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 
Abstract—In this paper, we present a quantum statistical 

mechanical formulation from our recently analytical expressions for 
partial-wave transition matrix of a three-particle system. We report 
the quantum reactive cross sections for three-body scattering 
processes 1+(2,3)→1+(2,3) as well as recombination 
1+(2,3)→1+(3,1) between one atom and a weakly-bound dimer. The 
analytical expressions of three-particle transition matrices and their 
corresponding cross-sections were obtained from the three-
dimensional Faddeev equations subjected to the rank-two non-local 
separable potentials of the generalized Yamaguchi form. The 
equilibrium quantum statistical mechanical properties such partition 
function and equation of state as well as non-equilibrium quantum 
statistical properties such as transport cross-sections and their 
corresponding transport collision integrals were formulated 
analytically. This leads to obtain the transport properties, such as 
viscosity and diffusion coefficient of a moderate dense gas. 

 
Keywords—Statistical mechanics, Nonlocal separable potential, 

three-body interaction, Faddeev equations.  

I. INTRODUCTION 

HE three-particle problems have been extensively proved 
in a wide variety of problems in all area of physics, 

especially in quantum statistical mechanics of moderately 
dense gases. In the quantum theory of three-body systems, 
Faddeev [1] introduced a set of equations that is analogous to 
the Lippmann-Schwinger (LS) equation for two-body 
scattering. Faddeev showed that a well-behaved set of three-
body equations involves the two-body T-matrix. 

In a recent paper, we solved analytically the Faddeev 
equations for three-body scattering at arbitrary angular 
momentum and obtained the transition matrices for some 
transition processes, including scattering and recombination 
channels in terms of free-particle resolvent matrix. We used a 
generalized Yamaguchi rank-two nonlocal separable potential 
(NLSP) to obtain the analytical expressions for partial wave 
scattering properties of a three-particle system. The NLSPs 
have been widely used in many branches of physics, because 
of their extreme simplicity and yield algebraic solution in the 
LS equation [2]-[8]. Because of their extreme simplicity, these 
NLPS have been extensively used to theoretically describe the 
multiparticle problems, particularly in determination of three-
body scattering properties using a two-body separable 
potential. 
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The NLSP model can generally be written as  
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where n is the rank of the potential operator 12V̂ , iv  is the 

attractive (or repulsive) coupling strength and ;i  is state of 

the system with angular momentum quantum number  , 
which is a real number in the unitary case. The momentum 
representation of such potential is 
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where    ;i
)(

i  pp   is the momentum representation of 

form factor. 
In the present work, our previous formulations of three-

particle scattering properties [4] were used to obtain a new 
formulation for both equilibrium and non-equilibrium 
statistical mechanical properties of moderately dense gases. 
We formulated an analytic expression for equilibrium partition 
function of two and three-particle correlated states via NLSP. 
Moreover, in the framework of the non-equilibrium quantum-
statistical mechanics and in the corresponding kinetic theory, 
we obtained the analytical expressions for three-particle 
collision cross-sections and their corresponding collision 
integrals, which leads to obtain the transport properties, such 
as viscosity and diffusion coefficient of a moderate dense gas. 

II. FADDEEV EQUATIONS AND TRANSITION MATRICES  

Let us consider three-particle system with the total 

Hamiltonian V̂ĤĤ  0 , where 0Ĥ  is the total kinetic energy 

operator and V̂  is the sum of pair interactions iV̂  ( jki V̂V̂  ) of 

the three-body system, which treated on an equal footing. The 
kinetic energy 0Ĥ  in the Jacobi coordinates may be written as 
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in which ak , bk  and ck  denote the asymptotic momenta of 

three particles in cyclic order of a, b and c. In the Faddeev 
formulation, the total interaction potential energy V̂  among 
the three particles may be written as  

 

cba V̂V̂V̂V̂   (7) 
 
The complete solution of the scattering problem is 

determined with known total transition operator )(ˆ zT  given by 
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where the free particle Green function defined as 

1
00 )ˆ()(ˆ  HzzG , in which iEz   is complex energy 

parameter and E is three-particle energy.  
Faddeev has shown that the three-body transition operator 

can be conveniently a sum of separate terms corresponding to 
two-body interactions as [1]: 
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where )z(T̂ )i(  can be represented in a matrix form: 
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in which the three-body transition matrix operator for two-
body (b-c) bounded system with particle a as spectator and the 

three-body Green operator defined as 1
0 )ˆˆ()(ˆ  bca VHzzG  

may be given by 
 

V̂)z(ĜV̂V̂)z(T̂ abcbca   (11) 
 

Indeed, the transition matrix explicitly shows the 
contributions from the bound states, resonances and distant 
singularities in the complex-energy plane. 

