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Abstract—This paper introduces a Quantum Correlation Matrix 

Memory (QCMM) and Enhanced QCMM (EQCMM), which are 
useful to work with quantum memories. A version of classical Gram-
Schmidt orthogonalisation process in Dirac notation (called Quantum 
Orthogonalisation Process: QOP) is presented to convert a non-
orthonormal quantum basis, i.e., a set of non-orthonormal quantum 
vectors (called qudits) to an orthonormal quantum basis, i.e., a set of 
orthonormal quantum qudits. This work shows that it is possible to 
improve the performance of QCMM thanks QOP algorithm. Besides, 
the EQCMM algorithm has a lot of additional fields of applications, 
e.g.: Steganography, as a replacement Hopfield Networks, Bilevel 
image processing, etc. Finally, it is important to mention that the 
EQCMM is an extremely easy to implement in any firmware. 
 

Keywords—Quantum Algebra, correlation matrix memory, Dirac 
notation, orthogonalisation. 

I. INTRODUCTION 
INCE it was first proposed by Feynman [1], that quantum 
mechanics might be more powerful computationally than a 

classical Turing machine, we have heard a lot of quantum 
computational networks [3], quantum cellular automata [2], 
but only a little about quantum neural networks [4]. The 
possible reason for the omni-penetrating ideas of quantum 
information processing (QIP) to avoid the field of artificial 
neural networks (ANN), is the presence of a nonlinear 
activation function in any ANN. For very similar reason, a 
need for non-linear couplings between optical modes was the 
main obstacle for building a scalable optical QIP system. 

It was shown recently [5], that quantum computation on 
optical modes using only beam splitters, phase shifters, photon 
sources and photo detectors is possible. Accepting the ideas of 
[5], we just assume the existence of a qubit: 

 
10 βαψ += ,              (1) 

 
where 122 =+ βα , with the states α  and β  are 

understood as different polarization states of light. 
Specifically,  
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See the Bloch’s Sphere in Fig. 1. 
 

 
Fig. 1 Bloch’s Sphere 

 
On the other hand, a Quantum Associative Memory (QAM) 

may also be classified as linear or nonlinear, depending on the 
model adopted for its neurons [6]. In the linear case, the 
neurons act (to a first approximation) like a linear combiner 
[7]-[11]. To be more specific, let the data vectors a  and b  

denote the stimulus (input) and the response (output) of an 
associative memory, respectively. In a linear associative 
memory, the input-output relationship is described by  
 

aMb =              (2) 
 

where M is called the quantum memory matrix. The matrix M 
specifies the network connectivity of the QAM. Fig. 2 depicts 
a block-diagram representation of a linear QAM (LQAM). In 
a nonlinear QAM (NLQAM), on the other hand, we have an 
input-output relationship of the form 
 

( ) aaMb ;ϕ=            (3) 
 
where, in general, ϕ(.;.) is a nonlinear function of the QAM 
and the input vector.  
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Fig. 2 Block diagram of QAM 

 
Although this form of matrix (in the classical case) was 

introduced in the 1960's and has been studied intensively since 
then, see [7]-[11], and the use of orthogonalisation is not new 
to improve the storage of these networks, see [9], [10], 
unfortunately, a CMM version doesn't exist when the key 
pattern ka  and the memorized pattern kb  for all k are 

quantum. 
The Quantum Correlation Matrix Memory (QCMM), with 

the concepts of memory, quantum memory, training and recall 
(of QCMM) and Enhanced QCMM (EQCMM) is outlined in 
Section II. In Section III, we discuss briefly the conclusions of 
the paper. 

II. QUANTUM CORRELATION MATRIX MEMORY 

A. Concept of Memory 
Discussion of learning tasks, particularly the task of pattern 

association, leads us naturally to think about memory. In a 
neurobiological context, memory refers to the relatively 
enduring neural alterations induced by the interaction of an 
organism with its environment [6]. Without such a change 
there can be no memory. Furthermore, for the memory to be 
useful it must be accessible to the nervous system in order to 
influence future behavior. However, an activity pattern must 
initially be stored in memory through a learning process [7]-
[14].  

