which has two roots $\frac{\pm i}{\sqrt{5}}$. Then $\alpha = \sqrt{5}i$ and $\beta = -\sqrt{5}i$ and finally

$$N_r = \left\{ \begin{array}{cc} 5^r + 1 & if \ r \ is \ odd \\ 5^r + 1 - 2.(-5)^{\frac{r}{2}} & if \ r \ is \ even \end{array} \right..$$

Hence we found

$$N_2 = 5^2 + 1 - 2(-5)^{\frac{2}{2}} = 36.$$

Similarly $N_3 = 5^3 + 1 = 126$ and $N_4 = 576$ can be calculated. Example 2.2: Let us find the \mathbf{F}_{25} -points on the elliptic curve $y^2 = x^3 - x$. There are $N_1 = 8$ \mathbf{F}_5 -points on the elliptic curve:

$$(0,0),(1,0),(2,1),(2,4),(3,2),(3,3),(4,0)$$

and \circ . Now as r=2 we want to find

$$N_2 = 25 + 1 - \alpha^r - \beta^r$$
.

To find the "reciprocal roots" α and β , we first consider the formula

$$N_1 = q + 1 - a.$$

Hence

$$8 = 5 + 1 - a$$

gives a = -2. Then we consider the quadratic equation

$$1 + 2T + 5T^2 = 0,$$

which has two roots $\frac{-1\pm 2i}{5}.$ Then $\alpha=-1+2i$ and $\beta=-1-2i$ and finally

$$N_2 = 26 - (-1 + 2i)^2 - (-1 - 2i)^2 = 32.$$

Similarly $N_3 = 104$ can be calculated.

REFERENCES

- [1] Jones, G.A., Jones, J.M., Elementary Number Theory, Springer-Verlag, (1998), ISBN 3-540-76197-7
- [2] Esmonde, J. & Murty, M. R., Problems in Algebraic Number Theory, Springer-Verlag, (1999), ISBN 0-387-98617-0.
- [3] Schoof, R., Counting points on elliptic curves over finite fields, Journal de Théorie des Nombres de Bordeaux, 7(1995), 219-254.
- [4] Silverman, J.H., The Arithmetic of Elliptic Curves, Springer-Verlag, (1986), ISBN 0-387-96203-4.
- [5] Demirci, M. & Soydan, G. & Cangül, I. N., Rational points on the elliptic curves $y^2=x^3+a^3\ (mod\ p)$ in F_p where $p\equiv 1(mod\ 6)$ is prime, Rocky J.of Maths, (to be printed).
- [6] Soydan, G. & Demirci, M. & Ikikardeş, N. Y. & Cangül, I. N., Rational points on the elliptic curves $y^2=x^3+a^3\ (mod\ p)$ in F_p where $p\equiv 5\ (mod\ 6)$ is prime, (submitted).
- [7] Parshin, A. N., The Bogomolov-Miyaoka-Yau inequality for the arithmetical surfaces and its applications, Seminaire de Theorie des Nombres, Paris, 1986-87, 299-312, Progr. Math., 75, Birkhauser Boston, MA, 1998.
- [8] Kamienny, S., Some remarks on torsion in elliptic curves, Comm. Alg. 23 (1995), no. 6, 2167-2169.
- [9] Ono, K., Euler's concordant forms, Acta Arith. 78 (1996), no. 2, 101-123.
- [10] Merel, L., Arithmetic of elliptic curves and Diophantine equations, Les XXemes Journees Arithmetiques (Limoges, 1997), J. Theor. Nombres Bordeaux 11 (1999), no. 1, 173-200.
- [11] Serre, J.-P., Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331.