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Abstract—Ranked set sampling (RSS) was first suggested to 

increase the efficiency of the population mean. It has been shown that 
this method is highly beneficial to the estimation based on simple 
random sampling (SRS). There has been considerable development 
and many modifications were done on this method. When a 
concomitant variable is available, ratio estimation based on ranked 
set sampling was proposed. This ratio estimator is more efficient than 
that based on SRS. In this paper some ratio type estimators of the 
population mean based on RSS are suggested. These estimators are 
found to be more efficient than the estimators of similar form using 
simple random sample. 
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I.  INTRODUCTION 
ANKED Set Sampling (RSS) was introduced to increase the 
efficiency of the estimation of population mean [1] . The method 

is useful when the variable of interest is very expensive or difficult to 
measure but it can be easily ranked at a negligible cost. The first 
theoretical results about this method was given in [2].The method 
under imperfect ranking was investigated in [3] and [4]. Many 
modifications and improvements have been given for RSS and 
becomes well applicable method. For applications see for 
examples:[1],[4],[5],[6],[7],[8],[9],[10],[11],[12] 

There are cases in practical situation where the variable of interest 
Y is difficult to measure and to rank  but a concomitant variable X, 
which is highly correlated with Y, can be easily ranked and be used 
for the ranking of the sampling units. This idea was first considered 
by [13]. Some extension is done by [14] utilized both the rank and the 
measure of the concomitant variable and considered ratio estimation 
using RSS. The ratio estimation based on RSS is more efficient 
compared with the SRS ratio estimate. 

Let the variable of interest Y and the concomitant variable X is 
correlated with the coefficient of correlation ρ . The population ratio 

of these two variable is then /y xR μ μ= and its estimator 

is ˆ /R y x=  . Where yμ and xμ are the population means of the 

variables Y and X, respectively, x and y are the sample mean for 

xμ and yμ ,respectively. The ratio estimator is biased but the bias 

is negligible when the estimator is approximated using Taylor series 

expansion to the first degree. The approximated Variance of R̂ is 
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( )2 2 2ˆ( ) ( / ) 2x y xy x yVar R R n V V V Vρ≅ + −  

 
where /x x xV σ μ= , /y y yV σ μ= , and 

( )( )
1

/
N

xy i x i y x y
i

X Y Nρ μ μ σ σ
=

= − −∑  

xσ and yσ are the standard deviations of the populations of the 

variables X and Y, respectively. 
There are many ratio type estimators based on SRS has been 

proposed. Some of these estimators are proposed by [15]. These 
estimators are in the form 

( )ˆ ( )
( )

x
SRS x

y x
x
β μμ αμ γ
α γ
+ −

= +
+

 

where 2/xy xβ σ σ= . 

They suggested utilizing some known parameters of the concomitant 
variable X.  
If 1α = and 0γ = , the estimator be  

1
( )ˆ x

SRS x
y x

x
β μμ μ+ −

=  

If 1α = and xVγ = , then the estimator be  
 

2
( )ˆ ( )

( )
x

SRS x x
x

y x V
x V
β μμ μ+ −

= +
+

 

where xV is the coefficient of variation defined as /x x xV σ μ=   

If 1α = and xKγ = , then the estimator be  
 

3
( )ˆ ( )

( )
x

SRS x x
x

y x K
x K
β μμ μ+ −

= +
+

 

where xK is the coefficient of Kurtusis defined 

as 2
4 2/x x xK μ μ=  , where ( )r

xr xE Xμ μ= − . 

If xKα = and xVγ = , then the estimator be  

4
( )ˆ ( )

( )
x

SRS x x x
x x

y x K V
K x V
β μμ μ+ −

= +
+

 

If xVα = and xKγ = , then the estimator be  
 

5
( )ˆ ( )

( )
x

SRS x x x
x x

y x V K
V x K
β μμ μ+ −

= +
+

 

The mean square error (MSE) of the above estimators are 
approximately 

R 
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In this paper we suggest to use similar form of estimators as above 

based on RSS. We assume that the population mean of the auxiliary 
variable is known beforehand. For some estimators, we need to know 
some other parameters such as coefficient of variation and coefficient 
of kurtosis. We also assume that the relation between X and Y is 
positive and approximately linear.  
 