Memory and learning are intricately connected. When a 
particular activity pattern is learned, it is stored in the brain 
where it can be recalled later when required. Memory may be 
divided into “short-term” and “long-term” memory, depending 
on the retention time [6]. Short-term memory refers to a 
compilation of knowledge representing the “current” state of 
the environment. Any discrepancies between knowledge 
stored in short-term memory and a “new” state are used to 
update the short-term memory. Long-term memory, on the 
other hand, refers to knowledge stored for a long time or 
permanently. 

In this section we study an associative memory that offers 
the following characteristics: 
• The memory is distributed. 
• Both the stimulus (key) pattern and the response (stored) 

pattern of an associative memory consist of data vectors. 
• Information is stored in memory by setting up a spatial 

pattern of neural activities across a large number of 
neurons. 

• Information contained in a stimulus not only determines 
its storage location in memory but also an address for its 
retrieval. 

• Although neurons do not represent reliable and low-noise 
computing cells, the memory exhibits a high degree of 

resistance to noise and damage of a diffusive kind. 
• There may be interactions between individual patterns 

stored in memory. (Otherwise the memory would have to 
be exceptionally large for it to accommodate the storage 
of a large number of patterns in perfect isolation from 
each other). This is therefore the distinct possibility for 
the memory to make errors during the recall process. 

In a distributed memory, the basic issue of interest is the 
simultaneous or near-simultaneous activities of many different 
neurons, which are the result of external or internal stimuli. 
The neural activities form a spatial pattern inside the memory 
that contains information about the stimuli. The memory is 
therefore said to perform a distributed mapping that 
transforms an activity pattern in the input space into another 
activity pattern in the output space. We may illustrate some 
important properties of a distributed memory mapping by 
considering an idealized neural network that consists of two 
layers of neurons [15]-[20]. 

B. Quantum Memory 
In the following mathematical analysis, the quantum neural 

networks are assumed to be linear. The implication of this 
assumption is that each neuron acts as a linear combiner.  To 
proceed with the analysis suppose that an activity pattern 

kx occurs in the input layer of the network and that an 

activity pattern 
ky occurs simultaneously in the output layer. 

The issue we wish to consider here is that of learning form the 
association between the patterns 

kx  and 
ky .  

The patterns
kx and

ky are represented by vectors, 

written in their expanded forms as: 
 

1 2, , ,
T

k k k kmx x x x= ⎡ ⎤⎣ ⎦…  

 
and 

1 2, , ,
T

k k k kmy y y y= ⎡ ⎤⎣ ⎦…  

 
From here on we refer to m as network dimensionality [21]. 

The elements of both 
kx  and 

ky  can assume positive and 

negative values. 
With this network assumed to be linear, the association of 

key vector 
kx  with memorized vector 

ky  may be 

described in matrix form as: 
 

( ) , 1, 2, ,k ky W k x k q= = …         (4) 
 
To developed a detailed description of the (4), we have 
 

( )
1

, 1, 2, ,
m

ki ij kj
j

y w k x i m
=

= =∑ …      (5) 

 
where the ( ) , 1, 2, ,ijw k j m= … are the synaptic weights of 

neuron i corresponding to the kth pair of associated patterns. 
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Using matrix notation, we may express kiy in the equivalent 
form 

 

[ ]
1

2
1 2( ), ( ), , ( ) , 1, 2, ,

k

k
ki i i im

km

x
x

y w k w k w k i m

x

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

… …
    (6) 

 
We may define an m-by-m memory matrix that describes 

the summation of the weight matrices for the entire set of 
pattern associations as follows: 

 

1

( )
q

k

M w k
=

= ∑               (7) 

 
The definition of the quantum memory matrix given in (6) 

may be restructured in the form of a recursion as shown by 
 

1 ( ), 1, 2, ,k kM M W k k q−= + = …       (8) 
 

where the initial value M0 is zero (i.e., the synaptic weights in 
the memory are all initially zero), and the final value Mq is 
identically equal to M as defined in (7). According to the 
recursive formula of (8), the term Mk-1 is the old value of the 
memory matrix resulting from (k-1) pattern associations, and 
Mk is the updated value in light of the increment W(k) 
produced by the kth association. Note, however, that when 
W(k) is added to Mk-1, the increment W(k) loses its distinct 
identity among the mixture of contributions that form Mk. In 
spite of the synaptic mixing of different associations, 
information about the stimuli may not have been lost, as 
demonstrated in the sequel. Notice also that as the number q 
of stored patterns increases, the influence of a new pattern on 
the memory as a whole is progressively reduced. 

