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Abstract—An original DEA model is to evaluate each DMU 
optimistically, but the interval DEA Model proposed in this paper 
has been formulated to obtain an efficiency interval consisting of 
Evaluations from both the optimistic and the pessimistic view points. 
DMUs are improved so that their lower bounds become so large as to 
attain the maximum Value one. The points obtained by this method 
are called ideal points. Ideal PPS is calculated by ideal of efficiency 
DMUs. The purpose of this paper is to rank DMUs by this ideal PPS. 
Finally we extend the efficiency interval of a DMU under variable 
RTS technology. 
 

Keywords— Data envelopment analysis (DEA), Decision making 
unit (DMU), Interval DEA, Ideal points, Ideal PPS, Return to scale 
(RTS). 

I. INTRODUCTION 
EA is a non-parametric technique for measuring the 
efficiency of DMUs with common input And output 
terms [1,2]. The DEA models may be generally classified 

into radial and non-radial Models. Russell [7] discussed four 
conditions that are desirable in measuring “technical 
efficiency”. Fare and Lovell [6] proposed an analytical model 
that aggregates both output and input efficiencies in the 
framework of a radial measure, the efficiency measure of the 
model is called the ”Russell measure(RM)”. RM has a major 
difficulty in efficiency measurement, because its objective 
function is formulated as a nonlinear programming problem. 
Cooper and Pastor [14] have, therefore, considered this 
problem and have proposed an adjustment to the Russell 
measure. Since DEA is a model for evaluation from the 
optimistic viewpoint, Entani and Tanaka [11] have already 
proposed the interval DEA model to obtain the efficiency 
interval. The efficiency interval is represented by its upper and 
lower bounds. The upper and lower bounds of the efficiency 
interval denote the evaluations from the optimistic and 
pessimistic viewpoints, respectively. The problem that obtains 
the upper bound of the efficiency interval is formulated as 
follows: 
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Where Xj and Yj are the input and output vectors of  DMUj, 
respectively, whose elements are all positive and the decision 
variables are the weight vectors U and V.  
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Also, the lower bound of the Efficiency interval for DMUo 
can be determined as follows: 
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According to [11], Model (2) can be changed to the following 
problem: 
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Where the ith element of the input weight vector V and the rth 
element of the output vector U are One and the other elements 
are all zero. Theorem 1. The optimal value of (2) and (3) are 
equal. Proof: The proof of the theorem is provided in [11]. 
DMUs are improved so that their lower bounds become so 
large as to attain the maximum value One. The points obtained 
by this method are called ideal points. The ith input element 
and the Rth output elements of the ideal point for DMUo are 
denoted as follows: 
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When DEA models are used to calculate the efficiency of 
DMUs, a number of them may have an equal efficiency score 
of one. Many methods have been proposed in order to rank 
best performers; Andersen and Petersen (AP) [8] and 
Mehrabian et al. [9] (MAJ) presented two most popular of 
these methods. These methods would fail if data have certain 
structures. There are some methods based on norms. 
Jahanshahloo et al. [4] introduced an l1−norm approach that 
removes some deficiencies arising from AP and MAJ, 
but that cannot rank non-extreme DMUs. 
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The method we propose in this paper, ranks such 
DMUs, and does not have the above-mentioned 
problems. 

The current paper is organized as follows. The next 
section addresses proposed model. In section 3 we give a 
proposed ranking and compare it with other models and, 
we consider the interval DEA with variable return to 
scale. End the paper concludes in section 4. 

