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 
Abstract—For design optimization with high-dimensional 

expensive problems, an effective and efficient optimization 
methodology is desired. This work proposes a series of modification 
to the Differential Evolution (DE) algorithm for solving computation 
Intensive Black-Box Problems. The proposed methodology is called 
Radial Basis Meta-Model Algorithm Assisted Differential 
Evolutionary (RBF-DE), which is a global optimization algorithm 
based on the meta-modeling techniques. A meta-modeling assisted 
DE is proposed to solve computationally expensive optimization 
problems. The Radial Basis Function (RBF) model is used as a 
surrogate model to approximate the expensive objective function, 
while DE employs a mechanism to dynamically select the best 
performing combination of parameters such as differential rate, cross 
over probability, and population size. The proposed algorithm is 
tested on benchmark functions and real life practical applications and 
problems. The test results demonstrate that the proposed algorithm is 
promising and performs well compared to other optimization 
algorithms. The proposed algorithm is capable of converging to 
acceptable and good solutions in terms of accuracy, number of 
evaluations, and time needed to converge. 

 
Keywords—Differential evolution, engineering design, expensive 

computations, meta-modeling, radial basis function, optimization. 

I. INTRODUCTION 

N today’s world, there exist many computationally intensive 
and expensive mathematical or physical models and 

engineering problems. To solve these computationally 
expensive problems, an enormous number of fitness function 
evaluations are required during the evolution process when 
evolutionary algorithms (EAs) are used. To be able to solve 
these problems, it is very crucial to wisely explore and search 
the design space. Recently, EAs based surrogate models have 
attracted much attention [1]. In such algorithms, a meta-model 
also known as surrogate model is used to evaluate the 
objective function by constructing an approximate model [2]. 
Over the last few decades, many surrogate models have been 
proposed such as Kriging [3], polynomials [4], and RBF [5].  

Global optimization using approximated or surrogate model 
based on search methods has attracted considerable interests 
lately due to their high efficiency, robustness, and ease of 
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implementation. Giunta and Watson [6] and Forrester and 
Keane [7] have used analytical test problems with different 
design variables to compare response surface approximations, 
and Kriging [8] and Queipo [9] have reviewed different 
surrogate models used in various aerospace applications. 
Kaymaz and McMathon [10] introduced the ADAPRES 
method, in which a weighted regression scheme is applied 
instead of normal regression. Experimental points are selected 
from a region where the design point is most likely to exist. 
Schonlau et al. [11] presented a sequential algorithm to 
balance local and global searches using approximations for 
constrained optimization. Sasena et al. [12] used Kriging 
models for disconnected feasible regions. Osio and Amon in 
[13] developed a multistage Kriging strategy to sequentially 
update and improve the accuracy of surrogate approximations. 

The use of surrogate models has largely contributed towards 
reducing the computations required to converge to the global 
solutions for the computationally intensive engineering design 
problems. These meta-models replace the expensive black-box 
functions with cheap, easy to construct, and visible functions 
that do not require powerful personal computers PCs and does 
not take much time to evaluate. The RBF or model, which is 
used in this work, has proven to be one of the most promising 
models for noisy, and highly non-linear functions.  

DE, which is a heuristic and natural inspired optimization 
algorithm, has been used in many engineering and non-
engineering fields because of its capabilities of yielding 
reasonable results that engineers can easily rely on in making 
their decisions. DE has also shown advantageous convergence 
properties and remarkable robustness. Cuevas et al. [14] 
introduced a circle detection method based on DE. Kettani et 
al. [15] proposed a quantum differential evolutionary 
algorithm for the independent set problem. Dattatray et al. [16] 
included an application of DE for the optimal operation of 
multipurpose reservoir. The objective of their study was to 
maximize the hydropower production.  

The question that needs to be answered is how long it takes 
to search and converge to a global solution. For that reason, 
using meta-models to assist DE is considered as a promising 
approach. Combing and utilizing the EA and RBF met-model 
advantages will increase the convergence speed. Hence, 
reducing the number of expensive function and constraints 
evaluations. DE is introduced in the next section to give an 
idea how such algorithm functions. 