In this work, the two-particle potential interaction is 
considered as a 3D rank- two NLSP given by: 
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where )ˆˆ( pp .P  is Legendre function with orbital angular 

momentum quantum number   in which p̂  and p̂  are unit 

vectors, ,iv  is the attractive (or repulsive) coupling strength 

and )p,p( bca
)(

i
  is the form factor, which we assumed as the 

generalized Yamaguchi-type model [4]: 
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where )m(  is the Gamma function and the attractive (or 

repulsive) inverse range ia  plays the role of a scale factor. 

In our previous work [4], we calculated the  th partial-wave 

off-shell transition operators )(ˆ )(
1 za
  for the scattering (with a 

= 1) and recombination (with a = 2) processes in the reduced 
momentum representation as 
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and mn  are parameters that must be satisfied by: 
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The reduced parameters and variables are defined as 

app /~  , 2/~
iii aMvv  , aaa ii /~  , where 2/)( 21 aaa  .  
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The expression of free-particle motion )()( qQik
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(15) can be obtained as 
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The analytic expression for )~,~,~( ,,
)( qaa bckbci
  is essentially 

the same as that of two-body problem, which has been 
described in detail in our previous work (see appendix A of 
[3]). 

The above analysis is a unique method for dealing with 
scattering via the rank-two separable potentials and allows 
calculating the analytical expression for transition matrix 
elements in terms of free motion resolvent matrix elements. 

III. RESULTS AND DISCUSSION 

A. Equilibrium Statistical Mechanical Properties 

In thermal equilibrium the grand canonical partition 
function can be written as 

  

  










 





2
ˆ-20

ˆ-ˆ-

0

eTreTr1eTr HβHβNHβ

N

N     (18) 

 

where kTβ 1  and  e  is the absolute activity, in which 

  is the chemical potential. Moreover, the grand 

characteristic function is given by 
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Using the absolute activity expansion 
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

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comparing with (19), the coefficients nb  are obtained as 
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These coefficients are related to the ordinary virial 
coefficients: 
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where B is the second virial coefficient and C is third viral 
coefficient. Furthermore, the N-particle statistical operator 

NHe
ˆ  and the N-particle resolvent operator 

1)ˆ()(ˆ  NN HzzG  are related by [9], [10]: 
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where the contour C encircles all singularities of )(ˆ zGN . For 

two and three-particle scattering (N = 2 and 3), it is possible to 
express the grand canonical partition function as well as the 
second and third viral coefficients in terms of two- and three- 
particle transition operators. Substituting (22) into (20) and 
(21) gives the second and third virial coefficients in terms of 
two- and three-particle transition matrices (14a) and (14b).  

Fig. 1 shows the reduced second and third viral coefficients 
as a function of reduced temperature for d-wave scattering via 
NLSP with the reduced parameters. All examples of this work, 
that are second and third viral coefficients, collision cross-
sections and collision integrals are used the potential 
parameters as the following: 
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third virial coefficients are defined as 3)(* ahBB   and 
6)(* ahCC  , respectively and the reduced temperature is 

defined as 2
B* aTkT  . 

 

Fig. 1 Reduced second and third virial coefficients as a function of 
reduced temperature for d-wave scattering 

B. Non-Equilibrium Statistical Mechanical Properties 

The transport properties such as diffusion, viscosity, heat 
conductivity and thermal diffusion are described by the 
corresponding transport coefficients or, equivalently, by the 
collision transport cross sections. These cross sections are 
related to the so-called transport collision integrals, which are 
integrals of transport cross sections. Fig. 2 shows the partial-
wave three-particle collision cross-sections for  -waves.  

The two- and three-particle collision cross sections )(EQn  

can be written in terms of partial-wave scattering amplitude 
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Moreover, the reduced collision integrals are determined from 
an average over a Maxwell-Boltzmann distribution as [11]: 
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where the factor ),( snF  is defined as 
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The superscripts n and s appearing in the collision integral 

denotes weighting factors that account for the mechanism of 
transport by molecular collision. The calculated values of 
three-particle reduced collision integrals ),(~ sn  as a function of 
reduced temperature are shown in Fig. 3. To calculate the 
collision integrals, the potential parameters are selected as 
those obtained the virial coefficients.  

 

 

Fig. 2 Partial-wave reduced cross-sections versus reduced energy for: 
s-wave (―), p-wave (•••), d-wave (– –) and f-wave (– • –) 

 

 

Fig. 3 Calculated values of three-particle reduced collision integrals 
),(~ sn  as a function of reduced temperature with different n and s 

 

The collision integrals )1,1(~
  and )2,2(~

 are used to obtain 
the principal transport coefficients, i.e. diffusion, viscosity and 

thermal conductivity from (26)-(28), whereas the collision 
integral )2,1(~

 , )3,1(~
  and )3,2(~

  can be used to obtain the 
coupled transport coefficients, such as thermal diffusion factor 
and diffusion thermo-effect. The Chapman- Enskog kinetic 
theory of a dilute gas leads to the expressions for single 
processes, i.e. viscosity  , diffusion D and the thermal 

conductivity   as [12]: 
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where   is the number density. The values of f , Df  and f  

typically differ from unity by about 1%, and can be 
determined from ratios of collision integrals [12]. 
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