C. Quantum Correlation Matrix Memory 
Suppose that the associative memory has learned the 

memory matrix M through the associations of key and 
memorized patterns described by 

k kx y→ , where 

1, 2, ,k q= … . We may postulate M̂ , denoting an estimate of 
the memory matrix M in terms of these patterns [6]: 

 

1

ˆ
q

k k
k

M y x
=

= ∑               (9) 

 
The term 

k ky x  represents the outer product of the key 

pattern 
kx and the memorized pattern 

ky . This outer 

product is an estimate of the weight matrix W(k) that maps the 
output pattern 

ky  onto the input pattern
kx . Since the 

pattern 
kx  and 

ky are both m-by-1 vectors by assumption, 

it follows that their output product 
k ky x , and therefore the 

estimate M̂ , is an m-by-m matrix. 

On the other hand, (9) may be reformulated in the 
equivalent form 

 

1

2
1 2

ˆ , , , q

q

y
y

M x x x Y X

y

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤= =⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…
       (10) 

 
where 

1 2, , , qX x x x⎡ ⎤= ⎣ ⎦…           (11) 

 
and 

1 2, , , qY y y y⎡ ⎤= ⎣ ⎦…           (12) 

 
The matrix X is an m-by-q matrix composed of the entire 

set of key patterns used in the learning process; it is called the 
key matrix. The matrix Y is an m-by-q matrix composed of the 
corresponding set of memorized patterns; it is called the 
memorized matrix. 

 

 
Fig. 3 Signal-flow graph representation of (13) 

 
Equation (10) may also be restructured in the form of a 

recursion as follows: 
 

1
ˆ ˆ , 1, 2, ,−= + = …k k k kM M y x k q    (13) 

 
A signal-flow graph representation of this recursion is 

depicted in Fig. 3. According to this signal-flow graph and the 
recursive formula of (13), the matrix 1

ˆ
−kM represents an old 

estimate of the memory matrix; and ˆ
kM represents its updated 

value in the light of a new association performed by the 
memory on the patterns 

kx  and 
ky . Comparing the 

recursion of (13) with that of (8), we see that the outer product 
k ky x  represents an estimate of the weight matrix W(k) 

corresponding to the kth association of key and memorized 
patterns, 

kx  and 
ky . 

D. Recall 
The fundamental problem posed by the use of an 
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associative memory is the address and recall of patterns stored 
in memory. To explain one aspect of this problem, let 
M̂ denote the memory matrix of an associative memory, 
which has been completely learned through its exposure to q 
pattern associations in accordance with (9). Let a key pattern 

jx  be picked at random and reapplied as stimulus to the 

memory, yielding the response 
 

ˆ= jy M x               (14) 
 

Substituting (9) in (14), we get 
 

1 1

m m

k k j k j k
k k

y y x x x x y
= =

= =∑ ∑         (15) 

 
where, in the second line, it is recognized that 

k jx x is a 

scalar equal to the inner product of the key vectors 
kx and 

jx . We may rewrite (15) as 

 

( ) ( )
1=

≠

= + ∑
m

j j j k j k
k
k j

y x x y x x y        (16) 

 
Let each of the key patterns 

1 2, , ,… qx x x be 

normalized to have unit energy; that is,  
 

1
1, 1, 2, ,

m

k kl kl k k
l

E x x x x k q
=

= = = =∑ …       (17) 

 
Accordingly, we say simplify the response of the memory 

to the stimulus (key pattern) 
jx  as 

 
= +j jy y v           (18) 

 
where 

1=
≠

= ∑
m

j k j k
k
k j

v x x y         (19) 