II. PROPOSED MODEL 
We are dealing with n DMUs with the input and output 

matrices X = (xij) ∈  Rm×n  and Y= (yrj) ∈   Rs×n, respectively. 
The data set is positive, i.e. X > 0 and Y > 0. The production 
possibility set (PPS) of n DMUs is as follows: 
Tc = {(X, Y) |X ≥  Xλ , Y ≤  Yλ , λ ≥  0} 
First we obtain efficiency DMUs by adjusting Russell 
measure DMUs become divided into two categories: 
1) Efficiency (E) 
2) Inefficiency (F) 
Inefficiency DMUs that have higher *Θ Russell than they will 
have better Rank. 
We know all DMUs that belong into E set: 
∀ j ∈  E *Θ Russell=1 
For ranking efficiency DMUs, we do on aspect following: 
1) We calculate the ideal points of efficiency DMUs (E) by 
models (4), (5). 
2) We calculate ideal PPS by Ideal of efficiency DMUs, and 
already DMUs. 
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Theorem 2.  Ideal of strong efficiency DMUs are not 

dominated with any DMUs. ( }{ ),...,1,DMU( o noε  
Proof: To prove the theorem, it is sufficient to show that the 
following inequalities are true. 
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Recall that, in the beginning of this paper, we assumed that all 
of elements of the input and output vectors of DMUj 
 (j = 1, · · · , n) are positive. Furthermore, we assume that 
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DMUo is strong efficiency so we have: 
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According to (4): ijio xx ≤  

Inequality (6) is thus proved to be true. 
For proving inequality (7), we assume that 
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DMUo is strong efficiency so we have: 
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Inequality (7) is hence proved true. 
For ranking efficiency DMUs, we calculate efficiency their 
ideal DMUs in ideal PPS with the following problem: 

min),(* =Θ
−−

Oo YX   ( )1/()1
1 1
∑ ∑
= =

m

i

s

r
ri sm

θθ  

s.t.        .,...,1
1

miioiijj

n

j Ej
ijj xxx =

−

= ∈

≤′+∑ ∑ θλλ          

,,...,1
1

sryyy rorrjj

n

j Ej
rjj =≥′+∑ ∑

= ∈

φλλ          

.,....1,,1
,...,1,,10

,...,1,0

sr
mi

nj

r

i

j

=≥
=≤≤

=≥

φ
θ

λ

 

The performance of a DMU will be better if its   *Θ has lower 

than others, because )( ,
*

−−

Θ oo Yx  is efficiency of   

)( ,
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= ooO YxDMU  in ideal PPS.The Performance of a 

DMUO will be better if it’s *Θ  ideal point has a smaller    
Because, if DMUo has further output then DMUo will have 
more input and if DMUo has less input then DMUo will have 
less output i.e. if DMUo have better performance then its ideal 
point is closer to own DMU,as a result DMUo is far from 
frontier Ideal PPS.To elaborate, we apply our proposed model 
in the following example.Example1: We consider 7 DMUs 
with two inputs and two outputs. The data and the adjusting 
Russell measure  *Θ  of the DMUs are shown in Table 1. 
 
 
 
 

TABLE I INPUTS , OUTPUTS AND 
*Θ  OF DMUS IN EXAMPLE 1 

 
DM
U

A B C D E F G

1x  2 3 2 2 3 2 3

2x  3 4 2 3 4 2 4

1y  4 5 4 5 4 4 5

2y  5 6 4 4 5 6 4
*θ  0.335

8
0.648
1

0.800
0

1 0.530
3 

1 0.507
2

 
According to the results of the adjusting Russell measure 
model, DMUD, and DMUF are evaluated as efficient. In order 
to rank the two DMUs by the proposed method, first we 
obtain their ideal point and ideal PPS then we calculate the 
distance of ideal point to Ideal PPS . According to the method, 
if DMU has a shorter distance, then it has better rank. The 
ideal points, and the ranking of DMUs are shown in Table 2. 
 

TABLE II IDEAL POINTS AND RANKING OF EACH DMU 
Ideal   
DMU

A B C D E F G

Input1 - - - 1.33 - 1.6 -
Input2 - - - 1.33 - 2 -
Output1 - - - 6 - 5 -
Output2 - - - 9 - 6 -

dj

−−

),( jj yx  
- - - 4.7368

4 
- 2.6420

5 
-

RANK 4 5 3 2 6 1 7
 
The important property of this method is its ability to rank 
extreme and non-extreme DMUs. We show this property with 
the following example. 
 

 
Fig. 1: Farell frontier for three DMUS. 

