
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:8, 2012

1010

Ranking and Unranking Algorithms for k-ary Trees
in Gray Code Order

Fateme Ashari-Ghomi, Najme Khorasani, and Abbas Nowzari-Dalini

Abstract—In this paper, we present two new ranking and unrank-
ing algorithms for k-ary trees represented by x-sequences in Gray
code order. These algorithms are based on a gray code generation al-
gorithm developed by Ahrabian et al.. In mentioned paper, a recursive
backtracking generation algorithm for x-sequences corresponding to
k-ary trees in Gray code was presented. This generation algorithm
is based on Vajnovszki’s algorithm for generating binary trees in
Gray code ordering. Up to our knowledge no ranking and unranking
algorithms were given for x-sequences in this ordering. we present
ranking and unranking algorithms with O(kn2) time complexity for
x-sequences in this Gray code ordering .

Keywords—k-ary Tree Generation, Ranking, Unranking, Gray
Code.

I. INTRODUCTION

TRees are one of the most important structures in computer
science. Trees have many applications such as database

generation, decision table programming, analysis algorithms,
string matching [11], switching theory, and even in the theoret-
ical VLSI circuit design [26]. Trees are also widely used data
structures for maintaining data [19] and as auxiliary structures
for compressing data [10]. In addition, the exhaustive genera-
tion of all trees of a certain type is often useful; for example,
a list of all trees with a given number of nodes n, may be
used to test and analyze of algorithm complexity, and prove
the correctness of an algorithm [11]. As such, the problem
of generating binary trees [1], [4], [17], [21], [22], [30], k-ary
trees [2], [5], [6], [7], [8], [13], [18], [23], [28], and other types
of trees[20], [25], has been thoroughly investigated and many
papers have been published in the literature for generating
trees.

In most of these algorithms, trees are encoded as integer
sequences and then these sequences are generated with a
certain order, and consequently their corresponding trees are
also generated in a specific order. The most well-known
orderings on trees are A-order and B-order [22], [33], and the
orderings on the sequences are lexicographical [33] and Gray
code [15], [17]. Typically, an important issue for algorithms
to enumerate various classes of objects is that they must
be run in a constant time for each generation. Therefore so
many algorithms have been proposed to generate k-ary trees
in constant time in the worst case. These algorithms generate
the sequences corresponding to trees in Gray code order [14],
[15], [16], [24], [32].
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Beside the generation algorithm for k-ary trees, ranking
and unranking algorithms are also important in the concept
of generation [23], [28], [31], [33]. Given a specific order on
the set of k-ary trees, the rank of a tree (or corresponding
sequence) is its position in the exhaustive generated list, and
the ranking algorithm computes the rank of a given tree (or
corresponding sequence) in this order. The reverse operation
of the ranking is called unranking, which generates the tree
(or sequence) corresponding to a given rank. Usually tree gen-
eration papers present ranking and unranking algorithms for
tree generation algorithm. Ranking and unranking algorithms
also have many applications. For example, in traditional tree
compression algorithm for encoding the tree to code sequence
and decoding the code sequence back to a tree, the ranking
and unranking algorithms can be used.

As mentioned, in tree generation algorithms, trees are rep-
resented as sequences and then these sequences are generated.
Two well-known representations of k-ary trees with n nodes
are x-sequences (or 0-1 sequences) and z-sequences presented
by Zaks [33]. He presented a generation algorithm for z-
sequences encoding in lexicographical ordering such that the
corresponding trees are generated in B-order, and generates
one sequence from a given sequence in O(n) (n is the
length of z-sequence). He also presented two ranking and
unranking algorithms for this generation in O(kn). Later, some
other k-ary tree generation algorithms were presented on this
encoding [7], [24], [32].