II.  SAMPLING METHOD 
Let Y be the variable of interest and X be a suitable concomitant 

variable which is correlated to Y and easy to rank. The summary of 
The RSS procedure is then as following: 

1- Select randomly 2m  bivariate units ( , )X Y from the 
population.  

2- Allocate the chosen units into m  sets each of size m . 
3-  From the first set , the smallest X and the associated Y are 

measured. From the second set, the second smallest of X and 
the associated Y are measured. We continue in this way until 
the last set where the largest X and the associated Y are 
measured. 

4- Repeat the steps above r  times until getting the required 
umber of elements. 

 
 

We assume that ranking on the auxiliary variable, X, is perfect. 
The associated variable, Y, is then with error unless the relation 
between X and Y is perfect. Let us denote [ ]( )( , )j i j iX Y as the 

pair of the thi order statistics of X and the  associated element Y in 

the thj cycle. Then the ranked set sample is  

1(1) 1[1] 1( ) 1[ ]

2(1) 2[1] 2( ) 2[ ]

(1) [1] ( ) [ ]

( , ),..., ( , ),

( , ),..., ( , ),

                   
( , ),..., ( , )

m m

m m

r r r m r m

X Y X Y

X Y X Y

X Y X Y

 

 
Then we define the sample means based on RSS 

by *
( )1

(1/ ) n
ii

x n x
=

= ∑ and [ ]
*

1
(1/ ) n

ii
y n y

=
= ∑ with 

variances are ( )
2 2* x
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x i xi
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2 1
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Var
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=
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[ ]
* * 2

1
(X ,Y ) (1/ ) (1/ ) m

xy xy ii
Cov m m Tσ

=
= − ∑  

  with 
[ ] ( ) [ ]( )( )x i x yxy i y iT μ μ μ μ= − − .  

 
 

III.  RATIO TYPE ESTIMATORS USING RSS 
Samawi & Muttlak(1996) proposed a ratio estimator which is 

based on RSS as * *ˆ /R y x= Where 

*
( )1 1

1 r m
k ik i

x X
nr = =

= ∑ ∑ and 

*
( )1 1

1 r m
k ik i

y Y
mr = =

= ∑ ∑  and the ratio estimator of the 

population mean of Y is 1
ˆˆ xRμ μ= . 

Using one degree of Taylor series expansion, they showed that this 
estimator is more efficient than that from SRS with similar form.  
 
Based on RSS, we suggest ratio-type estimators for the mean  in the 
form 

* *

*

( )ˆ ( )
( )

x
RSS x

y x
x
β μμ αμ γ
α γ
+ −

= +
+

 

 

where α  and γ are positive constants, and 2/xy xβ σ σ= . 

 
Let us take some special cases of this kind of ratio type estimators. If 
the coefficient of variation, and kurtusis of the concomitant variable 
are available, we may choose these parameters to be values for 
α and γ  in the estimator above. For examples: 
 
If 1α =  and xVγ = , then we have the estimator 

1

* *

*
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If 1α =  and xKγ = , then we have the estimator 
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If xKα =  and xVγ = , then we have the estimator 
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If xVα =  and xKγ = , then we have the estimator 
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if 1α =  and 0γ = , then we have the estimator  
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Lemma(1): Let 
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 Using one degree of Taylor series expansion, then 
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 SRSˆ ˆ( )  MSE( )    RSSMSE μ μ≤  
 
proof 
 
Using the first order of Taylor series expansion of ˆRSSμ  about 

,x yμ μ , then 

( )ˆ ( )RSS y y xy D xμ μ μ μ≅ + − − − , 

where 
/( )y xD β αμ αμ γ= + +  

and the variance is equal to 

( )* 2 *

* *

ˆ( ) (Y ) X

                   2 (X , Y )
RSSVar Var D Var

DCov

μ ≅ +

−
 

Since the bias in this expansion is zero then  
ˆ ˆ( ) ( )RSS RSSMSE Varμ μ≅ . 
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We can write the MSE of ˆRSSμ as 
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Therefore,  ˆ ˆ( ) ( )RSS SRSMSE MSEμ μ≤ ▪ 
 

 
The second order bivariate Taylor expansion of ( , )h X Y about 

,x yμ μ  is in the form 
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Using this expansion, we get 
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Now, the approximated bias of ˆRSSμ  is 
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which can be written as 
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We have from the theory of RSS that  
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Then the bias is 
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which can be further written as 
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where ˆSRSμ is the ratio-type estimator in the similar form as our 
estimator based on SRS.  
From the last result we may get that 
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To illustrate the amount of bias and efficiency, a simulation study 
under an example from a bivariate normal distribution is provided in 
the next section. 
 

