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Abstract—The paper presents a new hybridization methodology 
involving Neural, Fuzzy and Rough Computing. A Rough Sets based 
approximation technique has been proposed based on a certain Neuro 
– Fuzzy architecture. A New Rough Neuron composition consisting 
of a combination of a Lower Bound neuron and a Boundary neuron 
has also been described. The conventional convergence of error in 
back propagation has been given away for a new framework based on 
‘Output Excitation Factor’ and an inverse input transfer function. The 
paper also presents a brief comparison of performances, of the 
existing Rough Neural Networks and ANFIS architecture against the 
proposed methodology. It can be observed that the rough 
approximation based neuro-fuzzy architecture is superior to its 
counterparts. 
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I.  INTRODUCTION 
 

OFT Computing, may be regarded as a science aimed at 
emulating human ability to deal with uncertainty and 

imprecision in real time. Taking it away from the conventional 
AI techniques, soft computing has evolved not as one 
technique but as a synergistic collection of more than one 
technique, Evolutionary, Neural and Fuzzy Computing being 
the prime methodologies. This paper deals with a similar 
hybridization involving Neural and Fuzzy Computing. 
Another dimension has been added to the combination, by the 
introduction of Rough Sets based classification principles.  

As Pawlak [1] stated, ‘knowledge is deep seated in the 
classificatory abilities of living organisms’. Abstract level 
classification forms the basis for reasoning, learning and 
decision making. Thus knowledge has a definitive relationship 
with classification patterns which may be used in a way to 
derive secondary knowledge from primary knowledge / 
information. Classification in principle aims to segregate the 
given objects into classes in an effort to allocate a known 
solution to the elements belonging to the respective classes. 
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Such a methodology results, in principle, in pruning of the 
search space (based on certain parameters). 

[2] - [5] have successfully adopted rough regions into 
conceiving, better and efficient performance. The aim of the 
proposed architecture is to adopt such a pruning mechanism 
based on rough classification for continuous learning during 
and after training. The paper also outlines a novel method for 
fast error convergence in back propagation.  

A Rough Neuron, introduced for the first time by Lingras 
[5], comprised of one upper and another lower neuron, each 
reflecting the respective rough approximation regions. Such 
pairs were connected through excitatory and inhibitory 
connections depending upon the behavior of the outputs. The 
connections would then be dynamically configured during the 
learning processes i.e. the system would configure itself to an 
excitatory connection if an increase in the input signal would 
in some proportion increase the output. If vice versa, the 
system would revert to an inhibitory connection. Such signal 
propagation, though superior to the conventional neural 
networks, doesn’t take into account individual effects of the 
lower and upper approximation neurons. Further, it should be 
noted that, a similar rough pattern may be generated in the 
error back propagation as well.  

This article, in principle details a new composition for the 
new rough neuron proposed by Chandana-Mayorga [8], 
comprising of a boundary neuron and a lower bound neuron. 
A new weighted (inter neuron) link system, based on what was 
called; the Output Excitation Factor (OEF) has been proposed. 
A new error convergence methodology based on a certain 
input inverse functions and the OEF has been detailed.  

Section 2 deals with a preliminary introduction to the 
involved concepts. The Rough approximation based Neuro – 
Fuzzy Inference architecture has been described in section 3. 
Section 4 describes a novel method of accommodating rough 
patterns in the error back propagation along with the use of an 
input inverse function. Section 5 presents some preliminary 
results. Virtues of the proposed methodology have been 
compared with a few existing techniques in this section. 
 

II. PRELIMINARIES 
 

Considering the fact that Rough Sets Theory and various 
models of Neuro – Fuzzy systems have been in existence for a 
few years, only a brief introduction to the said concepts has 
been provided here. Basic introduction to Rough Sets Theory 
and some preliminary information about one of the Neuro-
Fuzzy Architectures are has been presented in the subsections. 

S 
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A. Rough Sets Theory (RST) 
RST was first developed by Zdzislaw Pawlak in Poland in 

the early 1980s’. It deals predominantly with the classificatory 
analysis of imprecise, uncertain or incomplete information. 
Rough Set Theory can be defined as follows [1], [2], 

Let Universe (U) be a finite, non-empty set with, I, being an 
equivalence relation called the indiscernibility relation on U.  
I(x) would then be described as an equivalence class of the 
relation I containing the element x. The concept of an 
indiscernibility relation brings about the fact that not all 
elements in the Universe can be discerned given the 
information available. Further, such an indiscernibility 
relation is used to determine the lower, upper and boundary 
approximations (which may be expressed as),  
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The rough membership function is defined as follows, 
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Based on such an expression of the membership function, 
the concepts of lower, upper and boundary regions can be 
defined as [1], 
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Given the above functions, RST can be categorized as a 
methodology complimentary to the Fuzzy Set Theory.  