Vajonvszki presented a new Gray code for the x-sequence
corresponding to binary trees with n nodes [27]. A constant
average time algorithm for generating this Gray code is
also given. Ahrabian et al. introduced another algorithm for
generating k-ary trees represented by x-sequence in Gray code
order [3], which is based on Vajnovszki’s paper [27]. This
algorithm is a backtracking generation algorithm. Up to now,
no ranking and unranking algorithms are presented for x-
sequences in Gray code ordering given by Vajonvszki [27]
and Ahrabian et al. [3].

In this paper, we present ranking and unranking algorithms
for x-sequences corresponding to k-ary trees with n nodes
generated in Gray code based on the Ahrabian et al. [3] gen-
eration algorithm. The time complexity of ranking algorithm
is O(kn2) and unranking algorithm is also O(kn2).

The rest of this paper is organized as follows. Section II
introduces the definitions and notations that are used subse-
quently. In Section III, ranking and unranking algorithms are
discussed. Finally, some concluding remarks are offered in
Section IV.
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II. PRELIMINARIES

In graph theory, a tree is a connected and undirected graph
without any cycle. A rooted tree is a tree with a distinct node
which is called root. Rooted trees are directed trees and the
direction is from the root to the offspring. A rooted tree where
the children of each node have a designated order is called
ordered tree. A k-regular ordered tree is an ordered tree in
which each node has either k children (internal node) or no
children (external node or leaf), and is called k-ary tree. An n-
node k-ary tree has n internal nodes and (k−1)n+1 external
nodes or leaves, and the total number of k-ary trees with n
internal nodes is denoted by Cn,k and is known to have the
value

Cn,k =
1

(k − 1)n + 1

(
kn

n

)
.

A k-ary tree T can also be defined recursively as being
either an external (leaf) or an internal node together with a
sequence T1, T2, · · · , Tk of k-ary trees, which Ti is defined as
the ith subtree of T [11].

Let us introduce basic notations used through this paper
and a definition of k-ary trees by means of choice functions
of indexed families of sets (from [9], [12], [13]).

Let Γ = {1, · · · ,m} and I = {1, · · · , �} be two sets, and
�,m ≥ 1, then < Γi >i∈I where Γi = Γ, show an family of
sets indexed by I . Any mapping function f which chooses
one element from each set Γ1, · · · , Γ� is called a choice
function of the indexed family < Γi >i∈I . With supplementary
restrictions, various classes of combinatorial objects can be
modeled by choice functions [9], [12], [13].

If I = {1, · · · , �} and Γi = {0, 1}, then any choice function
χ =< xi >i∈I , that belongs to the indexed family < Γi >i∈I ,
is called binary choice function of this family [12]. If � ≤ kn
for a given k and n, each binary choice function which x1 +
· · ·+xi ≥ i/k, for 1 ≤ i ≤ kn, is called binary choice function
with k-dominating properties. There exist bijections between
set of choice functions χ and sets of k-ary trees with n internal
nodes in widely used representations. All k-dominating binary
choice functions, with � = kn and the number of x1 + · · · +
xi = n, are bitstring representations of all k-ary trees of the set
Γ. This bitstring representation is called x-sequence [33]. By
k-dominating definition, in each subsequence {xj}i

1(1 ≤ i ≤
kn) the accumulated number of 1’s is at least �i/k�. Clearly,
each sequence has n 1’s and (k − 1)n 0’s.

For any given choice functions δ =< d1, · · · , dl > and
γ =< g1, · · · , gl >, we say that δ and γ are in Gray code
order, if they differ by a constant number of changes [29].

The x-sequence can be obtained directly from k-ary trees.
Given a regular k-ary tree with n internal nodes, we label each
internal node with 1 and each external node with 0. Reading
tree labels in pre-order (recursively, visit first root and then all
the subtrees from left to right), we get a bitstring with n 1’s
and (k − 1)n + 1 0’s. As the last visited node is an external
node, we omit the corresponding 0 [33]. For example, the
x-sequence corresponding to the tree presented in Fig. 1 is
x = 110000100100.