IV. NUMERICAL COMPARISON 
The behavior of the above estimators is studied and compared with 

the corresponding estimators from SRS. Let us assume that the 
variable of interest Y and a concomitant variable X are correlated 
with a correlation coefficient ρ . Assume also that X and Y have a 
bivariate normal distribution with parameters 

2 2, , , ,  and x y x yμ μ σ σ ρ . These parameter are represented in the 

following example.  
 

Let us generate samples using SRS and RSS from a bivariate 
normal distribution with parameters 

2 220,   10,   1 x y x yμ μ σ σ= = = = and coefficient of 

kurtosis of the variable X is 3xK = . From this distribution we 
generated 5000 samples based on RSS and another 5000 samples 
using SRS. For each sample, the estimate of yμ is calculated. Then 

the average of ˆ 'y sμ  and the mean square error are computed 

respectively using 
5000

1
ˆ ˆ ˆ( ) (1/5000)y yii

E μ μ
=

= ∑  and 
5000 2

1
ˆ ˆ ˆ( ) (1/ 5000) ( )y yi yi

MSE μ μ μ
=

= −∑ . Different values of 

ρ and m are used and the results are shown in Tables I and II . 
 

TABLE I  

THE EXPECTATION OF RSS ESTIMATORS OF yμ AND THE CORRESPONDING 

SRS ESTIMATORS 

ρ  m 
ˆ ˆ( )1E RSSμ

 

ˆ ˆ( )2E RSSμ

 
ˆ ˆ( )3E RSSμ

 
ˆ ˆ( )4E RSSμ

 
ˆ ˆ( )5E RSSμ

 
3 10.029 10.017 10.030   9.996 10.030 
5 9.9673 9.9729 9.9672 9.9884 9.9671 
7 9.9942 9.9929 9.9943 9.9914 9.9943 0.99 

10 10.003 10.001 10.003   9.9981 10 .00 
3 10.075 10.068 10.076 10.058 10.076 
5 10.017 10.016 10.017 10.020 10 .01 
7 9.9673 9.9707 9.9672 9.9803 9.9671 0.50 

10 9.9668 9.9618 9.9670 9.9508 9.9671 
3 10.077 10.057 10.078 10.019 10 .07 
5 9.9686 9.9692 9.9685 9.9732 9.9685 
7 10.048 10.03 10.048 10.019 10 .04 0.00 

10 9.9903  9.9936   9.9902 10.002  9.9901 
 

 
TABLE II  

THE EFFICIENCY OF RSS ESTIMATORS WITH RESPECT TO THE 

CORRESPONDING ESTIMATOR ˆ ˆ( ) / ( )Eff MSE MSESRS RSSi i i
μ μ=  

ρ  m 1Eff 2Eff  
3Eff 

4Eff  
5Eff  

3 1.926 1.898 1.926 1.366 1.926 
5 2.512 2.440 2.512 1.524 2.513 
7 2.892 2.762 2.893 1.393 2.894 0.99 
10 4.155  3.907   4.158   1.621  4.159  

  
3 1.461 1.414 1.462 1.113 1.462 
5 1.849 1.742 1.850 1.148 1.851 
7 1.914 1.760 1.916 1.051 1.917 0.95 
10 2.240  2.013   2.243   1.059  2.244 

   
3 1.232 1.191 1.233 1.040 1.233 
5 1.412 1.329 1.413 1.019 1.313 
7 1.492 1.388 1.494 1.024 1.494 0.80 
10 1.581  1.397 1.582   0.942  1.483  

 
3 1.099 1.175 1.200 1.093 1.100 
5 1.100 1.057 1.100 0.914 1.100 
7 1.201 1.252 1.301 1.109 1.102 0.5 

10 1.263  1.215   1.164   0.985  1.164  
 
 

From Tables I and II the following concluding can be derived: 

1- The bias of the estimators are small and is independent of ρ . The 
fluctuation is due to simulation error.   

2- The RSS estimators considered are more efficient then the 
estimators based on SRS of similar forms. 

3- The efficiency of RSS estimators decreases as the correlation 
coefficient decreases. 

4- The efficiency is increasing as the set size m  is increasing. 
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