 
B.  ANFIS 
The ANFIS architecture proposed by Jang [6] can be 

described as, one made up of adaptive networks which are 
functionally similar to Fuzzy Inference Systems. ANFIS has 
an edge over other prevalent hybrid architectures due to its 
mathematical framework devised to decompose the parameter 
set (of the adaptive network nodes). Such decomposition 
further helps in implementing a Hybrid Learning algorithm 
composed of the Gradient Descent Method and the Least 
Squares Estimator. ANFIS successfully attempts to represent 
the Sugeno Fuzzy models with an advantage that the learning 
can be interpreted from perspectives of both neural and fuzzy 
systems. And more importantly such a system enables viewing 
the problem solution in a linguistic fashion. 

 
Architecture: The said architecture [6] is comprised of a 

five layer multi neuron neural network. The objective 
functions of all nodes in Layer 1 are designed to assign a 
relevant fuzzy membership function to the applied inputs. In 
Layer 2, the outputs of the individual preceding layers are 

multiplied to retrieve the first set of parameters called the 
premise parameters i.e. the weights are generated. Layer 3 
neurons calculate the normalized weights (also called the 
normalized firing strengths) for the nodes. Layer 4, which is 
adaptive in nature, computes output based on the normalized 
weights and the output firing function. Computation in this 
layer generates a second set of parameters called the 
consequent parameters. Layer 5 computes the overall output of 
the five layer network by summing all of the incoming signals 
into an output. The training or the learning process is aided by 
the use of a hybrid learning algorithm.    
 

III.  ROUGH APPROXIMATION BASED NEURO – FUZZY 
INFERENCE SYSTEM (RANFIS) 

 

In this section, we describe a Rough Neuron, which is a 
working pair of neurons, consisting of one lower bound 
neuron and one boundary neuron. As the name suggests the 
lower neuron is representative of the lower bound 
approximation and the boundary neuron is representative of 
the disjunct between the upper and lower bound 
approximations. The main intent in introducing the concept of 
a boundary neuron is to accommodate the random and 
unpredictable effect of the boundary signal on the rough 
neuron output. A general analysis of the output of the lower 
bound neuron will yield a conclusion that, the behavior of the 
lower bound neuron output is skewed. This statement can be 
made in the sense that, the output of lower neuron relies on a 
rather less complex and predictable function. Further, it should 
be noted that the behavior of the lower bound neuron is 
thoroughly devoid of any uncertainty unlike its boundary 
based counterpart.  

Such a composition of the rough neuron effectively results 
in drawing a line between the certain and the uncertain 
behaviors i.e. an implicit region for certainty and uncertainty 
can be identified within the solution space. Such a 
demarcation should (and has,) result in an improved overall 
approximation. 

 
A.  The New Rough Neuron 
The New Rough Neuron is made up of a combination of 

two individual neurons working in a pseudo deterministic 
fashion (explained in the succeeding sections). One of the 
constituent neurons is called the Lower Bound Neuron, and is 
responsible for the output approximation (of the overall Rough 
Neuron) based on the lower bound of the applied input signal 
i.e. the lower bound neuron deals only with the definite or 
certain part of the signal and produces its share of the total 
output. The second and the more prominent half of the Rough 
Neuron, what the authors call the Boundary Neuron, is 
designed in such a way that it processes only the boundary 
signal i.e. the boundary neuron deals only with the random 
part of the signal. The randomness in the applied signal may 
be categorized either as the noise present in the data or data 
content that the neurons have not yet been introduced to. This 
interpretation of randomness is applicable only to the learning 
/ training stage of the neural network. The aforementioned 
details about the purpose and structure of the Rough Neuron 
constituents may be understood better with the help of the 
following illustration; 
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Fig. 1 Rough Signal Mapping for the constituent Neurons 

 

The proposed architecture has been designed in such a way 
that the overall boundary signal generated as output; reduces 
as the signal moves forward from one layer to the next. This 
mechanism can be interpreted in simpler terms, by saying that 
the randomness in the output signal consistently decreases in 
the forward runs. 
 

Network Design: A basic Rough Neural Network Design 
has been described in this subsection. Let’s first consider the 
linkages between 4 rough neurons in a network; (Fig. 2). As 
mentioned earlier, the boundary and lower bound parts of the 
Mi neuron, partition the applied input signal into random and 
predictable sections. 