Now, let Sm,n
k be a set of all k-dominating binary choice

functions with the number of x1+· · ·+xi = n and m = �−n,

in other words the set of all bitstrings with a k-dominating
property with m 0’s and n 1’s such that m ≥ (k − 1)n ≥ 0.
In particular case where m = (k − 1)n, Sm,n

k is the set of all
x-sequences of length kn. As it is mentioned, we call a list
of bitstrings in Sm,n

k Gray code list if every two successive
bitstrings in the list differ by an interchange of two bits.
Also, let α and β be two bitstrings then we denote αβ the
concatenation of α and β. By these definitions, the following
lemma shows the recursion property of the set Sm,n

k , which
helps us in the generation schema [3].

Lemma 1. For any k > 0, and m, n ≥ 0, we have

Sm,n
k =

⎧⎨
⎩

0m if n = 0,

1Sm,n−1
k if m = (k − 1)n,

0Sm−1,n
k ∪ 1Sm,n−1

k if m > (k − 1)n > 0.

For example, Table I shows all bitstrings
S6,2

3 = 0S5,2
3 ∪ 1S6,1

3 . With regard to the recursion
property of the set Sm,n

k , we can easily count the number of
elements in this set. Let Sm,n

k be the number of bitstrings in
Sm,n

k . According to the above lemma, Sm,n
k can be obtained

as follows.

Corollary 1. For any k > 0, and m,n ≥ 0, we have

Sm,n
k =

⎧⎨
⎩

1 if n = 0,

Sm,n−1
k if m = (k − 1)n,

Sm−1,n
k + Sm,n−1

k if m > (k − 1)n > 0.
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Fig. 1. A 3-ary tree with 4 internal nodes.

TABLE I
ALL BITSTRINGS IN S6,2

3 = 0S5,2
3 ∪ 1S6,1

3 .

0S5,2
3 1S6,1

3

00100100 11000000

00101000 10100000

00110000 10010000

01100000 10001000

01010000 10000100

01001000

01000100
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Corollary 2. For any k > 0, n ≥ 0, and m ≥ (k − 1)n ≥ 0,
we have

Sm,n
k =

m + 1 − (k − 1)n
m + 1

(
m + n

n

)
.

With regard to the definition of Sm,n
k , it should noted that

S(k−1)n,n
k is the set of bitstrings corresponding to k-ary trees

with n internal nodes. Therefore, we can have the following
theorem.

Theorem 1. In particular case of Corollary 2 where m =
(k − 1)n,

S
(k−1)n,n
k =

1
(k − 1)n + 1

(
kn

n

)
.

Obviously S
(k−1)n,n
k = Cn,k (the number of all k-ary trees

with n nodes). With regard to the above discussion and using
Lemma 1 the generation k-ary trees algorithm in Gray code
order was presented in [3]. As an example, a list of 22 x-
sequences corresponding to 4-ary trees with n = 3 nodes in
this Gray code order is shown in Table II.

III. RANKING AND UNRANKING ALGORITHM

The rank of a k-ary tree with respect to some ordering is
the number of previously generated trees in that ordering. The
reverse operation of the ranking is unranking. As mentioned,
for the x-sequences in Gray code, no ranking and unranking
algorithms are presented in the literature in Gray code or-
dering given by Vajonvszki [27] and Ahrabian et al. [3]. In
this section, the ranking and unranking algorithms for these
generation and ordering are presented.

For ranking and unranking algorithms we need Sm,n
k for

given k, m, and n, that are defined and computed earlier. We
assume that these values are computed and stored in arrays
S[m][n] for a fixed k. Also, for computing the rank of a
given bitstring or unranking a given rank, we need three other
variables prePos, curPos, and dir. In the ranking and unranking
algorithm, when the ith 1 of a bitstring is investigated, the
variable curPos holds the position of this 1 (ith 1) and the
variable prePos holds the position of previous 1 ((i− 1)th 1).