Radial Basis Surrogate Model Integrated to 
Evolutionary Algorithm for Solving Computation 

Intensive Black-Box Problems  
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II.  DIFFERENTIAL EVOLUTION 

DE is arguably one of the most powerful stochastic 
optimization algorithms in recent time. DE operates through 
the same computational steps as EA. However, unlike 
traditional EAs, the DE-variants perturb the current generation 
population members with the scaled differences of randomly 
selected and distinct population members. Therefore, no 
separate probability distribution has to be used for generating 
the offspring. Since it was introduced in 1995, DE has been 
continuously developed by many researchers resulting in a lot 
of variants of the originally introduced algorithm with 
improved performance.  

 DE is an evolutionary stationary optimization method that 
is fairly fast and reasonably robust. DE, which is originally 
due to Storn and Price [17], [18], is a method that optimizes a 
problem by iteratively trying to improve a candidate solution 
with regard to a given measure of quality. Such methods are 
commonly known as metaheuristics as they make few or no 
assumptions about the problem being optimized and can 
search very large spaces of candidate solutions. However, 
metaheuristics such as DE do not guarantee converging to an 
optimal solution, yet it efficiently explores and searches the 
design space. DE is used for multidimensional real-valued 
functions but does not use the gradient of the problem being 
optimized, which means that DE does not require for the 
optimization problem to be differentiable as it is required by 
classic optimization methods such as gradient descent and 
quasi-newton methods. DE can therefore also be used on 
optimization problems that are not even continuous, are noisy, 
change over time, etc. [19] What makes DE a powerful 
algorithm is its capability of handling non-differentiable, 
nonlinear, and multimodal objective functions. It has been 
used to train neural networks having real and constrained 
integer weights [20], [21].  

In a population of potential solutions within an n-
dimensional search space, a fixed number of vectors are 
randomly initialized, then evolved over time to explore the 
search space and to locate the minima of the objective 
function. At each iteration, called a generation, new vectors 
are generated by the combination of vectors randomly chosen 
from the current population (mutation). The outcoming 
vectors are then mixed with a predetermined target vector. 
This operation is called recombination and produces the trial 
vector. Finally, the trial vector is accepted for the next 
generation if and only if it yields a reduction in the value of 
the objective function. This last operator is referred to as a 
selection. In the other words, DE optimizes a problem by 
maintaining a population of candidate solutions and creating 
new candidate solutions by combining existing ones according 
to its simple formulae, and then keeping whichever candidate 
solution has the best score or fitness on the optimization 
problem at hand. In this way, the optimization problem is 
treated as a black box that merely provides a measure of 
quality given a candidate solution and the gradient is therefore 
not needed. In DE, the choice of DE parameters, differential 
weight [0 2], crossover probability [0 1], and population size 
[≥4] can have a large impact on optimization performance. 

Selecting the DE parameters that yield good performance has 
therefore been the subject of much research.  

III. META-MODELING 

Approximation models or meta-models (surrogate models) 
play a major role in the meta-models based global design 
optimization. The meta-model in simple and easy-to-calculate 
form is used to replace the original, black-box computer 
analysis and simulation model. The introduced meta-model 
also provides an insight to the optimization problem by 
visualizing the interactions among design variables, objective 
functions, and constraints. The overall objective is to reduce 
the computation cost of computationally intensive design 
simulations and analyses, using inexpensive surrogates of 
these analyses and simulations [22].  

The main benefits of meta-models can be summarized as 
follows: 
• It is much cheaper to evaluate a meta-model than to 

perform a complex computer simulation. This yields a 
reduction in computational effort where many function 
evaluations are necessary (e.g. in optimization or 
stochastic analyses).  

• By the use of meta-models, the designer can easily 
explore the entire design space to get a more profound 
understanding of the system under investigation. 

• Meta-models can be used to combine information 
gathered from different sources, for instance analysis 
codes for different disciplines (e.g. fluids, structures, or 
thermodynamic problems), or physical experiments and 
computer simulations. 