Then they respectively process their parts of the input signal 
and produce outputs which are collated (as per details in the 
next subsection). The thus produced output signals from the 
neurons of layer M (which are now input signals into layer N,) 
are once again partitioned into the two classes. This process 
repeats until the penultimate layer (or last hidden layer) further 
to which, the outputs are simply passed through a summation 
operator. The deviation of the obtained output compared to the 
desired output (after each complete iteration) dictates all 
further training and modification of the linkages. 

With reference to Fig. 2; please take note that (B) depicts 
the implicit connections between the four constituent neurons 
of the two connected Rough Neurons. Despite of not being 
physically connected to an array of other neurons, the 
presented model establishes a qualitative linkage between 
every pair of non-homogenous neurons; a pair of constituent 
(Boundary and Lower Bound) neurons, belonging to the same 
Rough Neuron, forms a homogenous set. 
 
Node Functions & Signal Propagation: The Lower Bound 
Neuron and the Boundary Neuron have both been designed 
with a sigmoid transfer function. A generalized sigmoid 
function (Equation 1.), has been chosen in order to 
accommodate any non-linearity encountered during the 
modeling process.   
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The network structure is based upon the nodal transfer 
functions and the behavior of the nodal outputs. The Nodal 

 
Fig. 2 Design of Linkages among the Rough Neurons 

  
 

outputs in turn are dependant upon the Output Excitation 
Factor (OEF; ε).  
 
Output Excitation Factor (ε) may be defined as a ratio of 
change in the (resultant) output magnitude to the change in 
(applied) input magnitude. Determination of such a behavior 
trait is critical in implementing randomness reduction in the 
signal. Following are the relevant output functions (in order 
for an applied signal x); which would further explain the 
methodology; 

 
Fig. 3 One New Rough Neuron 

 
 

Output (of Ri) = Σ output of constituent neurons (2) 
 

Output of Boundary Neuron is given as; 
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And the output of the Lower Bound Neuron is given as;  
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The Output Excitation Factors may be given as;  
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One should pay attention to the fact that the excitation factor, 
in reality has a negating effect on the output of the boundary 
neuron (refer to Eq.3 & 5). And with reference to Equation 2, 
such an effect is in turn propagated to the overall rough neuron 
output. Since the Boundary Neuron processes the random part 
of the applied input signal, over a few layers, we see a 
considerable reduction in the randomness. This is one half 
way of reducing uncertainty; the second half will be taken up 
for discussion in the (next) subsection, while describing the 
learning algorithm. 

As mentioned earlier (refer to Fig.1); the lower bound 
neuron also tends to produce an output with some randomness 
in it. But a negating operator is not applied to its output 
excitation factor, since the generated random signal would be 
dealt with a boundary neuron in the succeeding layer. Such a 
mechanism applied across the rough neuron Ri (refer to Fig.3) 
would boost the lower bound signal and simultaneously inhibit 
the boundary signal.  

The Transfer Function may be given as;  
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α

+⋅+
= xe

xF
1

                     (1) 

where the parameters α, β, ζ should be optimally fixed in 
order to generalize the neural network for performance.Thus, 
(with reference to Fig. 3) the output of the full Rough Neuron 
may be given as;  

RRRR ooo
i

+=
−

                            (2.a) 

Further, (with reference to Fig.2A) input to a succeeding layer 
(N) can be given as a linear combination of all outputs of 
neurons belonging to the preceding layer (M). The linear 
combination is based on the weighted connections between the 
respective neurons. Finally, the output layer of the rough 
neural network should consist of either a singular rough 
neuron or a conventional neuron with a summation equivalent 
transfer function.   

 
B.  Network Architecture 
The proposed architecture (in essence) consists of a five 

layer neural network, but such is the network’s design that it 
can be made up of 2n+3 layers, where n = (1, 2 …..).  

A simple network design has been depicted in Figs. 4.   