The variable dir holds the direction of the ith 1 in a bitstring.
Direction of the ith 1 in a bitstring is down (represented by
0) if the ith 1 has been shifted one place to the left in the
next bitstring in Gray code order, and if the ith 1 has been
shifted one place to the right, the direction is up (represented
by 1). For example, consider two bitstrings ’00100100’ and
’00101000’, for the first bitstring the direction of the second
1 is down, because in the next bitstring, the second 1 has
been shifted to left. But for two bitstrings ’01100000’ and
’01010000’, the direction of second 1 in the first bitstring is
up, because this 1 has been shifted to right. Since the first bit
in the input bistring is always equal to 1 and does not shift,
we can assume that the direction of the first bit is equal to 0.

To determine the direction of the ith 1 for 2 ≤ i ≤ n, we
can use the following relation:

If direction of the (i − 1)th 1 is equal to 0 then
direction of the ith 1 is equal to{

0 if (i − 1)th 1 is in its last position,
1 if (i − 1)th 1 is not in its last position.

If direction of the (i − 1)th 1 is equal to 1 then
direction of the ith 1 is equal to{

1 if (i − 1)th 1 is in its last position,
0 if (i − 1)th 1 is not in its last position.

In this relation, if the position of the ith 1 is equal to (i −
1)k + 1, then it is in the last position.

As mentioned, a x-sequence corresponding to a k-ary tree
with n nodes, has n 1’s and m = (k − 1)n 0’s. In the Gray
code order, for generating a bitsring from the previous bitsring,
each 1 should be shifted from its position to next position.
Therefore, each 1 has a shift direction and can be computed
using the above relation. If the position of the ith 1 in the jth
bitsring is p and its direction is up (dir is equal to 1) and this
1 is a candidate for shifting, then its position in the (j + 1)th
bitsring is p+1. Otherwise, if the direction of the ith 1 in the
jth bitsring is down then its position in the (j + 1)th bitsring
is p − 1. For a given bitsring, ith 1 have a last and a first
position. The last position of the ith 1 is shown by plast and
is equal to (i − 1)k + 1 and the first position of it is shown
by pfirst, and is equal to the position of the (i − 1)th 1 plus
1. A 1 is shiftable if it is not in its last or first position, in
other words, a 1 is shiftable if its shift direction is up and it
is not in its last position, or if its shift direction is down and
it is not in its first position.

In order to compute the rank of a bitsring, we count the
number of generated bitsring before this bitsring in the Gray
code order. This can be done, using by the shiftable 1’s. For
this purpose, the bitsring should be scaned from left to right
and a shiftable 1 should be found. As mentioned, the first 1 is
never shifted and is always in position 1, and shift direction of
ith 1 is determined by shift direction of (i − 1)th 1. Assume
that we investigate the ith 1 in the jth bitsring, we have two
cases which are explained as follows.

In the first case, the shift direction of the ith 1 in the jth
bitsring is equal to down (dir = 0). So, the first possible
position is plast for this 1, where is equal to (i − 1)k + 1,
and the last possible position is pfirst for this 1, where is
equal to the position of the (i − 1)th 1 plus 1. In all the
consecutive bitsrings that are generated by shifting of the ith
1, the possible positions for this 1 can be the positions plast,
plast−1, plast−2, · · ·, pfirst. Therefore, if the position of the
ith 1 is p then the positions of this 1 in previous bitsrings are
plast, plast−1, · · ·, p+2, p+1. The number of such bitsrings
should be obtained for ranking. At first, we count the number
of bitsrings which the ith 1 of them is in position plast. The
positions of the first 1 to (i− 1)th 1 are fixed and we have to
count the number of 0’s and 1’s which their positions are after
the position of ith 1. The number of 1’s that their positions are
after the ith 1 in the jth bitsring is equal to n′

j = n− i. Now
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TABLE II
THE 22 x-SEQUENCES OF LENGTH 12 FOR n = 3 AND k = 4.