• Parallel computing is simple since in general the 
individual sampling points are appointed simultaneously. 
Hence, the necessary computer experiments can be 
performed independently and in parallel. 

• Meta-models can be used to the smooth response values if 
noise is present in the observations. 

• In the next section, RBF model, which is used in this 
paper, is introduced. 

IV. RADIAL BASIS FUNCTION 

Originally introduced by Hardy [23] and further improved 
by Dyn et al. [24], RBF is an effective algorithm for 
smoothing and interpolating the experimental data. The form 
of the approximate model is a basis function of the Euclidean 
distance between the sampled data point and the point to be 
predicted. Developed as an analytical method for representing 
irregular surfaces, RBF uses linear combinations of radial 
symmetric functions of the Euclidean distance to build 
approximation models. 

Mathematically, the model can be expressed as shown in 
(1). 

 
ሻݔොሺݕ ൌ ∑ ݔ‖߮ሺ	௜ݓ െ ܿ௜‖ሻ

ே
௜ୀଵ                        (1) 

  
where the approximated function ݕොሺݔሻ	is represented as a sum 
of ܰ RBF ߮, each associated with a difference center	ܿ௜	and 
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weighted by an appropriate coefficient, ݓ௜	RBF approximation 
is capable of producing good fits to arbitrary contours of both 
deterministic and stochastic response functions [25]. The 
radial function ߮ሺݎሻ can take many forms as shown in Table I. 

 
TABLE I 

RBF FORMS 

Function Type Radial Basis Form 

Linear Function ߮ሺݎሻ ൌ  ݎ

Cubic Function ߮ሺݎሻ ൌ  ଷݎ

Thin Plate Function ߮ሺݎሻ ൌ ଶݎ log  ݎ

Multi-quadratic 
Function 

߮ሺݎሻ ൌ ቊඥݎ
ଶ ൅ ܽଶ, ݎ ൐ 0

																0, ݎ ൐ 0
 

Gaussian Function ߮ሺݎሻ ൌ ݁ି௔௥
మ
 

V. DE BASED RBF MODEL (RBF-DE) 

There has been much attention to hybrid optimization 
algorithms in the past few decades; recently, more attention is 
given to the optimization algorithm based meta-modeling 
techniques. Recently, researchers are interested in combining 
meta-models (either Kriging, polynomial, RBF, etc.) and 
evolutionary algorithms (EA) [26], which is one of the 
categories of nature-inspired global optimization approaches 
that have been around for many years in dealing with the 
different types of optimization problems. Over the years, 
considerable progress has been achieved in developing more 
flexible, capable, and efficient nature-based global 
optimization methods. Nature-based algorithms are based on 
random observations that give different final solutions each 
run, starting from an identical initial point. Specifically, EA 
population based approaches deal with a set of candidate 
solutions that can be improved via a number of iterations. 
Evolutionary algorithms are the optimization algorithms based 
on the Darwin’s principle [27] which uses the four general 
steps: reproduction, crossover, mutation, and selection. 
Finally, the fitness function is used to reach the optimal 
solution. DE belongs to EA family. In this paper, RBF model 
is utilized to assess DE in the search for the global solution of 
black-box functions. The integration of DE and RBF is unique 
in terms of the search capability and the speed of convergence. 
In this paper, many benchmark test problems were tested, and 
the promising results were reported. 

VI. DESCRIPTION OF THE ALGORITHM 

Fig. 1 explains how the proposed algorithm searches and 
converges to global solution. 

VII. VALIDATION 

The goal of any global optimization method is to find the 
best possible solutions among many other local solutions. The 
Benchmark test functions shown in Table II were used to 
evaluate the proposed algorithm’ robustness, capability and 
efficiency over Convex and Non-Convex functions shown in 
Fig. 2.  