 
Fig. 4 Rough Approximation based Neuro Fuzzy  

Inference System network architecture 
 

Layer 1: The node functions assign a certain membership 
function to the applied input i.e. (following the same notation 
as used in [6] we get) 

)(1 xo
iAi μ=  (6) 

Layer 2: The input signals to this layer are subsequently 
broken down as per certain and uncertain behaviors i.e. the 
applied input signal propagates to a rough neuron. The non 
linear parameter set of the weights of the inter neuron links is 
generated in this layer i.e.  
 

iiii RRBNBNi outputxoutputxo ×+×= )()(2 μμ (7) 
 

Layer 3: The neurons in layer 3 perform in a fashion similar 
to those in layer 2, with a negligible difference that the inputs 
into layer 3 are rough weights from the preceding layer.  
 

iiii RRBNBNi outputxoutputxo ×+×= )()(3 μμ (8) 
Layer 3 helps in further refining the weights on the links 

between layers 2 & 3 by accommodating rough pattern into 
the computation as explained earlier. At the end of layers 3, 
the firing strengths of the nodes are normalized twice based on 
the output function of the rough neuron. 

Layer 4: Neurons in this layer are functionally the same as 
those in layer 4 of the ANFIS architecture. The Sugeno model 
based fuzzy if-then rules are now multiplied with the 
normalized firing strengths. Such a computation results in the 
generation of the linear parameters.  

The linear parameters are weighted parameters governing 
the fuzzy rules i.e. 

iii foo ×= 34  (9) 
 

Layer 5: An individual neuron performs summation upon 
the input signal to produce the desired output i.e. 
 

∑= 45
ii oo   (10) 

 
C.  Parameter Estimation 
Hybrid learning is employed to perform parameter 

approximation. The two different sets of network parameters 
identified in the previous section can be estimated in two 
different run directions of the neural network. The linear 
weighted parameters (generated from the Sugeno fuzzy rules) 
are approximated in the forward run whereas the non-linear 
parameters (generated from the weights of the links between 
neurons) are approximated in the backward run i.e. during the 
error back propagation. Detailed methodology of the hybrid 
learning paradigm may be found in [7]. Certain modifications 
have been made to the conventional technique (discussed in 
the next section).  
 

IV. LEARNING AND ERROR CONVERGENCE 
 

Error propagation is opposite to the output propagation in 
direction i.e. error estimation (and convergence) is taken up in 
the backward runs of the neural network. Conventional neural 
networks estimate an error function for every neuron in a 
layer, the output of which is propagated further based on a 
certain inverse transfer function and weights on the links. The 
aspect of determining an appropriate error function at each 
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neuron can turn out to be a laborious task requiring numerous 
forward and backward runs until the overall system error 
stabilizes. We propose a relatively modular methodology for 
error estimation in the backward direction. A secondary neural 
network has been used to approximate the inverse function for 
error i.e.  

 

),( outputobtainedoutputdesiredferror −−=  
 

),( functiontransferinputgoutput −=  
 

Thus,  
 

),( functiontransferinputgferror −= o            (11) 
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The neuro approximated inverse transfer function has been 
used in order to update the weights (which form the central 
core of the non linear parameters). The weight update 
expression can be given as,  
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is iteratively approximated using a secondary neural network.  
 
The parameter update formula is given as,  

 

α
ηα

∂
∂
⋅−=Δ

E                                (14) 

 

where η is called the learning rate and is given as,  
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where k is the step size and governs the speed of convergence 
towards an optimal solution.   
Uncertainty Reduction; The learning algorithm in the 
backward direction is applied in two tiers i.e. two parallel (and 
simultaneously operating) algorithms indulge in parameter 
approximation; one algorithm runs through the boundary 
neurons and the other runs through the lower bound neurons. 
This type of learning has been implemented in order to 
segregate the differential behaviors of the two tracks and thus 
induce a faster convergence rate. Moreover, the algorithm is 
implemented in its on-line learning form to achieve improved 
performance. All these characteristics of the learning 
algorithm have resulted in (the second half of) uncertainty 
reduction.    
 

V.  TESTING, RESULTS & DISCUSSION 
The proposed methodology was tested on the problem of 

approximating the landing parameters of a supersonic jet. 
Theoretical Aerodynamic Equations of various parameters for 

the landing control of a supersonic jet were approximated and 
the results compared with approximations obtained through 
other methods. Emphasis was laid on determining the effect of 
rough inclusion on the aspects of training time, training 
epochs, error of approximation and error propagation.  
 

A.  Aerodynamic Equations and Modeling 
The case of a Supersonic aerodynamics has been chosen to 

test the proposed architecture taking into consideration the 
high non-linearity of the governing equations. In particular 
McDonnell Douglas F/A-18E/F [9] Super Hornets’ 
aerodynamic equations relating to Deceleration Distance and 
Deceleration Time have been chosen. The equations [10] 
outline the phenomenon on which the proposed architecture 
has been tested and have been presented in the appendix to 
this paper due to column format.  