 
Example2: We consider the three DMUs with two inputs and 
one output. The Farell frontier for These DMUs is shown in 
Fig 1. As can be seen in Fig 1, DMU1 and DMU2 are extreme 
efficient DMUs and DMU3 is non-extreme. The data, ideal 
points and ranking of DMUs, as well as their Efficiency 
results by model (12) are shown in Table 3. It can be seen that 
this method ranks all of DMUs. 
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TABLE III DATA AND IDEAL POINTS AND RANKING 

 

III. EFFICIENCY INTERVAL UNDER VARIABLE RTS 
TECHNOLOGY 

 
Entani et al. [11] improved the efficiency intervals of a 

DMU by adjusting its given inputs and outputs under constant 
RTS technology. We want to develop their model under 
variable RTS technology. 
 
Lemma 1. For  
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Proof. The proof of the theorem is provided in [10]. 
The upper and lower limits of interval efficiency for DMUo 
under variable RTS technology 
be defined as follows: 
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We can obtain the lower limit of efficiency directly by 

                                                                   

*

0

0 , 0
min

max

op

E or

p r jp

j
jr

y u
x
y u

x

+

Θ =
+

                       (15)   

Which is proven in what follows 
The optimal value in (15) can be said that the optimal weight 
vectors U and V in (14) have the entry 1, respectively, and all 
other entries are 0. This fact is proven by theorem 3.First, we 
assume to have following inequality: 
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According to lemma 1, we must have following condition: 
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Proof. In order to simplify the notation, we consider the case 
of two-dimensional input and two-dimensional output data. 
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Where j2 and j1 denote the optimal values of j, respectively. 
(15) is the special case of (14) where *v  has 1r th entry is 1, 

*u has 1p th entry is 1 and all other  entries are 0. Thus the 
following holds. 
 
 
The variable space of (14) ⊃ that of (15).Then, we have the 
following relation: 
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Here we have the following two cases with respect to inputs 
and outputs: 
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Thus, we consider the following four cases: 
(A1, B1), (A1, B2), (A2, B1), (A2, B2) 
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Employing inductive inference, Theorem 3 for general case 
can be proven. 
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DMUs are improved in variable RTS technology so that their 
lower bounds become so large as to attain the maximum value 
one. The ith input element and the rth output element of the 
ideal point for DMUo by variable RTS technology are denoted 
as follows: 
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Therefore, for obtaining ideal DMUs in PPS with variable 
RTS technology, we should do following process: 
 
1) First, we calculate efficiency DMUs by adjusting Russell 
measure in the PPS with variable RTS 
technology, then we obtain strong efficiency DMUs (E). 
2) If DMUo is strong efficient then we calculate following LP: 

                                                                
0

0
1

0
1

min

. . 0, 1,..., ,

0,

, 1,..., ,
, 1,..., .

s m

r rj i ij
r i
s m

r ro i io
r i

i

r

u

s t u y v x u j n

u y v x u

v i m
u r s

ε
ε

=

=

− + ≤ =

− + =

≥ =
≥ =

∑ ∑

∑ ∑
        (20) 

3) We calculate ∑
=

=
s

r
ruuu

1

**
00 /  that ( )***

0 ,, VUu  is optimal 
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obtain ideal DMUo by (18), (19).  
 
Note: In the PPS with non-decreasing RTS (BCC − CCR) we 
can obtain ideal DMUo by (18),and (19),because uo is always 
non-negative. 
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IV. CONCLUSION 
Our aim in this paper was to obtain a method for ranking 

DMUs. For ranking efficiency DMUs, We calculate the ideal 
points of efficiency DMUs and ideal PPS by Ideal of 
efficiency DMUs, and already DMUs. The Performance of a 

DMU will be better if it’s ideal point has a smaller θ
∗

in 
model (12). Because, if DMUo have better performance then 
it’s ideal point is closer to own DMU,  as a result DMUo is far 
from frontier Ideal PPS. For DMUs that 1θ ∗ =  we calculate the 
distance of ideal point from frontier Ideal PPS, According to 
the method, if DMU has a shorter distance, then it has better 
rank. 
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