rank bitstring rank bitstring

1 100010001000 12 101001000000

2 100010010000 13 101000100000

3 100010100000 14 101000010000

4 100011000000 15 101000001000

5 100110000000 16 111000000000

6 100101000000 17 110100000000

7 100100100000 18 110010000000

8 100100010000 19 110001000000

9 100100001000 28 110000100000

10 101100000000 21 110000010000

11 101010000000 22 110000001000

let q be the number of 0’s which their positions are before
the ith 1 in the jth bitsring, so the number of 0’s which their
positions are after p is equal to m′

j = m−q (it is obvious that
q = p − i). Therefore, the number of bitsrings that the ith 1
of them is in position plast is equal to S

m′
j ,n′

j

k . With the same
way, we can count the number of bitsrings which the ith 1 of
them are in the positions plast − 1, · · ·, p + 2, p + 1. Finally,
the number of previous bitsrings before bitsring j that the ith
1 of them are in positions plast, plast − 1, · · ·, p + 2, p + 1 is
equal to:

plast∑
j=p+1

S
m′

j ,n′
j

k .

In the second case, the shift direction of the ith 1 in the jth
bitsring is equal to up (dir = 1). So the first possible position
for this 1 is pfirst. In all the consecutive bitsrings which are
generated by shifting of the ith 1, the possible positions for
this 1 can be pfirst, pfirst+1, pfirst+2, · · ·, plast. Therefore,
if the position of the ith 1 is p then the positions of this 1 in
previous bitsrings are pfirst, pfirst +1, · · ·, p− 2, p− 1. The
number of such bitsrings should be obtained for ranking. This
number can be computed similar to the first case and we have:

p−1∑
j=pfirst

S
m′

j ,n′
j

k ,

where the values of m′
j and n′

j are equal to m− q and n− i,
respectively (similar to the first case).

Now, the rank of a given bitsring can be computed as:
n∑

i=2

pu∑
j=p�

S
m′

j ,n′
j

k ,

where p� and pu are lower and upper bound for positions of
the ith 1.

With regards to the above discussion, the ranking algorithm
is given in Algorithm 1. This algorithm takes n, k, and
bitstring x corresponding to the k-ary tree with n nodes as
input parameters, and returns the rank of x in variable r.
Considering the above discussion, the time complexity of the
ranking algorithm is O(kn2).

The unranking algorithm essentially reverses the steps car-
ried out in computing the rank. The unranking algorithm given
in Algorithm 2 takes r, k, and n as input, and returns the x-
sequence corresponding to the k-ary tree with n nodes that
has rank r.

For a given r as a rank, the corresponding bitstring x =
x1 · · ·xkn is computed by the following operations. Initially
x1 is set to 1 and all xi’s (2 ≤ i ≤ kn) are set to zero, the
position of the first 1 is set to 1, and the direction of this 1 is
set to 0. The bitstring x has to have n 1’s, therefore the correct
position of the ith 1 (2 ≤ i ≤ n) is computed in a loop. In the
iteration i (2 ≤ i ≤ n) of this loop, at first, the direction of the
ith 1 (dir) is computed using by the direction and position of
the (i−1)th 1, after that, the position of the ith 1 (curPos) is
computed using s[n∗ (k−1)− curPos+ i][n− i]. The values
of s[n ∗ (k − 1) − curPos + i][n − i] determine the possible
number of shifts which ith 1 can have. Finally, the value of
this position is set to 1 in bitstring x. Considering the above
discussion, the time complexity of the unranking algorithm is
O(kn2).

IV. CONCLUSION

we have introduced two new ranking and unranking algo-
rithms for n-node k-ary trees represented by x-sequences. In
these algorithms, it is assumed that the order of x-sequences
corresponding to the list of all k-ary trees with n nodes is
Gray code order. The time complexity of both ranking and
unranking algorithms is O(kn2).
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