 
B.  Training and Error Efficiency  
Training parameters encountered during the numerous test 

runs have been tabulated in Table I, II, III and IV. Two 
networks were trained and simulated in order to approximate 
the landing parameters. The parameters of Deceleration 
Distance and Time have been considered for testing and 
comparing the various available methodologies.  
 
 

Deceleration Distance Approximation Network:  
 
 

TABLE I 
TRAINING PARAMETERS WHILE TRAINING 

Model Training err 
for  epoch 1 

Total no. 
of Epochs 

Final Error

Proposed 1.28E-3 12 5.43E-5 
RNN 1. 65E-3 27 3.31E-4 
ANFIS 218 97 1.61E-3 
RBFNN 5732 ~20,000 6.08E-2 

 
 
 

TABLE II 
ERROR APPROXIMATION WHILE TRAINING 

Model Error Relative to a  
Unit output  

Proposed 2.77E-7 
RNN 1.46E-6 

ANFIS 8.43E-6 
RBFNN 1.34E-4 

 

 
Deceleration Time Approximation Network:  

 
TABLE III 

TRAINING PARAMETERS WHILE TRAINING 
Model Training err 

for  epoch 1 
Total no. 
of Epochs 

Final Error

Proposed 4.12 40 2.31E-3 
RNN 5.4 120 2.63E-3 
ANFIS 21 2000 2.49E-3 
RBFNN 103 10500 9.1E-3 

 
 
 
 
 
 
 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4021

TABLE IV 
ERROR APPROXIMATION WHILE TRAINING 

Model Error Relative to a  
Unit output  

Proposed 7.01E-5 
RNN 1.32E-4 

ANFIS 8.88E-5 
RBFNN 8.57E-4 

 
where, 
Proposed model: Rough Approximation based Neuro – Fuzzy 
Inference System proposed in this paper. RNN: [5] based 
Rough Neural Network developed by Lingras, P. ANFIS: [6] 
based Neuro – Fuzzy Inference System developed by Jang, J. 
S. R. RBFNN: Radial Basis Function based Neural Network.  
 

C.  Discussion 
It can be clearly observed that the number of training 

epochs are considerably reduced for the case of the Rough 
Approximation based Neuro – Fuzzy Inference System 
(proposed in this paper). The total number of training epochs 
required to obtain a stable system has been reduced by 55% 
(in the case of Deceleration Distance) and by 67% (in the case 
of Deceleration Time).  

Further more, it is quite evident from the training error at 
the end of first iteration for various models that, the Rough 
Sets based Neuro Fuzzy mechanism is the most effective in 
pruning the solution space. It should be noted that, a 
methodology should not only be efficient in the overall 
training error but also display superiority in aspects pertaining 
to the training and error convergence.  

Lastly and most importantly, the overall stabilized errors (in 
output approximation) are the least for the proposed 
methodology. It may be noted that ANFIS has a (varied) better 
performance over the rough neural network presented in [5], 
but the proposed methodology has shown reasonable 
superiority over the other techniques.  

These results have been presented only to provide the 
reader with a better estimate of the various methods. The 
presented results are by no means comprehensive, thus only 
preliminary implications about the quality of the techniques 
should be inferred from them.  
 

VI.  CONCLUSION 
 

Rough Approximation based Neuro – Fuzzy Inference 
System employs various rough set concepts in a synergistic 
fashion within the fuzzified neural architecture. A new 
composition of the rough neurons has been adopted. Such a 
composition of a boundary and lower neuron has been 
implemented within a neuro – fuzzy framework, which is used 
to approximate continuous functions. A new technique for 
error back propagation has been devised and implemented. 
The overall performance of the proposed technique is superior 
to other comparative models. The presented results (though 
not extensive) provide a reasonable estimate about the quality 
of approximation. Pending further analysis, it can be stated 
that this architecture overcomes the limitation of brittle 
boundaries in rough approximation through the use of 
fuzziness. 
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APPENDIX – AERODYNAMIC EQUATIONS [10] 

Deceleration Distance:  

 

 

 

 
Deceleration Time: 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

where, 
 
Vi  Initial Aircraft Flying Velocity;   Vf  Touchdown Aircraft Velocity 
V  Average velocity;     ρ Air Density 
S  Wing Surface Area;    K Induced Drag Coefficient 
CDO Zero Drag Lift Coefficient;    W Aircraft Weight 
CL Lift Coefficient;     g Acceleration due to Gravity 

 
arctan Tan-1 (inverse Tangent) 
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