 

 

Fig. 1 RBF-DE proposed method flowchart  
 

TABLE II 
BENCHMARK FUNCTIONS 

Symbol Search space  

Alpine [-10  10] f	ሺݔሻ ൌ ∑ ௜ݔ| sinሺݔ௜ሻ ൅ |௜ݔ0.1
௡
௜ୀଵ  

Zakharo [-5  10] 
f	ሺݔሻ	= ∑ ௜ݔ

ଶ௡
௜ୀଵ +ቀ

ଵ

ଶ
∑ ௜ݔ݅
௡
௜ୀଵ ቁ

ଶ
൅

ቀ
ଵ

ଶ
∑ ௜ݔ݅
௡௜ୀଵ ቁ

ସ
 

ACKELY [-5.12  5.12] f ሺݔሻ= -20݁
ି଴.ଶට

భ	
೙
∑ ௫೔

మ೙
೔సభ 	ି௘

భ
೙ ∑ ୡ୭ୱሺଶగ௫೔ሻ

೙
೔సభ ൅

20 ൅ ݁ 
SARGAN [-10  10] f	ሺݔሻ	= ∑ ݊൫ݔ௜

ଶ ൅ 0.4∑ ௜ݔ
௡
௜ஷ௝ ௝൯ݔ

௡
௜ୀଵ  

VIII. PERFORMANCE TEST RESULTS  

The principal objective of this paper is to increase the 
performance of the DE algorithm for expensive black-box 
problems. A series of modifications has been proposed, and 
RBF-DE can find the optimum with remarkably fewer NFE. 
In order to prove this assertion, the performance of DE 
algorithm has been compared to the modified version on four 
standard with different dimensional test problems. Table III 
shows a summary of these results. It is notable that, for a fair 
comparison, the same stopping criteria have been used for the 
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original DE algorithm. 
 

 

Fig. 2 Alpine function 
 

 

Fig. 3 Zakharov function 
 

 

Fig. 4 Ackely function 
 

 

Fig. 5 Sargan function 

The history of convergence in both methods can clarify the 
effect of the proposed modification. Figs. 6 (a)-(d) show the 
convergence rate of 2-variable, 3-variable, 6-variable and 10-
variable test problems. One can see that in order to reach the 
same accuracy, the NFE required by the RBF-DE is 
significantly smaller than that for the original DE algorithm. 
 

TABLE III 
COMPARISON RESULTS  

f D DE  RBF-DE 

  f* N.F.E K f* N.F.E K 

Alpine 2 2.9991E-5 2500 90 3.8275E-5 452 28 

Zakharov 3 8.9691E-6 2500 98 2.1773E-5 659 34 

Ackley 6 4.2960E-4 5000 200 4.5061E-4 973 80 

Sargan 10 7.3774E-4 6250 260 2.8522E-5 1061 76 

N.F.E= Number of Function evaluations, K= Number of Iterations 
 

 

Fig. 6 (a) Convergence rate of Alpine function 
 

 

Fig. 6 (b) Convergence rate of Zakharov function 
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Fig. 6 (c) Convergence rate of Ackley function 
 

 

Fig. 6 (d) Convergence rate of Sargat function 
 

 

Fig. 7 Number of function evaluations in RBF-DE versus DE 
 
Fig. 7 illustrates the required NFE in RBF-DE versus DE 

method for all test functions. In each case, the horizontal axis 
shows the function, while the vertical axis demonstrates its 
corresponding NFE. It is evident from these graphs that the 
proposed method not only decreases the required NFE, but 

also gives the user the opportunity to reach more accurate 
solutions at the cost of a much lower number of samples. 

The main focus of this modification was to increase the 
performance of DE algorithm on expensive black-box 
problems. As we have expected, the performance of DE 
method has been increased for solving expensive functions is 
explicit. 

IX. CONCLUSION 

DE algorithm is found to be costly for expensive black-box 
problems with an exponentially increasing demand for 
function evaluations. In this work, modification of original DE 
was achieved by integrating RBF model with DE and 
progressive reduction on the search region is evident. The 
proposed RBF-DE has been benchmarked using four standard 
tests, and the performance increase has been illustrated and 
discussed. At the end, it is notable that the exponentially 
increasing demand of DE algorithm for function evaluations in 
expensive black-box problems has been replaced with the new 
strategy. This makes RBF-DE method a suitable choice for 
high cost functions, although further improvements are needed 
to make it more efficient for high expansive black-box 
(HEBB) problems. 
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