 
The first term on the right-hand side of (18) represents the 

“desired” response 
jy ; it may therefore be viewed as the 

“signal” component of the actual response y . The second 

term 
jv  is a “noise vector” that arises because of the 

crosstalk between the key vector 
jx  and all the other key 

vectors stored in memory. The noise vector 
jv  is 

responsible for making errors on recall. 
In the context of a linear signal space, we may define the 

cosine of the angle between a pair of vectors 
jx  and 

kx  as 

the inner product of 
jx  and 

kx divided by the product of 

their individual Euclidean norms or lengths as shown by 
 

( )cos , = k j
k j

k j

x x
x x

x x
          (20) 

 
The symbol 

kx  signifies the Euclidean norm of vector 

kx , defined as the square root of the energy of 
kx : 

 

k k k kx x x E= =           (21) 

 
Returning to the situation, note that the key vectors are 

normalized to have unit energy in accordance with (17). We 
may therefore reduce the definition of (20) to 
 

( )cos , =k j k jx x x x          (22) 

 
We may then redefine the noise vector of (19) as 

 

( )
1

cos ,
=
≠

= ∑
m

j k j k
k
k j

v x x y       (23) 

 
We now see that if the key vectors are orthogonal (i.e., 

perpendicular to each other in a Euclidean sense), then 
 

( )cos , 0 ,= ≠k jx x k j       (24) 

 
and therefore the noise vector 

jv  is identically zero. In such 

a case, the response y  equals 
jy . The memory associates 

perfectly if the key vectors from an orthonormal set; that is, if 
they satisfy the following pair of conditions: 

 
1 ,

0 ,k j

k j
x x

k j

⎧ =⎪= ⎨
≠⎪⎩

           (25) 

 
Suppose now that the key vectors do form an orthonormal 

set, as prescribed in (25). What is then the limit on the storage 
capacity of the associative memory? Stated in another way, 
what is the largest number of patterns that can be reliably 
stored? The answer to this fundamental question lies in the 
rank of the memory matrix M̂ . The rank of a matrix is 
defined as the number of independent columns (rows) of the 
matrix. That is, if r is the rank of such a rectangular matrix of 
dimensions l-by-m, we then have ( )min ,≤r l m . In the case 

of a correlation memory, the memory matrix M̂ is an m-by-m 
matrix, where m is the dimensionality of the input space. 
Hence the rank of the memory matrix M is limited by the 
dimensionality m. We may thus formally state that the number 
of patterns that can be reliably stored in a correlation matrix 
memory can never exceed the input space dimensionality. 
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E. Enhanced Quantum Correlation Matrix Memory 
According to what explained above, the improvement in the 

memory consists of removing the noise vector 
jv , which 

arises from the orthogonalisation of the key vector 
kx , 

which is conducted through the following procedure [22]. 
Suppose 

1 , ,… dx x is a basis set for some vector space Z 

with an inner product. There is a useful method, the Gram-
Schmidt procedure, which can be used to produce an 
orthonormal basis set 

1 , ,… dz z for the vector space Z. 

Define 
1 1 1/ ,≡z x x and for 1 1≤ ≤ −k d  define 

1+kz  

inductively by 
 

1 11
1

1 11

+ +=
+

+ +=

−
=

−

∑
∑

k
k i k ii

k k
k i k ii

x z x z
z

x z x z
        (26) 

 
This method is called Quantum Orthogonalisation Process 

(QOP), being that procedure which allows to automatically 
switch EQCMM QCMM. It is not difficult to verify that the 
vectors 

1 , ,… dz z  form an orthonormal set which is also a 

basis for Z. Thus, any finite dimensional vector space of 
dimension d has an orthonormal basis, 

1 , ,… dz z  [23]-

[30]. Now the input vectors to QCMM are the z instead of the 
x. Both blocks (QOP and QCMM) constitute Enhanced 
QCMM (EQCMM), see Fig. 4. 
 

 
Fig. 4 Both blocks (QOP and QCMM) constitute EQCMM 

III. CONCLUSION 
We propose a QCMM model and a QOP before that, 

forming a robust novel QCMM, called EQCMM. QOP 
removes the key vector noise improvement the recall and the 
general quantum memory performance. 
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